Группа крови (АВ0): суть, определение у ребенка, совместимость, на что влияет? Характеристика первой группы крови


Первая группа крови - 0 (I)

I группа - не содержит агглютиногенов (антигенов), но содержит агглютинины (антитела) α и β. Она обозначается 0 (I). Так как эта группа не содержит инородных частиц (антигенов), то ее можно переливать всем людям (см. статью ). Человек с такой группой крови является универсальным донором.

Вторая группа крови А β (II)

Третья группа крови Вα (III)

В группе крови

Под агглютинацией

Группа крови (фенотип) наследуется по законам генетики и определяется набором генов (генотипом), получаемых с материнской и отцовской хромосомой. Человек может иметь только те антигены крови, которые имеются у его родителей. Наследование групп крови по системе АВО определяется тремя генами - А, В и О. В каждой хромосоме может быть только один ген, поэтому ребенок получает от родителей только два гена (один от матери, другой от отца), которые и вызывают появление в эритроцитах двух антигенов системы АВО. На рис. 2 представлена .

Антигены крови

Схема наследования групп крови по системе АВО

Группа крови I (0) - охотник

Если вас заинтересовала взаимосвязь групп крови и особенностей организма, то рекомендуем ознакомиться со статьёй .

Определение групп крови

Различают 4 группы крови: OI, AII, BIII, ABIV. Групповые особенности крови человека являются постоянным признаком, передаются по наследству, возникают во внутриутробном периоде и не изменяются в течение жизни или под влиянием болезней.

Было установлено, что реакция агглютинации происходит при склеивании антигенов одной группы крови (их назвали агглютиногенами), которые находятся в красных кровяных тельцах - эритроцитах с антителами другой группы (их назвали агглютининам), находящимися в плазме - жидкой части крови. Разделение крови по системе АВ0 на четыре группы основано на том, что кровь может содержать или не содержать антигены (агглютиногены) А и В, а также антитела (агглютинины) α (альфа или анти-А) и β (бета или анти-Б).

Первая группа крови - 0 (I)

I группа - не содержит агглютиногенов (антигенов), но содержит агглютинины (антитела) α и β. Она обозначается 0 (I). Так как эта группа не содержит инородных частиц (антигенов), то ее можно переливать всем людям. Человек с такой группой крови является универсальным донором.

Считается что это самая древняя группа крови или группа «охотников», которая возникла за 60000 - 40000 лет до н.э, в эпоху неандертальцев и кроманьонцев, которые умели только собирать пищу и охотиться. Людям с первой группой крови свойственные качества лидера.

Вторая группа крови А β (II)

II группа содержит агглютиноген (антиген) А и агглютинин β (антитела к агглютиногену В). Поэтому ее можно переливать только тем группам, которые не содержат антиген В - это I и II группы.

Эта группа появилась позже первой, между 25000 и 15000 годами до н.э., когда человек начал осваивать земледелие. Людей со второй группой крови особенно много в Европе. Считается, что люди, имеющие эту группу крови также склонны к лидерству, но более гибки в общении с окружающими, чем люди, имеющие первую группу крови.

Третья группа крови Вα (III)

III группа содержит агглютиноген (антиген) В и агглютинин α (антитела к агглютиногену А). Поэтому ее можно переливать только тем группам, которые не содержат антиген А - это I и III группы.

Третья группа появилась около 15000 лет до н.э, когда человек начал заселять более северные холодные районы. Впервые эта группа крови появилась у монголоидной расы. Со временем носители группы стали перемещаться на европейский континент. И сегодня людей с такой кровью очень много в Азии и Восточной Европе. Люди, имеющие эту группу крови обычно терпеливы и очень исполнительны.

Четвертая группа крови АВ0 (IV)

IV группа крови содержит агглютиногены (антигены) А и В, но содержит агглютининов (антител). Поэтому ее можно переливать только тем, у кого такая же, четвертая группа крови. Но, так как в крови таких людей нет антител, способных склеиться с вводимыми извне антителами, то им можно переливать кровь любой группы. Люди с четвертой группой крови являются универсальными реципиентами.

Четвертая группа - новейшая из четырех групп человеческой крови. Она появилась менее 1000 лет назад в результате смешения индоевропейцев, носителей I группы и монголоидов, носителей III группы. Она встречается редко.

В группе крови OI агтлютиногенов нет, имеются оба агглютинина, серологическая формула этой группы ОI; кровь группы АН содержит агглютиноген А и агглютинин бета, серологическая формула - AII кровь группы ВШ содержит агглютиноген В и агглютинин альфа, серологическая формула - ВIII; кровь группы ABIV содержит агглютиногены А и В, агглютининов нет, серологическая формула - ABIV.

Под агглютинацией мы подразумеваем склеивание эритроцитов и их разрушение. «Агглютинация (позднелатинское слово aglutinatio - склеивание) - склеивание и выпадение в осадок корпускулярных частиц - бактерий, эритроцитов, тромбоцитов, клеток тканей, корпускулярных химически активных частиц с адсорбированными на них антигенами или антителами, взвешенных в среде электролитов»

Группа крови

Антигены крови появляются на 2-3-м месяце внутриутробной жизни и к рождению ребенка хорошо определяются. Естественные антитела выявляются с 3-го месяца после рождения и к 5-10 годам достигают максимального титра.

Схема наследования групп крови по системе АВО

Может показаться странным, что группа крови может определять, насколько организм хорошо усваивает те или иные продукты, однако, медицина подтверждает тот факт, что существуют болезни, которые чаще всего встречаются у людей определенной группы крови.

Методику питания по группам крови разработал американский врач Питер Д"Адамо. Согласно его теории, усвояемость пищи, эффективность ее использования организмом напрямую связана с генетическими особенностями человека, с его группой крови. Для нормальной деятельности иммунной и пищеварительной систем человеку нужно употреблять продукты, соответствующие его группе крови. Иными словами, те продукты, которыми в давние времена питались его предки. Исключение из рациона веществ, несовместимых с кровью, уменьшает зашлакованность организма, улучшает работу внутренних органов.

Виды деятельности в зависимости от групп крови

Результаты исследования групп крови выступают тем самым в ряду других доказательств «кровного родства» и еще раз подтверждают тезис о едином происхождении человеческого рода.

Различные группы появились у человека в результате мутаций. Мутация – это спонтанные изменения наследственного материала, решающим образом влияющие на способность живого существа к выживанию. Человек в целом является результатом бесчисленных мутаций. Тот факт, что человек все еще существует, свидетельствует о том, что во все времена он умел приспосабливаться к окружающей среде и дать потомство. Образование групп крови также происходило в виде мутаций и естественного отбора.

Возникновение расовых различий связано с успехами в области производства, достигнутыми в период среднего и нового каменного века (мезолит и неолит); эти успехи сделали возможным широкое территориальное расселение людей по различным климатическим зонам. Разнообразные климатические условия воздействовали, таким образом, на различные группы людей, изменяя их непосредственно или же косвенно и влияя на трудоспособность человека. Общественный труд приобретал все больший вес по сравнению с природными условиями, причем каждая раса образовывалась в ограниченном ареале, при специфическом воздействии природных и социальных условий. Таким образом, переплетение относительно сильных и слабых сторон развития материальной культуры того времени вызнало возникновение расовых различий людей в условиях, когда окружающая среда господствовала над человеком.

Начиная с периода каменного века благодаря дальнейшим успехам в области производства люди до известной степени освободились от прямого влияния окружающей среды. Они смешивались и кочевали вместе. Поэтому современные условия жизни зачастую не имеют уже какой-либо связи с различными расовыми конституциями человеческих групп. Кроме того, приспособление к условиям окружающей среды, о котором шла речь выше, было но многих отношениях косвенным. Прямые следствия приспособления к окружающей среде приводили к дальнейшим модификациям, которые как морфологически, так и физиологически были связаны с первыми. Причину возникновения расовых признаков следует, таким образом, лишь косвенно искать во внешней среде или же в деятельности человека в процессе производства.

Группа крови I (0) - охотник

Эволюция систем пищеварения и иммунной защиты организма продолжалась несколько десятков тысяч лет. Примерно 40 000 лет тому назад, в начале верхнего палеолита, неандертальцы уступили свое место ископаемым типам современного человека. Наиболее распространенным из них был кроманьонец (от названия грота Кро-Маньон в Дордони, Южная Франция), отличавшийся ярко выраженными европеоидными чертами. Собственно говоря, в эпоху верхнего палеолита возникли все три современные большие расы: европеоидная, негроидная и монголоидная. Согласно теории поляка Людвика Хирсцфельда, у ископаемых людей всех трех рас была одна и та же группа крови - 0 (I), а все остальные группы крови выделились посредством мутации из "первокрови" наших первобытных предков. Кроманьонцы довели до совершенства коллективные методы охоты на мамонтов и пещерных медведей, известные еще их предшественникам неандертальцам. Со временем человек стал самым умным и самым опасным хищником в природе. Главным источником энергии охотников-кроманьонцев было мясо, то есть животный белок. Пищеварительный тракт кроманьонца был наилучшим образом приспособлен для переваривания огромного количества мяса - вот почему у современного человека 0-типа кислотность желудочного сока несколько выше, чем у людей с другими группами крови. Кроманьонцы обладали сильной и стойкой иммунной системой, позволявшей им без труда справляться практически с любой инфекцией. Если средняя продолжительность жизни неандертальцев составляла в среднем двадцать один год, то кроманьонцы жили значительно дольше. В суровых условиях первобытной жизни могли выжить и выживали только наиболее сильные и подвижные особи. В каждой из групп крови на генном уровне закодирована важнейшая информация об образе жизни наших предков, включая мускульную активность и, например, тип питания. Вот почему современные носители группы крови 0 (I) (в настоящее время до 40% населения земли относятся к 0-типу) предпочитают заниматься агрессивными и экстремальными видами спорта!

Группа крови II (A) - аграрий (землепашец)

К концу ледникового периода на смену эпохи палеолита пришел мезолит. Так называемый "средний каменный век" продолжался от ХIV-ХII до VI-V тысячелетий до н.э. Рост численности населения и неизбежное истребление крупных животных привели к тому, что охота не могла больше прокормить людей. Очередной кризис в истории человеческой цивилизации способствовал развитию земледелия и переходу к прочной оседлости. Глобальное изменение образа жизни и, как следствие, типа питания влекил за собой и дальнейшую эволюцию пищеварительной и иммунной систем. И опять выживал сильнейший. В условиях скученности и проживания в аграрной общине мог уцелеть только тот, чей иммунный аппарат был в состоянии справиться с инфекциями, характерными для общинного образа жизни. Наряду с дальнейшей перестройкой пищеварительного тракта, когда основным источником энергии становился не животный, а растительный белок, все это и привело к возникновению "аграрно-вегетарианской" группы крови А (II). Великое переселение индоевропейских народов в Европу привело к тому, что в настоящее время в Западной Европе преобладают люди именно А-типа. В отличие от агрессивных "охотников" обладатели группы крови А (II) более приспособлены к выживанию в плотно заселенных регионах. Со временем ген А стал если не признаком типично городского жителя, то гарантией выживания во время эпидемий чумы и холеры, выкашивавших в свое время пол-Европы (согласно новейшим исследованиям европейских иммунологов, после средневековых пандемий оставались в живых главным образом люди А-типа). Умение и необходимость сосуществовать с себе подобными, меньшая агрессивность, большая контактность, то есть все то, что мы называем социально-психологической стабильностью личности, заложено в обладателях группы крови А (II) опять-таки на генном уровне. Именно поэтому люди А-типа в подавляющем большинстве предпочитают заниматься интеллектуальными видами спорта, а выбирая один из стилей боевых единоборств, отдадут предпочтение не каратэ, а, скажем, айкидо.

Группа крови III(B) - варвар (кочевник)

Считается, что прародина гена группы В находится в предгорьях Западных Гималаев на территории нынешних Индии и Пакистана. Миграция земледельческо-скотоводческих племен из Восточной Африки и расширение экспансии воинственных монголоидов-кочевников на север и северо-восток Европы привели к повсеместному распространению и проникновению гена В во многие, прежде всего восточноевропейские, популяции. Приручение лошади и изобретение повозки сделало кочевников особенно подвижными, а колоссальная даже по тем временам численность населения позволила им долгие тысячелетия доминировать в бескрайних степях Евразии от Монголии и Урала до нынешней Восточной Германии. Культивируемый веками способ производства, главным образом скотоводческое хозяйство, предопределил особую эволюцию не только пищеварительной системы (в отличие от 0- и А-типов молоко и молочные продукты считаются у людей В-типа не менее важными, чем мясопродукты), но и психологии. Суровые климатические условия наложили особый отпечаток на азиатский характер. Терпение, целеустремленность и невозмутимость вплоть до сегодняшних дней считаются на Востоке едва ли не главными добродетелями. По всей видимости, этим и можно объяснить выдающиеся успехи азиатов в некоторых видах спорта средней интенсивности, которые требуют развития специальной выносливости, например в бадминтоне или настольном теннисе.

Группа крови IV (AB) - смешанный (современный)

Группа крови АВ (IV) возникла в результате смешения индоевропейцев - обладателей гена А и варваров-кочевников - носителей гена В. На сегодняшний день зарегистрировано всего лишь 6% европейцев с группой крови АВ, которая считается самой молодой в системе АВО. Геохимический анализ костных останков из различных захоронений на территории современной Европы убедительно доказывает: еще в VIII-IX веках нашей эры массового смешения групп А и В не произошло, а первые сколько-нибудь серьезные контакты представителей вышеупомянутых групп состоялись в период массовой миграции с Востока в Центральную Европу и датируется X-XI веками. Уникальная группа крови АВ (IV) заключается в том, что ее носители унаследовали иммунологическую стойкость обеих групп. АВ-тип чрезвычайно стоек к разного рода аутоиммунным и аллергическим заболеваниям, правда, некоторые гематологи и иммунологи считают, что смешанный брак увеличивает предрасположенность людей АВ-типа к целому ряду онкологических заболеваний (если родители относятся к А- В- типам, то вероятность рождения ребенка с группой крови АВ составляет примерно 25%). Для смешанного типа крови характерен и смешанный тип питания, причем "варварская" составляющая требует мяса, а "аграрные" корни и низкая кислотность - вегетарианских блюд! Реакция на стресс АВ-типа аналогична той, что демонстрируют обладатели группы крови А, поэтому их спортивные предпочтения, в принципе, совпадают, то есть наибольших успехов они, как правило, добиваются в интеллектуальных и медитативных видах спорта, а также в плавании, горном туризме и велоспорте.

Определение групп крови

В настоящее время существует два метода определения группы крови.
Простой - определение антигенов крови по стандартным изогемагглютинирующим сывороткам и цоликлонам анти - А и анти - В. Цоликлоны, в отличие от стандартных сывороток, не являются продуктами клеток человека, поэтому исключена контаминация препаратов вирусами гепатита и ВИЧ (вирус иммунодефицита человека). Второй метод - перекрестный, заключающийся в определении агтлютиногенов одним из указанных способов с дополнительным определением агглютининов с помощью стандартных эритроцитов.

Определение групп крови по стандартным изогемагглютинирующим сывороткам

Для определения групп крови применяют стандартные изогемагглютинирующие сыворотки. В сыворотке имеются агглютинины, являющиеся антителами всех 4 групп крови, а их активность определяется титром.

Техника получения сывороток и определения титра заключается в следующем. Для их заготовки используют донорскую кровь. После отстаивания крови, сливания и дефибриллирования плазмы необходимо определить титр (разведение), т. е. активность изогемагглютинирующих сывороток. С этой целью берется ряд центрифужных пробирок, в которых разводится сыворотка. Вначале в чистые пробирки добавляется по 1 мл физиологического раствора поваренной соли. В 1-ю пробирку с физиологическим раствором добавляют 1 мл испытуемой сыворотки, жидкости смешиваются, соотношение жидкостей в 1-й пробирке 1:1. Далее 1 мл смеси из 1-й пробирки переносится во 2-ю, все это смешивается, получается соотношение 1:2. Затем 1 мл жидкости из 2-й пробирки переносится в 3-ю пробирку, смешивается, получается соотношение 1:4. Таким образом разведение сыворотки продолжают до 1:256.

На следующем этапе производят определение титра разведенной сыворотки. Из каждой пробирки на плоскость наносят по 2 крупные капли. В каждую каплю добавляют заведомо иногруппные эритроциты (в соотношении 1 к 10), смешивают, ждут 3-5 минут. Далее определяют последнюю каплю, где произошла агглютинация. Это наибольшее разведение и является титром гемагтлютинирующей сыворотки. Титр не должен быть ниже чем 1:32. Хранение стандартных сывороток допускается в течение 3 месяцев при температуре от +4° до +6 °С с периодическим контролем через 3 недели.

Методика определения групп крови

На тарелку или любую белую пластину со смачиваемой поверхностью необходимо нанести цифровое обозначение группы сыворотки и ее серологическую формулу в следующем порядке слева направо: I II, III. Это потребуется для определения исследуемой группы крови.

Стандартные сыворотки системы АВО каждой группы двух различных серий наносят на специальную планшетку или тарелку под соответствующими обозначениями, чтобы получилось два ряда по две большие капли (0,1 мл). Исследуемую кровь наносят по одной маленькой капле (0,01 мл) рядом с каждой каплей сыворотки и перемешивают кровь с сывороткой (соотношение сыворотки и крови 1 к 10). Реакция в каждой капле может быть положительной (наличие агглютинации эритроцитов) и отрицательной (отсутствие агглютинации). Результат оценивается в зависимости от реакции со стандартными сыворотками I, II, III. Оценивают результат через 3-5 минут. Различные сочетания положительных и отрицательных результатов дают возможность судить о групповой принадлежности исследуемой крови по двум сериям стандартных сывороток.

Зачем человеку знать свою группу крови? Неужели они чем-то отличаются внешне? Да, вроде, нет. Да вот только попав в больницу по скорой помощи, у вас в первую очередь спросят об этом. И на водительских курсах. И при постановке на учет по беременности. И даже, «гуляя» по сайтам с гороскопами и приметами, надо будет припомнить свои данные, чтобы узнать о себе еще что-то новое.

Так, значит, отличия есть. Первая или вторая, положительная или отрицательная… А, может, редкая четвертая? Какая же из них лучше всех?

Лучшей нет, это же не конкурс. А вот в плане «полезности» все-таки выделяется 1-я положительная. Ее особенность в том, что она является идеальным «донором» для 3 остальных групп. Иными словами: легко совмещается с любой другой, что так ценится при экстренном переливании.

Она считается самой распространенной в мире. И ее действительно может принять любой организм.

Объясняется это легко и просто, нужно лишь иметь понятие об антигенах (веществах, которые контролируют реакции иммунитета и появление антител). Так вот, у 1-ой их нет, поэтому по системе исследователя Декастелло обозначается она 0(І). Вторая владеет антигенами А – А(ІІ), третья – В(ІІІ), четвертая совмещает в себе оба вида – АВ(IV).

Поэтому, теоретически, кровь без антигенов подходит всем, а с антигенами А и В «принимает» всех. Однако, как подсказывает практика, доктора предпочитают переливать пациенту такой биоматериал, каким он и владеет, то есть абсолютно идентичный.

Что касается самого человека, то, зная его биологические характеристики, можно говорить не только о вариантах донорства, а и о личных качествах, характере, совместимости в любви, темпераменте и лидерской «хватке».

И если в нашей стране все это рассматривается как интересные факты/развлечение и не более, то в Японии это целое направление, которое называется «кецу-еки-гата» . В переводе это означает «проведение исследования по учету группы крови» и используется в кадровом агенстве при поиске подходящей кандидатуры на ту или иную должность, при выборе супруга/супруги и даже в поисках лучшего друга.

Но почему именно она? Почему не гороскопы, хиромантия, цвет глаз? А потому, что кровь старше расы, не связана с этнологией, но с самых давних веков несет в себе неизменный набор информации. И именно 0(I ) была «начинающей» в эволюции. Лишь многие годы спустя, вследствие адаптации к внешнему миру, появились остальные.

Этим объясняется трудолюбие, выносливость и стойкость обладателей первой положительной. Дольше всех они были вынуждены отстаивать свои интересы, беречь племенной огонь и жить за счет охоты и собирательного ремесла. Примерно эти же их качества «прошли»века и дошли до наших времен.

Практически ничего в характере этих людей и не изменилось. Они сильные, волевые, уверенные в себе и несколько неуравновешенны. Абсолютно не терпят критики, требуют от других понимания и повиновения. Никогда не сдаются и готовы идти напролом. Но, к сожалению, именно последний аспект может сыграть с ними злую шутку и оставить «у разбитого корыта».

Совместимость

Совместимость групп начали исследовать еще в середине ХХ века . Только тогда в медицине начали практиковать переливание для увеличения объема крови при реабилитации вследствие глубоких ран, ожогов, кровоизлияний, а также для ее восстановления путем замены некоторых компонентов.

Для этого требуется только тот вид биоматериалов, которыми владеет больной. В противном случае, иммунная система и ее антигены не примут «чужие» эритроциты, те начнут оседать и разрушаться. Гемоглобин будет на нуле, а органы и ткани погибнут от кислородного голодания.

Исключение становят лишь несколько закономерностей, которые редко применяют на практике, но они могут спасти человеку жизнь. Возьмем за пример самую «популярную» — 1-ю:

  • Ее называют универсальной, так как она не имеет в себе антигенов, следственно любой организм принимает ее «за свою».
  • Чего не скажешь о резус-факторе: 0(I) Rh+ в качестве реципиентов может иметь три остальные с таким же резусом.
  • Исключение становит реципиент 0(I) Rh+: в качестве донора подойдет и его отрицательный резус.

Но, несмотря на отличную еесовместимость, которая доказана и должна бы активно использоваться для гемотрасфузии, на практике она применяется в количестве не больше 500 мл .

0(I) Rh+ у мужчин

Так как 1-ю группу называют самой древней, то и неудивительно, откуда у людей с 0(I) настолько сильный, выносливый и немного агрессивный характер. Они охотники, мясоеды, прирожденныеамбициозные лидеры. Удача почти всегда на их стороне, так как такое трудолюбие не остается незамеченным.


Однако всю «картину»портит осознание собственной неповторимости, самовлюбленность и патологическая ревность. А еще нетерпимость к критике, в какой-то мере эгоизм и … всепоглощающая сексуальность.

Но это совсем не влияет на их здоровье: депрессиями, паническими атаками и другими «сбоями» нервной системы они не страдают, немного побеспокоить может только ЖКТ (гастрит, язва), щитовидная железа, аллергические реакции. Иммунная система крепкая даже на старости лет.А инстинкт самосохранения отлично развит.

0(I) Rh+ у женщин

Если «мужчин-первогрупников» иногда заносит от собственной неповторимости, то женщины с такими данными отличаются нерушимым спокойствием, внутренним равновесием и оптимистичным взором. Их трудно «выбить из колеи», своею работоспособностью и упорством они непременно добиваются намеченной цели.

А еще прекрасный пол с 0(I) Rh+ моногамен и предпочитают прожить со своим избранником долгую и счастливую жизнь. В отличие от мужчин с теми же биологическими данными…

Что качается рациона , то «мясное прошлое» не изменяет себе на протяжении веков: люди с первой Rh+ остро нуждаются в протеинах. Только мясо и рыба могут по-настоящему утолить их голод (переваривается оно тоже лучше любых других продуктов). Не будут лишними и морепродукты, особенно для женщин: с помощью полезных микроэлементов они помогают «пережить» болезненные менструальные циклы.

Не стоит забывать и о травяных настоях, фруктах/ягодах, овощах. Так ваш организм сможет очиститься от шлаков, а стройная фигура обретет такой желанный баланс с душой.

Беременность с первой Rh+

Еще только на стадии планирования, будущим родителям надо проверить совместимость друг с другом. Это касается не только самой крови, а и ее резус-фактора.

Многие успокаивают себя, что все эти манипуляции — чистая формальность и у двоих любящих сердец не может быть проблем с зачатием. Однако упрямая статистика утверждает, что большинство выкидышей и замерших беременностей обусловлены именно этим аспектом. Еще столько же просто не могут забеременеть.

В чем же трудность? А в том, что врачи не могут определить биологические данные еще нерожденного ребенка. В их силах только прогноз на основании родительских анализов. Например:

  • У обоих родителей 0(I) Rh+. Скорее всего, у ребенка будет такая же, но риск появления отрицательного резуса (а значит и риск вынашивания) все же существует.
  • Выше всего риск при одинаковых антигенах, но разных Rh. Тогда в начале третьего триместра будущая мама вынуждена принимать курс специальных инъекций.

Но в первую очередь женщинам с 0(I) Rh+ нельзя забывать о том, что если будущий ребенок унаследует кровь отца, беременность прогнозирует быть нелегкой.

ГРУППЫ КРОВИ - нормальные иммуногенетические признаки крови, позволяющие объединять людей в определенные группы по сходству антигенов их крови. Последние получили название групповых антигенов (см.), или изоантигенов. Принадлежность человека к той или иной Г. к. является его индивидуальной биол, особенностью, к-рая начинает формироваться уже в раннем периоде эмбрионального развития и не меняется в течение всей последующей жизни. Некоторые групповые антигены (изоантигены) находятся не только в форменных элементах и плазме крови, но и в других клетках и тканях, а также в секретах: слюне, амниотической жидкости, жел.-киш. соке и др. Внутривидовая изоантигенная дифференцировка присуща не только Людям, но и животным, у которых найдены свои особые Г. к.

Знания о Г. к. лежат в основе учения о переливании крови (см.), широко применяются в клинической практике и судебной медицине. Генетика человека и антропология не могут обойтись без использования групповых антигенов как генетических маркеров.

Имеется большая литература о связи Г. к. с различными инфекционными и неинфекционными болезнями человека. Однако этот вопрос находится еще в стадии изучения и накопления фактов.

Наука о Г. к. возникла в конце 19 в. как один из разделов общей иммунологии (см.). Поэтому естественно, что такие категории иммунитета, как понятия об антигенах (см.) и антителах (см.), их специфичности, полностью сохраняют свое значение и при изучении изоантигенной дифференцировки организма человека.

В эритроцитах, лейкоцитах, тромбоцитах, а также в плазме крови людей открыто много десятков изо-антигенов. В табл. 1 представлены наиболее изученные изоантигены эритроцитов человека (об изоантигенах лейкоцитов, тромбоцитов, а также изоантигенах сывороточных белков - см. ниже).

Строма каждого эритроцита вмещает в себе большое число изоантигенов, характеризующих внутривидовые группоспецифические признаки организма людей. По-видимому, истинное число антигенов на поверхности мембран эритроцитов человека значительно превышает число уже открытых изоантигенов. Наличие или отсутствие в эритроцитах того или другого антигена, а также различные сочетания их создают большое разнообразие антигенных структур, присущих людям. Если принять во внимание даже далеко не полный набор изоантигенов, открытых в форменных элементах и в белках плазмы крови, то прямой подсчет укажет на существование многих тысяч иммунологически различимых комбинаций.

Изоантигены, находящиеся в генетической связи, объединены в группы, получившие название систем AB0, резус и др.

Группы крови системы AB0

Группы крови системы AB0 открыты в 1900 г. К. Ландштейнером. Смешивая эритроциты одних лиц с нормальными сыворотками крови других, он обнаружил, что при одних сочетаниях сывороток и эритроцитов наблюдается гемагглютинация (см.), при других - ее нет. На основании этих факторов К. Ландштейнер пришел к заключению, что кровь различных людей неоднородна и может быть условно разделена на три группы, которые он обозначил буквами А, В и С. Вскоре после этого Декастелло и Штурли (A. Decastello, A. Sturli, 1902) нашли людей, эритроциты и сыворотки которых отличались от эритроцитов и сывороток упомянутых трех групп. Эту группу они рассматривали как отклонение от схемы Ландштейнера. Однако Я. Янский в 1907 г. установил, что эта Г. к. не исключение из схемы Ландштейнера, а самостоятельная группа, и, следовательно, все люди по иммунол, свойствам крови делятся на четыре группы.

Различия агглютинабельных свойств эритроцитов зависят от имеющихся в них определенных специфических для каждой группы веществ - агглютиногенов (см. Агглютинация), которые по предложению Дунгерна (E. Dungern) и Л. Гиршфельда (1910) обозначают буквами А и В. В соответствии с этим обозначением эритроциты одних лиц не содержат агглютиногенов А и В (I группа по Янскому, или 0 группа), эритроциты других содержат агглютиноген А (II группа крови), эритроциты третьих лиц содержат агглютиноген В (III группа крови), эритроциты четвертых содержат агглютиноген А и В (IV группа крови).

В зависимости от наличия или отсутствия в эритроцитах групповых антигенов А и В в плазме находятся нормальные (естественные) изоантитела (Гемагглютинины) по отношению к этим антигенам. У лиц группы 0 содержатся два типа групповых антител: анти-А и анти-В (альфа и бета). У лиц группы А содержится изоантитело р (анти-В), у лиц группы В - изоантитело а (анти-А) и у лиц группы АВ оба гемагглютинина отсутствуют. Соотношения между изоантигенами и изоантителами представлены в табл. 2.

Таблица 1. НЕКОТОРЫЕ СИСТЕМЫ ИЗОАНТИГЕНОВ ЭРИТРОЦИТОВ ЧЕЛОВЕКА

Название

Год открытия

Антигены систем

А1, А2, А3, А4, А5, А0, Az, B, 0, H

M, N, S, s, U, Мg, M1, М2, N2, Мc, Ма, Mv, Mk, Tm, Hu, He, Mia, Vw(Gr), Mur,

Hil, Vr, Ria, Sta, Mta, Cla, Nya, Sul, Sj, S2

D, C, c, Cw, Cx, E, e, es (VS), Ew, Du, Cu, Eu, ce, Ces (V), Ce, CE, cE, Dw, Et LW

Lea, Leb, Lec, Led

K, k, Kpa, Kpb, Jsa, Jsb

Таблица 2. ЗАВИСИМОСТЬ МЕЖДУ ИЗОАНТИГЕНАМИ СИСТЕМЫ AB0 В ЭРИТРОЦИТАХ И ИЗОГЕМАГГЛЮТИНИНАМИ В СЫВОРОТКЕ

Таблица 3. РАСПРЕДЕЛЕНИЕ ГРУПП КРОВИ СИСТЕМЫ AB0 (в %) СРЕДИ ОБСЛЕДОВАННОГО НАСЕЛЕНИЯ СССР

Принято буквенное, а не цифровое обозначение Г. к., а также полное написание формулы Г.к., учитывающее как антигены эритроцитов, так и антитела сыворотки (0αβ, Aβ, Bα, AB0). Как видно из табл. 2, группу крови характеризуют в равной мере как изоантигены, так и изоантитела. При определении Г. к. необходимо учитывать оба эти показателя, поскольку могут встречаться лица со слабовыраженными изоантигенами эритроцитов и лица, у которых изоантитела недостаточно активны или даже отсутствуют.

Дунгерн и Гиршфельд (1911) нашли, что групповой антиген А не является однородным и может быть подразделен на две подгруппы - А1 и А2 (по терминологии, предложенной К. Ландштейнером). Эритроциты подгруппы А1 хорошо агглютинируются соответствующими сыворотками, а эритроциты подгруппы А2 - слабо, и для выявления их необходимо применять высокоактивные стандартные сыворотки группы Вα й 0αβ. Эритроциты группы А1 встречаются в 88%, а группы А2 - в 12%. В дальнейшем были найдены варианты эритроцитов с еще более слабо выраженными агглютинабельными свойствами: А3, А4, А5, Az, А0 и др. С возможностью существования таких слабоагглютинирующихся вариантов эритроцитов группы А необходимо считаться в практике определения Г. к., несмотря на то, что они встречаются весьма редко. Групповой антиген

В, в отличие от антигена А, характеризуется большей однородностью. Описаны, однако, редкие варианты и этого антигена - В2, В3, Bw, Вх и др. Эритроциты, содержащие один из этих антигенов, обладали слабо выраженными агглютинабельными свойствами. Применение высокоактивных стандартных сывороток Аβ и 0αβ позволяет выявить и эти слабовыраженные агглютиногены В.

Эритроциты группы 0 характеризуются не только отсутствием в них агглютиногенов А и В, но и наличием особых специфических антигенов H и 0. Антигены H и 0 содержатся не только в эритроцитах группы 0, но и в эритроцитах подгруппы А2 и менее всего - в эритроцитах подгруппы А1 и А1В.

Если наличие антигена H в эритроцитах сомнений не вызывает, то вопрос о самостоятельности существования антигена 0 окончательно еще не решен. Согласно исследованиям Моргана и Уоткинса (W. Morgan, W. Watkins, 1948), отличительной особенностью антигена H является наличие его в биол, жидкостях секреторов групповых веществ и отсутствие - у несекреторов. Антиген 0, в отличие от антигена Н, А и В, с секретами не выделяется.

Большое значение в практике определения антигенов системы AB0, и в особенности подгрупп А1 и А2, приобрели открытые Бойдом (W. Boyd, 1947, 1949) и независимо от него Ренконеном (К. Renkonen, 1948) вещества растительного происхождения - фитогемагглютинины. Специфические в отношении групповых антигенов фитогемагглютинины называют также лектинами (см.). «Пектины чаще находят в семенах бобовых растений сем. Leguminosa. Водно-солевые экстракты из семян Dolichos biflorus и Ulex europeus могут служить идеальной комбинацией фитогемагглютининов для определения подгрупп в группах А и АВ. Лектины, полученные из семян Dolichos biflorus, реагируют с эритроцитами группы А1 и А1В и не реагируют с эритроцитами-группы А2 и А2В. Лектины, полученные из семян Ulex europeus, наоборот, реагируют с эритроцитами группы А2 и А2В. Лектины из семян Lotus tetragonolobus и Ulex europeus применяют для обнаружения антигена Н.

В семенах Sophora japonica найдены лектины (анти-В) по отношению к эритроцитам группы В.

Найдены лектины, реагирующие с антигенами других систем Г. к. Обнаружены и специфические фитопреципитины.

Своеобразный антигенно-серо л, вариант крови был обнаружен Бхенде (Y. Bhende) с соавт, в 1952 г. у жителя Бомбея, эритроциты к-рого не содержали ни одного из известных антигенов системы AB0, а в сыворотке имелись антитела анти-А, анти-В и анти-Н; этот вариант крови получил название «Bombay» (Oh). В дальнейшем вариант крови типа Bombay находили у людей и в других частях земного шара.

Антитела по отношению к групповым антигенам системы AB0 бывают нормальные, естественно возникающие в процессе формирования организма, и иммунные, проявляющиеся в результате иммунизации человека, напр. при введении иногруппной крови. Нормальные изоантитела анти-А и анти-В являются обычно иммуноглобулинами М (IgM) и более активны при пониженной (20-25 °) температуре. Иммунные групповые изоантитела чаще связаны с иммуноглобулинами G (IgG). В сыворотке могут, однако, встречаться все три класса групповых иммуноглобулинов (IgM, IgG и IgA). В молоке, слюне, мокроте часто находятся антитела секреторного типа (IgA). Ок. 90% иммуноглобулинов, обнаруживаемых в молозиве, относятся к классу IgA. Титр антител IgA в молозиве выше, чем в сыворотке. У лиц группы 0 оба типа антител (анти-A и анти-B) принадлежат обычно к одному классу иммуноглобулинов (см.). Как IgM, так и IgG групповые антитела могут обладать гемолитическими свойствами, т. е. связывать комплемент при наличии в строме эритроцитов соответствующего антигена. Напротив, антитела секреторного типа (IgA) гемолиза не вызывают, поскольку не связывают комплемент. Для агглютинации эритроцитов требуется в 50- 100 раз меньше молекул IgM антител, чем молекул IgG групповых антител.

Нормальные (естественные) групповые антитела начинают появляться у человека в первые месяцы после рождения и достигают максимального титра приблизительно к 5-10 годам. После этого титр антител держится на относительно высоком уровне в течение многих лет, а затем с возрастом происходит постепенное его снижение. Титр гемагглютининов анти-А в норме варьирует в пределах 1: 64 - 1: 512, а титр гемагглютининов анти-В - в пределах 1:16 - 1: 64. В редких случаях естественные Гемагглютинины могут быть выражены слабо, что затрудняет их выявление. Такого рода случаи наблюдаются при гипогаммаглобулинемии или агаммаглобулинемии (см.). Помимо гемагглютининов, в сыворотках здоровых людей встречаются и нормальные групповые гемолизины (см. Гемолиз), но в невысоком титре. Гемолизины анти-А, как и соответственные им агглютинины, более активны, чем гемолизины анти-В.

У человека могут появляться и иммунные групповые антитела в результате парентерального поступления в организм несовместимых в групповом отношении антигенов. Такого рода процессы изоиммунизации могут иметь место при переливании как цельной несовместимой крови, так и отдельных ее ингредиентов: эритроцитов, лейкоцитов, плазмы (сыворотки). Чаще всего встречаются иммунные антитела анти-А, которые образуются у лиц группы крови 0 и В. Иммунные антитела анти-В встречаются реже. Введение в организм веществ животного происхождения, сходных с групповыми антигенами А и В человека, может также приводить к появлению групповых иммунных антител. Иммунные групповые антитела могут появляться и в результате изоиммунизации в период беременности в случае принадлежности плода к группе крови, несовместимой с группой крови матери. Иммунные гемолизины и Гемагглютинины могут возникать и в результате парентерального применения в леч.-проф, целях некоторых препаратов (сывороток, вакцин и др.), содержащих сходные с групповыми антигенами вещества.

Сходные с групповыми антигенами человека вещества широко распространены в природе и могут быть причиной иммунизации. Эти вещества обнаружены и у некоторых бактерий. Отсюда следует, что некоторые инфекции также могут стимулировать образование иммунных антител по отношению к эритроцитам группы А и В. Образование иммунных антител по отношению к групповым антигенам представляет не только теоретический интерес, но имеет и большое практическое значение. Лица с группой крови 0αβ считаются обычно универсальными донорами, т. е. их кровь может быть перелита лицам всех групп без исключения. Однако положение об универсальном доноре не является абсолютным, поскольку могут встречаться лица группы 0, переливание крови которых вследствие наличия в ней иммунных гемолизинов и гемагглютининов с высоким титром (1: 200 и более) может привести к летальным исходам. Среди универсальных доноров, т. о., могут быть и «опасные» доноры, и поэтому кровь этих лиц может быть перелита только пациентам с одноименной (0) группой крови (см. Переливание крови).

Групповые антигены системы AB0, помимо эритроцитов, были найдены также в лейкоцитах и тромбоцитах. И. Л. Кричевский и Л. А. Шварцман (1927) впервые обнаружили групповые антигены А и В в фиксированных клетках различных органов {мозга, селезенки, печени, почки). Они показали, что органы людей группы крови А, как и их эритроциты, содержат антиген А, а органы людей группы крови В соответственно эритроцитам обладают антигеном

В. В дальнейшем групповые антигены были найдены почти во всех тканях человека (мышцах, коже, щитовидной железе), а также в клетках доброкачественных и злокачественных опухолей человека. Исключение составил хрусталик глаза, в к-ром групповые антигены не найдены. Антигены А и В обнаружены в сперматозоидах, жидкости спермы. Особенно богаты групповыми антигенами амниотическая жидкость, слюна, желудочный сок. Мало групповых антигенов в сыворотке крови и в моче, а в цереброспинальной жидкости они практически отсутствуют.

Секреторы и несекреторы групповых веществ. По способности выделять групповые вещества с секретами всех людей делят на две группы: секреторов (Se) и несекреторов (se). По материалам Р. М. Уринсон (1952), 76% людей являются секреторами и 24% - несекреторами групповых антигенов. Доказано существование промежуточных групп между сильными и слабыми секреторами групповых веществ. Содержание групповых антигенов в эритроцитах секреторов и несекреторов одинаково. Однако в сыворотке и в тканях органов несекреторов групповые антигены обнаруживаются в более слабой степени, чем в тканях секреторов. Способность организма выделять групповые антигены с секретами передается по наследству по доминантному типу. Дети, родители которых относятся к несекреторам групповых антигенов, также являются несекреторами. Лица, обладающие доминантным геном секреции, способны выделять с секретами групповые вещества, лица же, имеющие рецессивный ген несекреции, этой способностью не обладают.

Биохимическая природа и свойства групповых антигенов. Групповые антигены А и В крови и органов устойчивы к действию этилового спирта, эфира, хлороформа, ацетона и формалина, высокой и низкой температуры. Групповые антигены А и В в эритроцитах и в секретах связаны с различными молекулярными структурами. Групповые антигены А и В эритроцитов - это гликолипиды (см.), а групповые антигены секретов - гликопротеиды (см.). Групповые гликолипиды А и В, выделенные из эритроцитов, содержат жирные к-ты, сфингозин и углеводы (глюкозу, галактозу, глюкозамин, галактозамин, фукозу и сиаловую к-ту). Углеводная часть молекулы связана с жирными к-тами через сфингозин. Гликолипидные препараты групповых антигенов, выделенные из эритроцитов, являются гаптенами (см.); они специфически реагируют с соответствующими антителами, но не способны вызывать продукцию антител у иммунизированных животных. Присоединение к этому гаптену белка (напр., лошадиной сыворотки) превращает групповые гликолипиды в полноценные антигены. Это дает возможность заключить, что и в нативных эритроцитах, которые являются полноценными антигенами, групповые гликолипиды связаны с белком. Очищенные групповые антигены, выделенные из кистозной жидкости яичника, содержат 85% углеводов и 15% аминокислот. Средний мол. вес этих веществ составляет 3 X X 105 - 1 х 106 дальтон. Ароматические аминокислоты присутствуют только в очень незначительных количествах; аминокислоты, содержащие серу, не обнаружены. Групповые антигены А и В эритроцитов (гликолипиды) и секретов (глико-протеины), хотя и связаны с различными молекулярными структурами, имеют идентичные антигенные детерминанты. Групповая специфичность гликопротеидов и гликолипидов определяется углеводными структурами. Небольшое число сахаров, располагающихся на концах углеводной цепи, является важной частью специфической антигенной детерминанты. Как показал хим. анализ [Уоткинс (W. Watkins), 1966], в состав антигенов А, В, Ни Lea входят одинаковые углеводные компоненты: альфа-гексоза, D-галактоза, альфа-метил-пентоза, L-фукоза, два аминосахара - N-ацетил глюкозамин и N-ацетил-D-галактозамин и N-ацетилнейра-миновая к-та. Однако формирующиеся из этих углеводов структуры (антигенные детерминанты) неодинаковы, что и определяет специфику групповых антигенов. L-фукоза играет важную роль в структуре детерминанта антигена Н, N-ацетил-D-галактозамин - в структуре детерминанта антигена А, а D-галак-тоза - в структуре детерминанта группового антигена В. Пептидные компоненты в структуре детерминантов групповых антигенов участия не принимают. Они, как предполагают, способствуют лишь строго определенному расположению в пространстве и ориентации углеводных цепей, придают им определенную жесткость структуры.

Генетический контроль биосинтеза групповых антигенов. Биосинтез групповых антигенов осуществляется под контролем соответствующих генов. Определенный порядок сахаров в цепи групповых полисахаридов создается не путем матричного механизма, как для протеинов, а возникает в результате строго координированного действия специфических гликозил-трансферазных энзимов. Согласно гипотезе Уоткинса (1966), групповые антигены, структурные детерминанты которых являются углеводами, можно рассматривать как вторичные продукты генов. Первичными же продуктами генов являются протеины - гликозилтрансферазы, катализирующие перенос сахаров от гликозильного производного нуклеозиддифосфата на углеводные цепи гликопротеинапредшественника. Серол., генетические и биохим, исследования дают основание предполагать, что гены А, В и Le контролируют гликозилтрансферазные энзимы, которые катализируют присоединение соответствующих единиц сахаров к углеводным цепям преформированной гликопротеиновой молекулы. Рецессивные аллели этих локусов функционируют как неактивные гены. Хим. природа вещества-предшественника еще в должной мере не определена. Одни исследователи считают, что общим для всех групповых антигенов-предшественников является гликопротеидное вещество, идентичное по своей специфичности полисахариду пневмококка XIV типа. На основе этого вещества строятся под влиянием генов А, В, Н, Le соответствующие антигенные детерминанты. Вещество антигена H является основной структурой, к-рая входит во все групповые антигены системы AB0. Другие исследователи [Фейзи, Кабат (Т. Feizi, E. Kabat), 1971] представили доказательства, что предшественник групповых антигенов - вещество антигена I.

Изоантигены и изоантитела системы AB0 в онтогенезе. Групповые антигены системы AB0 начинают обнаруживаться в эритроцитах человека в раннем периоде его эмбрионального развития. Групповые антигены находили в эритроцитах плода на втором месяце эмбриональной жизни. Рано сформировавшись в эритроцитах плода, групповые антигены А и В достигают наибольшей активности (чувствительности к соответствующим антителам) к трем годам жизни. Агглютинабельность эритроцитов новорожденных составляет 1/5 часть агглютинабельности эритроцитов взрослых. Достигнув максимума, титр агглютиногенов эритроцитов в течение нескольких десятков лет держится на постоянном уровне, а затем наблюдается постепенное его снижение. Присущая каждому человеку специфичность индивидуальной групповой дифференцировки сохраняется в течение всей его жизни вне зависимости от перенесенных инфекционных и неинфекционных заболеваний, а также от воздействий на организм различных физ.-хим. факторов. В течение всей индивидуальной жизни человека происходят лишь количественные изменения в титре его групповых гемагглютиногенов А и В, но не качественные. Помимо возрастных изменений, о которых говорилось выше, рядом исследователей было отмечено снижение агглютинабельности эритроцитов группы А у больных лейкозом. Предполагают, что у этих лиц имело место изменение процесса синтеза предшественников антигенов А и В.

Наследование групповых антигенов. Вскоре после открытия у людей Г. к. было отмечено, что групповые антигенно-серол. свойства крови детей находятся в строго определенной зависимости от групповой принадлежности крови их родителей. Дунгерн (E. Dungern) и Л. Гиршфельд в результате обследования семей пришли к заключению, что групповые признаки крови передаются по наследству посредством двух независимых друг от друга генов, которые они обозначили, как и соответствующие им антигены, буквами А и В. Бернштейн (F. Bernstein, 1924), основываясь на законах наследования Г. Менделя, подверг математическому анализу факты наследования групповых признаков и пришел к заключению о существовании третьего генетического признака, определяющего группу 0. Этот ген, в отличие от доминантных генов А и В, является рецессивным. Согласно теории Фурухаты (Т. Furuhata, 1927), по наследству передаются гены, определяющие развитие не только антигенов А, В и 0(H), но и гемагглютининов аир. Агглютиногены и агглютинины наследуются в коррелятивной связи в виде следующих трех генетических признаков: 0αβр, Аβ и Вα. Сами антигены А и В не являются генами, но развиваются под специфическим влиянием генов. Группа крови, как и любой наследственный признак, развивается под специфическим влиянием двух генов, из которых один происходит от матери, а другой - от отца. Если оба гена идентичны, то оплодотворенная яйцеклетка, а следовательно, и развившийся из нее организм будут гомозиготными; если гены, определяющие один и тот же признак, неодинаковы, то организм будет обладать гетерозиготными свойствами.

В соответствии с этим генетическая формула Г. к. не всегда совпадает с фенотипической. Напр., фенотипу 0 соответствует генотип 00, фенотипу А - генотип АА и АО, фенотипу В - генотип В В и ВО, фенотипу АВ - генотип АВ.

Антигены системы AB0 неодинаково часто встречаются среди различных народов. Частота, с к-рой Г. к. встречаются среди населения некоторых городов СССР, представлена на табл. 3.

Г. к. системы AB0 имеют первостепенное значение в практике переливания крови, а также при подборе совместимых пар доноров и реципиентов при пересадке органов тканей (см. Трансплантация). О биол. значении изоантигенов и изоантител известно мало. Предполагают, что нормальные изоантигены и изоантитела системы AB0 играют роль в поддержании постоянства внутренней среды организма (см.). Имеются гипотезы о защитной функции антигенов системы AB0 пищеварительного тракта, семенной и околоплодной жидкости.

Группа крови системы Rh

Группы крови системы Rh (Rhesus) занимают второе место по значению для мед. практики. Эта система получила название от обезьян rhesus, эритроциты которых были применены К. Ландштейнером и А. Винером (1940) для иммунизации кроликов и морских свинок, от которых были получены специфические сыворотки. С помощью этих сывороток в эритроцитах человека обнаружили антиген Rh (см. Резус-фактор). Наибольший прогресс в изучении этой системы был достигнут благодаря получению изоиммунных сывороток от многорожавших женщин. Эта одна из самых сложных систем изоантигенной дифференцировки организма человека включает в себя более двадцати изоантигенов. Помимо пяти основных антигенов R h (D, С, с, E, e), в эту систему входят также их многочисленные варианты. Одни из них характеризуются пониженной агглютинабельностью, т. е. отличаются от основных антигенов R h в количественном отношении, другие варианты имеют качественные антигенные особенности.

С изучением антигенов системы Rh в значительной мере связаны успехи общей иммунологии: открытие блокирующих и неполных антител, разработка новых методов исследования (реакция Кумбса, реакция гемагглютинации в коллоидных средах, применение энзимов в иммунол, реакциях и т.д.). Успехи в диагностике и профилактике гемолитической болезни новорожденных (см.) также достигнуты гл. обр. при изучении этой системы.

Группа крови системы MNSs

Казалось, что система групповых антигенов М и N, открытая К. Ландштейнером и Ф. Левином в 1927 г., достаточно хорошо изучена и состоит из двух основных антигенов - М и N (такое название антигенам дано условно). Дальнейшие исследования, однако, показали, что эта система не менее сложна, чем система Rh, и включает ок. 30 антигенов (табл. 1). Антигены М и N были открыты при помощи сывороток, полученных от кроликов, иммунизированных эритроцитами человека. У людей антитела анти-М и в особенности анти-N встречаются редко. На многие тысячи переливаний несовместимой в отношении этих антигенов крови были отмечены лишь единичные случаи образования изо-антител анти-М или анти-N. На основании этого групповую принадлежность донора и реципиента по системе MN в практике переливания крови обычно не учитывают. Антигены М и N могут находиться в эритроцитах вместе (MN) или каждый в отдельности (М и N). Согласно данным А. И Розановой (1947), к-рая обследовала в Москве 10 000 чел., лица группы крови М встречаются в 36%, группы N - в 16%, а группы MN - в 48% случаев. По хим. природе антигены М и N являются гликопротеидами. В структуру антигенных детерминант этих антигенов входит нейраминовая к-та. Отщепление ее от антигенов путем обработки последних нейраминидазой вирусов или бактерий приводит к инактивации антигенов М и N.

Формирование антигенов М и N происходит в раннем периоде эмбриогенеза, антигены обнаруживаются в эритроцитах эмбрионов 7-8-недельного возраста. Начиная же с 3-го мес. антигены М и N в эритроцитах эмбрионов хорошо выражены и не отличаются от антигенов эритроцитов взрослых. Антигены М и N передаются по наследству. Один признак (М или N) ребенок получает от матери, другой - от отца. Установлено, что у детей могут быть только лишь те антигены, которые имеются у родителей. При отсутствии того или другого признака у родителей дети также не могут их иметь. На основании этого система MN имеет значение в суд.-мед. практике при решении вопросов спорного отцовства, материнства и подмены детей.

В 1947 г. при помощи сыворотки, полученной от многорожавшей женщины, Уолш и Монтгомери (R. Walsh, С. Montgomery) открыли антиген S, связанный с системой MN. Несколько позднее был обнаружен в эритроцитах человека и антиген s.

Антигены S и s контролируются аллельными генами (см. Аллели). У 1% людей антигены S и s могут отсутствовать. Г. к. этих лиц обозначают символом Su. Помимо антигенов MNSs, в эритроцитах некоторых лиц находят комплексный антиген U, состоящий из компонентов антигенов S и s. Встречаются и другие многообразные варианты антигенов системы MNSs. Одни из них характеризуются пониженной агглютинабельностью, другие - имеют качественные антигенные различия. В эритроцитах людей обнаружены были также антигены (Ни, Не и др.), генетически связанные с системой MNSs.

Группы крови системы P

Одновременно с антигенами М и N К. Ландштейнер и Ф. Левин (1927) открыли в эритроцитах человека антиген Р. В зависимости от наличия или отсутствия этого антигена все люди были разделены на две группы - Р+ и P-. Долгое время считали, что система P ограничивается существованием только этих двух вариантов эритроцитов, однако дальнейшие исследования показали, что и эта система более сложна. Оказалось, что эритроциты большинства Р-отрицательных субъектов содержат антиген, кодируемый другим аллеломорфным геном этой системы. Этот антиген был назван Р2, в отличие от антигена P1, который ранее обозначали как Р+. Существуют лица, у которых оба антигена (Р1 и Р2) отсутствуют. Эритроциты этих лиц обозначают буквой р. Позднее был открыт антиген Рк и доказана генетическая связь как этого антигена, так и антигена Tja с системой Р. Считают [Сангер (R. Sanger), 1955], что антиген Tja - это комплекс антигенов Р1 и Р2. Лица группы Р1 встречаются в 79 % , группы Р2 - в 21% случаев. Лица группы Рк и р встречаются очень редко. Сыворотки для обнаружения антигенов P получают как от людей (изоантитела), так и от животных (гетероантитела). Как изо-, так и гетероантитела анти-Р относятся к категории полных антител холодового типа, поскольку вызываемая ими реакция агглютинации происходит лучше всего при t° 4-16°. Описаны антитела анти-Р, активные и при температуре тела человека. Изоантигены и изоантитела системы P имеют определенное клин, значение. Отмечены случаи ранних и поздних выкидышей, причиной которых были изоантитела анти-Р. Описано несколько случаев посттрансфузионных осложнений, связанных с несовместимостью крови донора и реципиента по системе антигенов Р.

Большой интерес представляет установленная связь между системой P и холодовой пароксизмальной гемоглобинурией Доната-Ландштейнера (см. Иммуногематология). Причины возникновения аутоантител по отношению к собственным антигенам Р1 и Р2 эритроцитов остаются пока неизвестными.

Группы крови системы Kell

Антиген Kell (Келл) был открыт Кумбсом, Мурантом, Рейсом (R. Coombs, A. Mourant, R. Race, 1946) в эритроцитах ребенка, страдающего гемолитической болезнью. Название антигену дано по фамилии семьи, у членов к-рой впервые были найдены антиген Kell (К) и антитела К. У матери были найдены антитела, реагировавшие с эритроцитами ее мужа, ребенка, и 10% образцов эритроцитов, полученных от других лиц. Этой женщине переливали кровь от ее мужа, что, по-видимому, способствовало изоиммунизации.

На основании наличия антигена К в эритроцитах или его отсутствия все люди могут быть разделены на две группы: Kell-положительных и Kell-отрицательных. Через три года после открытия антигена К было установлено, что Kell-отрицательную группу характеризует не просто отсутствие антигена К, а наличие другого антигена - к. Аллен и Льюис (F. Allen, S. Lewis, 1957) нашли сыворотки, которые позволили открыть в эритроцитах людей антигены Кра и Крв, относящиеся к системе Kell. Строуп, Мак-Илрой (М. Stroup, М. Macllroy) и сотр. (1965) показали, что антигены группы Sutter (Jsa и Jsb) также генетически связаны с этой системой. Т. о., система Kell, как известно, включает три: пары антигенов: К, к; Кра; КрD; Jsa и JsB, биосинтез которых кодируется тремя парами аллельных генов К, k; Kpb, Крв; Jsa и Jsb. Антигены системы Kell передаются по наследству по общим генетическим законам. Формирование антигенов системы Kell относится к раннему периоду эмбриогенеза. В эритроцитах новорожденных эти антигены достаточно хорошо выражены. Антигены Кик обладают сравнительно высокой иммуногенной активностью. Антитела к этим антигенам могут возникать как в процессе беременности (при отсутствии того или другого антигена у матери и наличии их у плода), так и в результате повторных переливаний крови, несовместимой в отношении антигенов Kell. Описаны многие случаи гемотрансфузионных осложнений и гемолитической болезни новорожденных, причиной которых была изоиммунизация антигеном К. Антиген К, по данным Т. М. Пискуновой (1970), к-рая обследовала 1258 жителей Москвы, был у 8,03% и отсутствовал (группа kk) у 91,97% обследованных.

Группы крови системы Duffy

Катбуш, Моллисон и Паркин (М. Cutbush, P. Mollison, D. Parkin, 1950) нашли у больного гемофилией антитела, которые реагировали с неизвестным антигеном. Последний был: назван ими антигеном Duffy (Даффи), по фамилии больного, или сокращенно Fya. Вскоре после этого был обнаружен в эритроцитах и второй антиген этой системы - Fyb. Антитела по отношению к этим антигенам получают или от больных, к-рым были сделаны многократные переливания крови, или от женщин, новорожденные дети которых страдали гемолитической болезнью. Встречаются полные и чаще неполные антитела и поэтому для их обнаружения необходимо применять реакцию Кумбса (см. Кумбса реакция) или ставить реакцию агглютинации в коллоидной среде. Г. к. Fy (a+b-) встречается в 17,2%, группа Fy (а-b+) - в 34,3% и группа Fy (a+b+)- в 48,5%. Антигены Fya и Fyb передаются по наследству как доминантные признаки. Формирование антигенов Fy происходит в раннем периоде эмбриогенеза. Антиген Fya может повлечь тяжелые пост-трансфузионные осложнения при переливании крови, если не учитывать несовместимость к этому антигену. Антиген Fyb, в отличие от антигена Fya, является менее изоантигенным. Антитела по отношению к нему встречаются реже. Антиген Fya представляет большой интерес для антропологов, поскольку у одних народов он встречается сравнительно часто, а у других отсутствует.

Группы крови системы Kidd

Антитела к антигенам системы Kidd (Кидд) открыли в 1951 г. Аллен, Даймонд и Недзеля (F. Allen, L. Diamond, В. Niedziela) у женщины по фамилии Kidd, новорожденный ребенок к-рой страдал гемолитической болезнью. Соответствующий антиген в эритроцитах был обозначен буквами Jka. Вскоре после этого был найден второй антиген этой системы - Jkb. Антигены Jka и Jkb являются продуктом функции аллельных генов. Антигены Jka и Jkb передаются по наследству по общим законам генетики. Установлено, что у детей не может быть антигенов, которые отсутствуют у их родителей. Антигены Jka и Jkb встречаются у населения приблизительно одинаково часто - в 25%, у 50% людей в эритроцитах находятся оба антигена. Антигены и антитела системы Kidd имеют определенное практическое значение. Они могут быть причиной гемолитической болезни новорожденных и посттрансфузионных осложнений при многократном переливании несовместимой по антигенам этой системы крови.

Группы крови системы Lewis

Первый антиген системы Lewis (Льюис) был открыт Мурантом (A. Mourant) в 1946 г. в эритроцитах человека при помощи сыворотки, полученной от женщины по фамилии Lewis. Этот антиген был обозначен буквами Lea. Через два года Андресен (P. Andresen, 1948) сообщил об открытии второго антигена этой системы - Leb. М. И. Потапов (1970) нашел на поверхности эритроцитов человека новый антиген системы Lewis - Led, что расширило наши представления о системе изоантигенов Lewis и дало основание предположить о существовании аллеля этого признака - Lec. Т. о., возможно существование следующих Г. к. системы Lewis: Lea, Leb, Lec, Led. Антитела анти-Le гл. обр. естественного происхождения. Однако встречаются антитела, возникшие и в результате иммунизации, напр, в процессе беременности, но это наблюдается редко. Агглютинины анти-Le относятся к антителам холодового типа, т. е. они более активны при низкой (16°) температуре. Помимо сывороток человеческого происхождения, были получены и иммунные сыворотки от кроликов, коз, кур. Грубб (R. Grubb, 1948) установил зависимость между антигенами Le и способностью организма выделять групповые вещества АВН с секретами. Антигены Leb и Led встречаются у секреторов групповых веществ АВН, а антигены Lea и Lec - у несекреторов. Помимо эритроцитов, антигены системы Lewis найдены в слюне и в сыворотке крови. Рейс и другие исследователи считают, что антигены системы Lewis являются первичными антигенами слюны и сыворотки и только вторично они проявляют себя как антигены на поверхности стромы эритроцитов. Антигены Le передаются по наследству. Формирование антигенов Le определяется не только генами Le, но и находится под непосредственным влиянием генов секреции (Se) и несекреции (se). Антигены системы Lewis неодинаково часто встречаются у разных народов и как генетические маркеры представляют несомненный интерес для антропологов. Описаны редкие случаи посттрансфузионных реакций, вызванных антителами анти-Lea и еще реже - антителами анти-Leb.

Группы крови системы Lutheran

Первый антиген этой системы открыли Каллендер (S. Callender) и Рейс (R. Race) в 1946 г. при помощи антител, полученных от больного, к-рому многократно переливалась кровь. Антиген был назван по фамилии больного Lutheran (Лютеран) и обозначен буквами Lua. Через несколько лет был открыт и второй антиген этой системы - Lub. Антигены Lua и Lub могут встречаться порознь и вместе со следующей частотой: Lua - в 0,1%, Lub - в 92,4%, Lua, Lub - в 7,5%. Агглютинины анти-Lu чаще холодового типа, т. е. оптимум их реакции лежит не выше t° 16°. Очень редко антитела анти-Lub и еще реже анти-Lua могут быть причиной посттрансфузионных реакций. Имеются сообщения о значении этих антител в происхождении гемолитической болезни новорожденных. Антигены Lu определяются уже в эритроцитах пуповинной крови. Клин, значение антигенов системы Lutheran по сравнению с другими системами относительно невелико.

Группы крови системы Diego

Изоантиген Diego (Диего) открыли в 1955 г. Лейрисс, Аренде, Сиско (М. Layrisse, Т. Arends, R. Sisco) в эритроцитах человека при помощи неполных антител, обнаруженных у матери, новорожденный ребенок к-рой страдал гемолитической болезнью. На основании наличия или отсутствия антигена Diego (Dia) индейцы Венесуэлы могли быть разделены на две группы: Di (а+) и Di (а-). В 1967 г. Томпсон, Чилдере и Хетчер (Р. Thompson, D. Childers, D. Hatcher) сообщили о нахождении ими у двух мексиканских индейцев антител анти-Dih, т. е. был открыт второй антиген этой системы. Антитела анти-Di - неполной формы и поэтому для определения Г. к. Diego применяют реакцию Кумбса. Антигены Diego передаются по наследству как доминантные признаки, к моменту рождения хорошо развиты. По материалам, собранным О. Прокопом, Уленбруком (G. Uhlenbruck) в 1966, антиген Dia обнаруживали у жителей Венесуэлы (разные племена), китайцев, японцев, но он не был найден у европейцев, американцев (белых), эскимосов (Канады), австралийцев, папуасов и индонезийцев. Неодинаковая частота, с какой антиген Diego распространен среди различных народов, представляет большой интерес для антропологов. Считают, что антигены Diego присущи народам монгольской расы.

Группы крови системы Auberger

Изоантиген Au был открыт благодаря совместным усилиям франц. и англ. ученых [Сальмон, Либерж, Сангер (С. Salmon, G. Liberge, R. Sanger) и др.] в 1961 г. Название этому антигену дано по первым буквам фамилии Auberger (Оберже) - женщины, у к-рой были обнаружены антитела. Неполные антитела возникли, по-видимому, в результате многократного переливания крови. Антиген Au найден у 81,9% обследованных жителей Парижа и Лондона. Он передается по наследству. В крови новорожденных антиген Au хорошо выражен.

Группы крови системы Dombrock

Изоантиген Do открыл Свонсон (J. Swanson) с соавт, в 1965 г. при помощи неполных антител, полученных от женщины по фамилии Dombrock (Домброк), к-рая была иммунизирована в результате переливания крови. По материалам обследования 755 жителей Северной Европы (Сангер, 1970), этот антиген встречался у 66,36% - группа Do (а+) и отсутствовал у 33,64% - группа Do (а-). Антиген Doa передается по наследству как доминантный признак; в эритроцитах новорожденных этот антиген хорошо выражен.

Группы крови системы Ii

Помимо описанных выше групповых признаков крови, в эритроцитах людей были найдены также изоантигены, из которых одни весьма широко распространены, а другие, наоборот, встречаются очень редко (напр., у членов одной семьи) и приближаются к индивидуальным антигенам. Из широко распространенных антигенов наибольшее значение имеют Г. к. системы Ii. А. Винер, Унгер* Коэн, Фельдман (L. Unger, S. Cohen, J. Feldman, 1956) получили от человека, страдавшего приобретенной гемолитической анемией, антитела холодового типа, при помощи которых удалось обнаружить в эритроцитах людей антиген, обозначенный буквой «I». Из 22 000 обследованных образцов эритроцитов только 5 не содержали этого антигена или имели его в ничтожно малом количестве. Отсутствие этого антигена обозначали буквой «i». Дальнейшие исследования, однако, показали, что антиген i реально существует. У лиц группы i находятся антитела анти-I, что свидетельствует о качественном различии между антигенами I и i. Антигены системы Ii передаются по наследству. Антитела анти-I определяются в солевой среде как агглютинины холодового типа. У лиц, страдающих приобретенной гемолитической анемией холодового типа, находят обычно аутоантитела анти-I и анти-i. Причины возникновения этих аутоантител остаются еще неизвестными. Аутоантитела анти-i чаще встречаются у больных нек-рыми формами ретикулеза, миелоидной лейкемии, инфекционного мононуклеоза. Антитела анти-I холодового типа агглютинации эритроцитов при t° 37° не дают, однако они могут сенсибилизировать эритроциты и способствовать присоединению комплемента, что и приводит к лизису эритроцитов.

Группы крови системы Yt

Итон и Мортон (В. Eaton, J. Morton) с сотр. (1956) обнаружили у человека, к-рому многократно переливали кровь, антитела, способные выявлять очень широко распространенный антиген Yta. Позднее был открыт и второй антиген этой системы - Ytb. Антиген Yta - один из наиболее широко распространенных. Он встречается у 99,8% людей. Антиген Ytb встречается в 8,1% случаев. Различают три фенотипа этой системы: Yt(a + b-), Yt (а + b +) и Yt (а - b +). Лиц фенотипа Y t (а - b -) не найдено. Антигены Yta и Ytb передаются по наследству как доминантные признаки.

Группы крови системы Xg

Все групповые изоантигены, о которых до сих пор шла речь, не зависят от пола. Они с одинаковой частотой встречаются как у мужчин, так и у женщин. Однако Манн (J. Mann) и сотр. в 1962 г. установили, что имеются групповые антигены, наследственная передача которых происходит через половую хромосому X. Вновь открытый в эритроцитах людей антиген был обозначен Xg. Антитела к этому антигену были найдены у больного, страдавшего семейной телеангиэктазией. По случаю профузных носовых кровотечений этому пациенту многократно переливали кровь, что и явилось, по-видимому, причиной его изоиммунизации. В зависимости от наличия или отсутствия в эритроцитах антигена Xg все люди могут быть разделены на две группы: Xg(a+) и Xg(a-). У мужчин антиген Xg(a+) встречается в 62,9% случаев, а у женщин - в 89,4%. Было установлено, что если оба родителя относятся к группе Xg(a-), то и у их детей - как мальчиков, так и девочек - этого антигена не содержится. Если отец группы Xg(a+), а мать группы Xg(a-), все мальчики имеют группу Xg(a-), поскольку в этих случаях в яйцеклетку поступают сперматозоиды только с хромосомой Y, определяющей мужской пол ребенка. Антиген Xg является доминантным признаком, у новорожденных он хорошо развит. Благодаря использованию группового антигена Xg открылась возможность решения вопроса о происхождении некоторых заболеваний, связанных с полом (дефекты образования некоторых энзимов, заболевания с синдромами Клайнфелтера, Тернера и др.).

Редко встречающиеся группы крови

Наряду с широко распространенными описаны и довольно редко встречающиеся антигены. Напр., антиген Bua найден Андерсоном (С. Anderson) с сотр. в 1963 г. у 1 из 1000 обследованных, а антиген Вх - Дженкинсом (W. Jenkins) с сотр. в 1961 г. у 1 из 3000 обследованных. Описаны и еще более редко встречающиеся в эритроцитах человека антигены.

Методика определения групп крови

Методика определения групп крови- выявление в эритроцитах групповых антигенов при помощи стандартных сывороток, а для групп системы AB0 также и выявление агглютининов в сыворотке исследуемой крови при помощи стандартных эритроцитов.

Для определения какого-либо одного группового антигена используются сыворотки одной специфичности. Одновременное применение сывороток разной специфичности одной и той же системы дает возможность определить полную групповую принадлежность эритроцитов по этой системе. Напр., в системе Kell использование только сыворотки анти-К или только анти-k дает возможность установить, содержат ли исследуемые эритроциты фактор К или к. Использование обеих этих сывороток позволяет решить вопрос о принадлежности исследуемых эритроцитов к одной из трех групп этой системы: КК, Кк, kk.

Стандартные сыворотки для определения Г. к. готовят из крови людей, содержащей антитела - нормальные (системы AB0) или изоиммунные (системы Rh, Kell, Duffy, Kidd, Lutheran, антигенов S и s). Для определения групповых антигенов M, N, P и Le чаще всего получают гетероиммунные сыворотки.

Техника определения зависит от характера содержащихся в сыворотке антител, которые бывают полными (нормальные сыворотки системы AB0 и гетероиммунные) или неполными (подавляющее большинство изоиммунных) и проявляют свою активность в разных средах и при разной температуре, от чего зависит необходимость использования разной техники реакции. Метод использования каждой сыворотки указывается в сопроводительной инструкции. Конечный результат реакции при использовании любой техники выявляется в виде наличия или отсутствии агглютинации эритроцитов. При определении любого антигена в реакцию обязательно включаются положительные и отрицательные контроли.

Определение групп крови системы AB0

Необходимые реактивы: а) стандартные сыворотки групп 0αβ (I), Aβ (II), Bα(III), содержащие активные агглютинины, и группы АВ (IV)- контроль; б) стандартные эритроциты групп А (II) и В (III), обладающие хорошо выраженными агглютинабельными свойствами, и группы 0(1)- контроль.

Определение Г. к. системы AB0 производится реакцией агглютинации при комнатной температуре на фарфоровой или любой другой белой пластинке со смачиваемой поверхностью.

Для определения Г. к. системы AB0 существует два способа. 1. При помощи стандартных сывороток, позволяющих установить, какие групповые агглютиногены (А или В) находятся в эритроцитах исследуемой крови, и на основании этого сделать заключение о ее групповой принадлежности. 2. Одновременно при помощи стандартных сывороток и эритроцитов- перекрестный способ. При этом также определяется наличие или отсутствие групповых агглютиногенов и, кроме того, устанавливается наличие или отсутствие групповых агглютининов (а, 3), что в итоге дает полную групповую характеристику исследуемой крови.

При определении Г. к. системы AB0 у больных и других лиц, к-рым предполагается сделать переливание крови, достаточно первого способа. В особых случаях, напр, при затруднении в трактовке результата, а также при определении группы крови AB0 у доноров, пользуются вторым способом.

При определении Г. к. и первым и вторым способом необходимо применять по два образца (двух разных серий) стандартной сыворотки каждой группы, что является одной из мер, предупреждающих ошибки.

При первом способе кровь можно брать из пальца, мочки уха или пятки (у грудных детей) непосредственно перед определением. При втором (перекрестном) способе кровь берут предварительно из пальца или вены в пробирку и исследуют после свертывания, т. е. после разделения на сыворотку и эритроциты.

Рис. 1. Определение группы крови при помощи стандартных сывороток. На пластину у предварительно написанных обозначений 0αβ (I), Aβ (II) и Bα (III) накапывается по 0,1 мл стандартной сыворотки каждого образца. Нанесенные рядом маленькие капли крови тщательно перемешиваются с сывороткой. После этого пластины покачивают и наблюдают наличие агглютинации (положительная реакция) или отсутствие ее (отрицательная реакция). В тех случаях, когда агглютинация наступила во всех каплях, делают контрольное исследование, смешивая исследуемую кровь с сывороткой группы АВ (IV), которая не содержит агглютининов и не должна вызывать агглютинации эритроцитов.

Первый способ (цветн. рис. 1). На пластинку у предварительно написанных обозначений наносят по 0,1 мл (по одной большой капле) стандартной сыворотки каждого образца так, что образуется два ряда капель в следующем порядке по горизонтали слева направо: 0αβ (I), Aβ (II) и Bα (III).

Исследуемую кровь наносят при помощи пипетки или конца стеклянной палочки по маленькой (приблизительно в 10 раз меньшей) капле рядом с каждой каплей сыворотки.

Кровь тщательно перемешивают с сывороткой сухой стеклянной (или пластмассовой) палочкой, после чего пластинку периодически покачивают, одновременно наблюдая за результатом, который выражается в наличии агглютинации (попожительная реакция) или отсутствии ее (отрицательная реакция) в каждой капле. Время наблюдения 5 мин. Для исключения неспецифичности результата по мере наступления агглютинации, но не ранее чем через 3 мин., в каждую каплю, в к-рой наступила агглютинация, добавляют одну каплю изотонического р-ра хлорида натрия и продолжают наблюдения, покачивая пластинку в течение 5 мин. В тех случаях, когда агглютинация наступила во всех каплях, делают еще контрольное исследование, смешивая исследуемую кровь с сывороткой группы АВ (IV), к-рая не содержит агглютининов и не должна вызывать агглютинации эритроцитов.

Трактовка результата. 1. Если ни в одной из капель не произошло агглютинации, это значит, что исследуемая кровь не содержит групповых агглютиногенов, т. е. принадлежит к группе О (I). 2. Если сыворотка группы 0ар (I) и В а (III) вызвала агглютинацию эритроцитов, а сыворотка группы Ар (II) дала отрицательный результат, это значит, что исследуемая кровь содержит агглютиноген А, т. е. принадлежит к группе А (II). 3. Если сыворотка группы 0αβ (I) и Аβ (II) вызывала агглютинацию эритроцитов, а сыворотка группы Вα (III) дала отрицательный результат, это значит, что исследуемая кровь содержит агглютиноген В, т. е. принадлежит к группе В (III). 4. Если сыворотка всех трех групп вызвала агглютинацию эритроцитов, но в контрольной капле с сывороткой группы AB0 (IV) реакция отрицательная, это значит, что исследуемая кровь содержит оба агглютиногена - А и В, т. е. принадлежит к группе АВ (IV).

Второй (перекрестный) способ (цветн. рис. 2). На пластинку у предварительно надписанных обозначений, так же как при первом способе, наносят два ряда стандартных сывороток группы 0αβ (I), Аβ (II), Вα(III) и рядом с каждой каплей- исследуемую кровь (эритроциты). Кроме того, на нижнюю часть пластинки наносят в три точки по одной большой капле сыворотки исследуемой крови, а рядом с ними - по одной маленькой (приблизительно в 40 раз меньшей) капле стандартных эритроцитов в следующем порядке слева направо: группа 0(I), А (II) и В(III). Эритроциты группы 0(I) являются контролем, т. к. они не должны агглютинироваться никакой сывороткой.

Во всех каплях сыворотку тщательно размешивают с эритроцитами и затем наблюдают результат при покачивании пластинки в течение 5 мин.

Трактовка результата. При перекрестном способе сначала оценивается результат, который получился в каплях со стандартной сывороткой (два верхних ряда), так же как это делается при первом способе. Затем оценивается результат, полученный в нижнем ряду, т. е. в тех каплях, в которых исследуемая сыворотка смешана со стандартными эритроцитами, и, следовательно, в ней определяются антитела. 1. Если реакция со стандартными сыворотками указывает на принадлежность крови к группе 0 (I), а сыворотка исследуемой крови агглютинирует эритроциты группы А (II) и В (III) при отрицательной реакции с эритроцитами группы 0 (I), это указывает на наличие в исследуемой крови агглютининов а и 3, т. е. подтверждает принадлежность ее к группе 0αβ(I). 2. Если реакция со стандартными сыворотками указывает на принадлежность крови к группе А (II), сыворотка испытуемой крови агглютинирует эритроциты группы В (III) при отрицательной реакции с эритроцитами группы 0 (I) и А (II); это указывает на наличие в исследуемой крови агглютинина 3» т. е. подтверждает принадлежность ее к группе А 3 (1Г). 3. Если реакция со стандартными сыворотками указывает на принадлежность крови к группе В (III), а сыворотка исследуемой крови агглютинирует эритроциты группы А (II) при отрицательной реакции с эритроцитами группы 0 (I) и В (III), это указывает на наличие в исследуемой крови агглютинина а, т. е. подтверждает принадлежность ее к группе Вα (III). 4. Если реакция со стандартными сыворотками указывает на принадлежность крови к группе АВ (IV), а сыворотка дает отрицательный результат со стандартными эритроцитами всех трех групп, это указывает на отсутствие групповых агглютининов в исследуемой крови, т. е. подтверждает принадлежность ее к группе AB0 (IV).

Определение групп крови системы MNSs

Определение антигенов М и N производится гетероиммунными сыворотками, как и группы крови системы AB0, т. е. на белой пластинке при комнатной температуре. Для исследования двух других антигенов этой системы (S и s) используют изоиммунные сыворотки, дающие наиболее четкий результат в непрямой пробе Кумбса (см. Кумбса реакция). Иногда сыворотки анти-S содержат полные антитела, в этих случаях исследование рекомендуется проводить в солевой среде, аналогично определению резус-фактора. Сопоставление результатов определения всех четырех факторов системы MNSs дает возможность установить принадлежность исследуемых эритроцитов и одной из 9 групп этой системы: MNSS, MNSs, MNss, MMSS, MMSs, MMss, NNSS, NNSs, NNss.

Определение групп крови систем Kell, Duffy, Kidd, Lutheran

Определение этих групп крови производится непрямой пробой Кумбса. Иногда высокая активность антисывороток позволяет использовать для этой цели реакцию конглютинации с применением желатины аналогично определению резус-фактора (см. Конглютинация).

Определение групп крови систем P и Lewis

Факторы системы P и Lewis определяют в солевой среде в пробирках или на плоскости, причем для более четкого выявления антигенов системы Lewis применяется предварительная обработка исследуемых эритроцитов протеолитическим ферментом (папаин, трипсин, протелин).

Определение резус-фактора

Определение резус-фактора, имеющего наряду с группами системы AB0 наиболее важное значение для клин, медицины, производится различными способами в зависимости от характера антител в стандартной сыворотке (см. Резус-фактор).

Лейкоцитарные группы

Лейкоцитарные группы - деление людей на группы, обусловленные наличием в лейкоцитах антигенов, независимых от антигенов системы AB0, Rh и др.

Лейкоциты человека имеют сложное антигенное строение. Они содержат антигены системы AB0 и MN, однозначные с теми, которые находятся в эритроцитах того же индивидуума. Это положение основывается на выраженной способности лейкоцитов вызывать образование антител соответствующей специфичности, агглютинироваться групповыми изогемагглютинирующими сыворотками с высоким титром антител, а также специфически адсорбировать иммунные антитела анти-М и анти-N. Менее выражены в лейкоцитах факторы системы Rh и других антигенов эритроцитов.

Помимо указанной антигенной дифференцировки лейкоцитов, выделены особые лейкоцитарные группы.

Впервые сведения о лейкоцитарных группах получил франц. исследователь Ж. Доссе (1954). С помощью иммунной сыворотки, полученной от лиц, к-рым производили повторные многократные переливания крови, и содержащей противолейкоцитарные антитела агглютинирующего характера (лейкоагглютинирующие антитела), был выявлен антиген лейкоцитов, встречающийся у 50% среднеевропейского населения. Этот антиген вошел в литературу под названием «Мак». В 1959 г. Руд (J. Rood) и соавт, дополнили представления о лейкоцитарных антигенах. На основании анализа результатов исследования 60 иммунных сывороток с лейкоцитами 100 доноров авторы пришли к заключению о существовании других антигенов лейкоцитов, обозначенных 2,3, а также 4а, 4b; 5а, 5b; 6a, 6b. В 1964 г. Пэйн (R. Payne) с соавт, установила антигены LA1 и LA2.

Насчитывают более 40 антигенов лейкоцитов, которые могут быть отнесены к одной из трех условно выделенных категорий: 1) антигены главного локуса, или общие антигены лейкоцитов; 2) антигены гранулоцитов; 3) антигены лимфоцитов.

Наиболее обширную группу представляют антигены главного локуса (система HLA). Они являются общими для полиморфноядерных лейкоцитов, лимфоцитов, а также тромбоцитов. Согласно рекомендациям ВОЗ, используют буквенно-цифровое обозначение HLA (Human Leucocyte Antigen) для антигенов, существование которых подтверждено в ряде лабораторий при параллельных исследованиях. В отношении недавно открытых антигенов, существование которых нуждается в дальнейшем подтверждении, используют обозначение буквой w, к-рую вставляют между буквенным обозначением локуса и цифровым - аллеля.

Система HLA - наиболее сложная из всех известных систем антигенов. Генетически H LA-антигены принадлежат к четырем сублокусам (A,B,C,D), каждый из которых объединяет аллельные антигены (см. Иммуногенетика). Наиболее изученными являются сублокусы А и В.

К первому сублокусу относятся: HLA-A1, HLA-A2, HLA-A3, HLA-A9, HLA-A10, HLA-A11, HLA-A28, HLA-A29; HLA-Aw23, HLA-Aw24, HLA-Aw25, HLA-Aw26, HLA-Aw30„ HLA-Aw31, HLA-Aw32, HLA-Aw33, HLA-Aw34, HLA-Aw36, HLA-Aw43a.

Второму сублокусу принадлежат антигены: HLA-B5, HLA-B7, HLA-B8, HLA-B12, HLA-B13, HLA-B14, HLA-B18, HLA-B27; HLA-Bw15, HLA-Bw16, HLA-Bw17, HLA-Bw21, HLA-Bw22, HLA-Bw35, HLA-Bw37, HLA-Bw38, HLA-Bw39, HLA-Bw40, HLA-Bw41, HLA-Bw42a.

К третьему сублокусу причисляют антигены HLA-Cw1, HLA-Cw2, HLA-Cw3, HLA-Cw4, HLA-Cw5.

В четвертый сублокус входят антигены HLA-Dw1, HLA-Dw2, HLA-Dw3, HLA-Dw4, HLA-Dw5, HLA-Dw6. Последние два сублокуса недостаточно изучены.

По-видимому, не все антигены HLA даже первых двух сублокусов (А и В) известны, т. к. сумма генных частот по каждому сублокусу еще не приблизилась к единице.

Деление системы HLA на сублокусы представляет большой прогресс в области изучения генетики этих антигенов. Система HLA-антигенов контролируется генами, расположенными на С6 хромосоме, по одному в сублокусе. Каждый ген контролирует синтез одного антигена. Располагая диплоидным набором хромосом (см. Хромосомный набор), теоретически каждый индивидуум должен иметь 8 антигенов, практически при тканевом типировании пока определяют четыре HLA-антигена двух сублокусов - А и В. Фенотипически может встретиться несколько комбинаций HLA-антигенов. К первому варианту можно отнести случаи, когда аллельные антигены неоднозначны в пределах первого и второго су б локусов. Человек является гетерозиготным по антигенам обоих сублокусов. Фенотипически у него обнаруживаются четыре антигена - два антигена первого сублокуса и два антигена второго сублокуса.

Второй вариант представляет ситуацию, когда человек является гомозиготным по антигенам первого или второго сублокуса. Такой человек содержит одинаковые антигены первого или второго сублокуса. Фенотипически у него обнаруживаются только три антигена: один антиген первого сублокуса и два антигена второго сублокуса или, наоборот, один антиген второго сублокуса и два антигена - первого.

Третий вариант охватывает случай, когда человек гомозиготен по обоим сублокусам. В этом случае фенотипически определяются только два антигена, по одному каждого сублокуса.

Наиболее частый - первый вариант генотипа (см.). Реже в популяции встречается второй вариант генотипа. Чрезвычайно редким является третий вариант генотипа.

Подразделение HLA-антигенов на сублокусы позволяет предсказать возможные варианты наследования этих антигенов от родителей к детям.

Генотип H LA-антигенов детей определяется ran лотипом, т. е. сцепленными антигенами, контролируемыми генами, расположенными на одной хромосоме, к-рую они получают от каждого из родителей. Поэтому половина антигенов HLA у ребенка всегда одинакова с каждым из родителей.

Учитывая сказанное, легко представить четыре возможных варианта наследования антигенов лейкоцитов системы HLA сублокусов А и В. Теоретически совпадение HLA-анти-генов среди братьев и сестер в семье составляет 25%.

Важным показателем, характеризующим каждый антиген HLA-систе-мы, является не только его расположение на хромосоме, но и частота его встречаемости в популяции, или популяционное распределение, имеющее расовые особенности. Частота встречаемости антигена определяется генной частотой, к-рая представляет часть от общего числа исследованных особей, выраженную в долях единицы, с к-рой встречается каждый антиген. Генная частота антигенов H LA-системы является постоянной величиной для определенной этнической группы населения. По данным Ж. Доссе с соавт., генная частота для франц. населения составляет: HLA-A1-0,141, HLA-A2-0,256, HLA-A3-0,131, HLA-A9-0,247, HLA-B5-0,143, HLA-B7-0,224, HLA-B8-0,156. Сходные показатели генных частот H LA-антигенов установлены Ю. М. Зарецкой и В. С. Федруновой (1971) для русского населения. С помощью посемейных исследований различных популяционных групп земного шара удалось установить различие в частоте встречающихся гаплотипов. Особенности в частоте HLA-гаплотипов объясняются различием популяционного распределения антигенов этой системы у различных рас.

Большое значение для практической и теоретической медицины представляет определение количества возможных HLA-гаплотипов и фенотипов в смешанной популяции людей. Число возможных гаплотипов зависит от количества антигенов в каждом сублокусе и равно их произведению: число антигенов первого сублокуса (А) X число антигенов второго сублокуса (В) = количество гаплотипов, или 19 X 20 = 380.

Расчеты указывают на то, что среди примерно 400 чел. можно обнаружить только двух людей, имеющих сходство по двум H LA-антигенам сублокусов А и В.

Число возможных сочетаний антигенов, определяющих фенотип, вычисляют отдельно для каждого сублокуса. Расчет производят по формуле для определения числа сочетания по два (для гетерозиготных особей) и по одному (для гомозиготных особей) в сублокусе [Менцель и Рихтер (G. Menzel, К. Richter), n(n+1)/2 , где n - число антигенов в сублокусе.

Для первого сублокуса число антигенов равно 19, для второго -20.

Число возможных комбинаций антигенов в первом сублокусе- 190; во втором-210. Число возможных фенотипов для антигенов первого и второго сублокуса равно 190 X 210 = =39 900. Т. е. на 40 000 примерно только в одном случае можно встретить двух неродственных людей с одинаковым фенотипом по H LA-антигенам первого и второго сублокусов. Количество H LA-фенотипов значительно возрастет, когда будет известно число антигенов в сублокусе С и сублокусе D.

Антигены HLA являются универсальной системой. Они обнаружены, помимо лейкоцитов и тромбоцитов, также в клетках различных органов и тканей (коже, печени, почках, селезенке, мышцах и др.).

Выявление большинства антигенов системы HLA (локусы А,В,С) производится с помощью серол, реакций: лимфоцитотоксической пробы, РСК в отношении лимфоцитов или тромбоцитов (см. Реакция связывания комплемента). Иммунные сыворотки, преимущественно лимфоцитотоксического характера, получают от лиц, сенсибилизированных во время многократных беременностей, трансплантацией аллогенной ткани или путем искусственной иммунизации в результате повторных инъекций лейкоцитов с известным HLA-феноти-пом. Идентификация H LA-антигенов локуса D производится при помощи смешанной культуры лимфоцитов.

HLA-система имеет большое значение в клин, медицине и особенно при аллогенной трансплантации тканей, поскольку несоответствие донора и реципиента по этим антигенам сопровождается развитием реакции тканевой несовместимости (см. Несовместимость иммунологическая). В этой связи представляется вполне оправданным осуществление тканевого типирования при подборе для трансплантации донора со сходным H LA-фенотипом.

Кроме того, различие матери и плода по антигенам H LA-системы при повторных беременностях обусловливает образование антилейкоцитарных антител, которые могут приводить к выкидышу или гибели плода.

HLA-антигены имеют значение также при переливании крови, в частности лейкоцитов и тромбоцитов.

Другой системой антигенов лейкоцитов, независимой от HLA, являются антигены гранулоцитов. Эта система антигенов является тканеспецифической. Она характерна для клеток миелоидного ряда. Антигены гранулоцитов обнаружены в полиморфно-ядерных лейкоцитах, а также клетках костного мозга; они отсутствуют в эритроцитах, лимфоцитах и тромбоцитах.

Известно три гранулоцитарных антигена: NA-1, NA-2, NB-1.

Идентификация системы гранулоцитарных антигенов осуществляется с помощью изоиммунных сывороток агглютинирующего характера, которые могут быть получены от повторно беременных женщин или лиц, подвергавшихся многократным переливаниям крови.

Установлено, что антитела против антигенов гранулоцитов имеют значение при беременности, вызывая кратковременные нейтропении новорожденных. Антигены гранулоцитов играют также важную роль в развитии негемолитических трансфузионных реакций.

Третью категорию антигенов лейкоцитов составляют лимфоцитарные антигены, присущие только клеткам лимфоидной ткани. Известен один антиген из этой категории, получивший обозначение LyD1. Он встречается у людей с частотой ок. 36%. Идентификация антигена производится с помощью РСК иммунными сыворотками, полученными от сенсибилизированных лиц, подвергавшихся многократным переливаниям крови или имевших повторные беременности. Значение этой категории антигенов в трансфузиологии и трансплантологии остается малоизученным.

Группы сывороточных белков

Белки сыворотки крови имеют групповую дифференциацию. Открыты групповые свойства многих сывороточных белков крови. Исследование группы сывороточных белков находит широкое применение в судебной медицине, антропологии и, по мнению многих исследователей, имеет значение для переливания крови. Группы сывороточных белков независимы от серол, систем эритроцитов и лейкоцитов, они не связаны с полом, возрастом и передаются по наследству, что позволяет использовать их в суд.-мед. практике.

Известны группы следующих сывороточных белков: альбумина, постальбумина, альфа1-глобулина (альфа1-антитрипсина), альфа2-глобулина, бета1-глобулина, липопротеида, иммуноглобулина. Большинство групп сывороточных белков выявляется с помощью электрофореза в гидролизованном крахмале, полиакриламидном геле, агаре или на ацетат-целлюлозе, группа альфа2-глобулина (Gc) определяется методом иммуноэлектрофореза (см.), липопротеиды - методом преципитации в агаре; групповая специфичность белков, относящихся к иммуноглобулинам, определяется иммунол, методом - реакцией задержки агглютинации при помощи вспомогательной системы: Rh-положительные эритроциты, сенсибилизированные сыворотками антирезус с неполными антителами, содержащими тот или иной групповой антиген системы Gm.

Иммуноглобулины. Наибольшее значение среди групп сывороточных белков имеет генетическая неоднородность иммуноглобулинов (см.), связанная с существованием наследуемых вариантов этих белков - так наз. аллотипов, различающихся по антигенным свойствам. Она наиболее важна в практике переливания крови, судебной медицине и др.

Известны две основные системы аллотипических вариантов иммуноглобулинов: Gm и Inv. Характерные признаки антигенного строения IgG определяются системой Gm (антигенными детерминантами, локализующимися в С-концевой половине тяжелых гамма-цепей). Вторая система иммуноглобулинов Inv обусловлена антигенными детерминантами легких цепей и поэтому характеризует все классы иммуноглобулинов. Антигены системы Gm и системы Inv определяют методом задержки агглютинации.

Система Gm насчитывает более 20 антигенов (аллотипов), которые обозначаются цифрами - Gm(1), Gm(2) и т. д., либо буквами - Gm (а), Gm(x) и т. д. Система Inv имеет три антигена - Inv(1), Inv(2), Inv(3).

Отсутствие того или иного антигена обозначается знаком «-» [напр., Gm(1, 2-, 4)].

Антигены иммуноглобулиновых систем у лиц различных национальностей встречаются с неодинаковой частотой. Среди русского населения антиген Gm(1) встречается в 39,72% случаев (М. А. Умнова и др., 1963). У многих национальностей, населяющих Африку, этот антиген содержится в 100% случаев.

Изучение аллотипических вариантов иммуноглобулинов важно для клиники, генетики, антропологии и широко используется для расшифровки структуры иммуноглобулинов. В случаях агаммаглобулинемии (см.), как правило, антигены системы Gm не открываются.

При патологии, сопровождающейся глубокими белковыми сдвигами в крови, встречаются такие комбинации антигенов системы Gm, которые отсутствуют у здоровых лиц. Некоторые патол, изменения белков крови могут как бы маскировать антигены системы Gm.

Альбумины (Аl). Полиморфизм альбуминов у взрослых людей встречается крайне редко. Отмечена двойная полоса альбуминов - альбумины, обладающие большей подвижностью при электрофорезе (AlF) и более медленной подвижностью (Als). См. также Альбумины .

Постальбумины (Ра). Различают три группы: Ра 1-1, Ра 2-1 и Ра 2-2.

альфа1-Глобулины. В области альфа1-глобулинов отмечается большой полиморфизм альфа1-антитрипсина (альфа1-АТ-глобулин), получивший обозначение системы Pi (протеаза-ингибитор). Выявлены 17 фенотипов данной системы: PiF, PiJ, PiM, Pip, Pis,Piv,Piw, Pix ,Piz и др.

При определенных условиях электрофореза альфа1-глобулины обладают большой электрофоретической подвижностью и располагаются на электрофореграмме впереди альбуминов, поэтому некоторые авторы называют их преальбуминами.

альфаг-Антитрипсин относится к гликопротеидам. Он ингибирует активность трипсина и других протеолитических ферментов. Физиол, роль альфа1-антитрипсина не установлена, однако отмечено повышение его уровня при некоторых физиол, состояниях и патол, процессах, напр, при беременности, после приема противозачаточных средств, при воспалении. Низкую концентрацию альфа1-антитрипсина связывают с аллелем Piz и Pis . Отмечают связь недостаточности альфа1-антитрипсина с хрон, обтурационными легочными заболеваниями. Этими заболеваниями чаще страдают люди, гомозиготные по аллелю Pi2 или гетерозиготные по аллелям Pi2 и Pis .

С недостаточностью альфа1-антитрипсина связывают и особую форму эмфиземы легких, передающуюся по наследству.

α2-Глобулины. В этой области различают полиморфизм гаптоглобина, церулоплазмина и группоспецифического компонента.

Гаптоглобин (Нр) обладает способностью активно вступать в соединение с гемоглобином, растворенным в сыворотке, и образовывать комплекс Hb-Нр. Считают, что молекула последнего в силу больших размеров не проходит через почки и, т. о., гаптоглобин сохраняет гемоглобин в организме. В этом усматривается его основная физиол, функция (см. Гаптоглобин). Предполагают, что фермент гемальфаметилоксигеназа, расщепляющий протопорфириновое кольцо по α-метиленовому мостику, действует в основном не на гемоглобин, а на комплекс Hb-Hp, т. е. обычный обмен гемоглобина включает в себя его соединение с Hp.

Рис. 1. Группы гаптоглобина (Нр) и характеризующие их электрофореграммы: каждая из групп гаптоглобина имеет специфическую электрофореграмму, отличающуюся расположением, интенсивностью и количеством полос; справа обозначены соответствующие группы гаптоглобина; знаком минус обозначен катод, знаком плюс - анод; стрелка у слова «старт» обозначает место введения исследуемой сыворотки в крахмальный гель (для определения ее группы гаптоглобина).

Рис. 3. Схемы иммуноэлектрофореграмм групп трансферрина при исследовании их в крахмальном геле: каждая из групп трансферрина (черные полоски) характеризуется различным расположением на иммуноэлектрофореграмме; буквами над (под) полосками обозначены различные группы трансферрина (Tf); штриховые полосы соответствуют расположению альбумина и гаптоглобина (Hp).

В 1955 г. Смитис (О. Smithies) установил три основные группы гаптоглобинов, которые в зависимости от электрофоретической подвижности обозначают Hp 1-1, Hp 2-1 и Hp 2-2 (рис. 1). Кроме этих групп, редко встречаются другие разновидности гаптоглобина: Нр2-1 (мод), HpCa, Hp Johnson-тип, Нр Johnson Mod 1, Нр Johnson Mod 2, тип F, тип D и др. Редко у людей гаптоглобин отсутствует - агаптоглобинемия (Нр 0-0).

Группы гаптоглобина встречаются с различной частотой у лиц различных рас и национальностей. Напр., у русского населения наиболее часто встречается группа Hp 2-1-49,5%, реже группа Hp 2-2-28,6% и группа Hp 1-1-21,9%. У жителей Индии, наоборот, наиболее часто встречается группа Hp 2-2-81,7%, а группа Hp 1-1 составляет только 1,8%. Население Либерии чаще имеет группу Hp 1-1-53,3% и редко группу Hp 2-2-8,9%. У населения Европы группа Hp 1-1 встречается в 10-20% случаев, группа Hp 2-1-в 38-58%, а группа Нр 2-2-в 28-45%.

Церулоплазмин (Ср). Описан в 1961 г. Оуэном и Смитом (J. Owen, R. Smith). Различается 4 группы: СрА, СрАВ, СрВ и СрВС. Наиболее часто встречается группа СрВ. У европейцев эта группа встречается в 99%, а у негроидов - в 94%. Группа СрА у негроидов имеет место в 5,3%, а у европейцев - в 0,006% случаев.

Группоспецифический компонент (Gc) описан в 1959 г.. Гиршфельдом (J. Hirschfeld). С помощью иммуноэлектрофореза различают три основных группы - Gc 1-1, Gc 2-1 и Gc 2-2 (рис. 2). Очень редко встречаются другие группы: Gc 1-Х, Gcx-x, GcAb, Gcchi, Gc 1-Z, Gc 2-Z и др.

Группы Gc встречаются с неодинаковой частотой у различных народов. Так, среди жителей Москвы тип Gc 1-1 составляет 50,6%, Gc 2-1- 39,5% , Gc 2-2-9,8% . Имеются популяции, среди которых не встречается тип Gc 2-2. У жителей Нигерии в 82,7% случаев встречается тип Gc 1-1, а в 16,7% -тип Gc 2-1, в 0,6% - тип Gc 2-2. Индейцы (Новайо) почти все (95,92%) относятся к типу Gc 1-1. У большинства европейских народов частота типа Gc 1-1 колеблется в пределах 43,6-55,7%, Gc 2-1-в пределах 37,2-45,4%, Gc 2-2-в пределах 7,1-10,98%.

Глобулины. К ним относятся трансферрин, посттрансферрин и 3-й компонент комплемента (β1c-глобулин). Многие авторы считают, что посттрансферрин и третий компонент комплемента человека являются идентичными.

Трансферрин (Tf) легко вступает в соединение с железом. Это соединение легко распадается. Указанное свойство трансферрина обеспечивает выполнение им важной физиол, функции - перевода железа плазмы в деионизированную форму и доставку его в костный мозг, где оно используется при кроветворении.

Трансферрин имеет многочисленные группы: TfC, TfD, TfD1, TfD0, TfDchi, TfB0, TfB1, TfB2 и др. (рис. 3). Tf имеется почти у всех людей. Другие же группы встречаются редко и распределены неравномерно у различных народов.

Посттрансферрин (Pt). Его полиморфизм описали в 1969 г. Роуз и Гезерик (М. Rose, G. Geserik). Различают следующие группы посттрансферринов: А, АВ, В, ВС, С, АС. У нем. населения группы посттрансферринов встречаются со следующей частотой: А -5,31%, АВ - 31,41%, В-60,62%, ВС-0,9%, С - 0%, АС-1,72%.

Третий компонент комплемента (C"3). Описаны 7 групп C"3 . Они обозначаются либо цифрами (C"3 1-2, C"3 1-4, C"3 1-3, C"3 1 -1, C"3 2-2 и др.), либо буквами (C"3 S-S, C"3 F-S, C"3 F-F и др.). При этом 1 соответствует букве F, 2-S, 3-So, 4-S.

Липопротеиды. Различают три групповые системы, обозначенные Ag, Lp и Ld.

В системе Ag обнаружены антигены Ag(a), Ag(x), Ag(b), Ag(y), Ag(z), Ag(t) и Ag(a1). B систему Lp входят антигены Lp(a) и Lp(x). Эти антигены с различной частотой встречаются у лиц разных национальностей. Частота фактора Ag(a) у американцев (белых) - 54%, полинезийцев - 100% , микронезийцев - 95% , вьетнамцев -71%, поляков-59,9% , немцев -65%.

Различные сочетания антигенов также с неодинаковой частотой встречаются у лиц разных национальностей. Напр., группа Ag(x - у +) у шведов встречается в 64,2%, а у японцев-в 7,5%, группа Ag(x+y-) у шведов имеется в 35,8%, а у японцев - в 53,9%.

Группы крови в судебно-медицинском отношении

Исследование Г. к. широко используется в судебной медицине при решении вопросов о спорном отцовстве, материнстве (см. Материнство спорное , Отцовство спорное), а также при исследовании крови на вещественные доказательства (см.). Определяют групповую принадлежность эритроцитов, групповые антигены сывороточных систем и групповые свойства ферментов крови.

Сопоставляется групповая принадлежность крови ребенка с групповой принадлежностью крови предполагаемых родителей. При этом исследуют свежую кровь, полученную от этих лиц. Ребенок может иметь только те групповые антигены, которые имеются хотя бы у одного родителя, и это относится к любой групповой системе. Напр., у матери группа крови А, у отца - А, у ребенка - АВ. Ребенок с такой Г. к. не мог родиться от этой пары, т. к. у данного ребенка один из родителей обязательно должен иметь в крови антиген В.

Для этих же целей исследуются антигены системы MNSs, P и др. Напр., при исследовании антигенов системы R h кровь ребенка не может содержать антигены Rho (D), rh"(C), rh"(E), hr"(e) и hr"(e), если этого антигена нет в крови хотя бы одного из родителей. То же относится к антигенам системы Duffy (Fya- Fyb), системы Kell (К-k). Чем больше групповых систем эритроцитов исследуется при решении вопросов о замене детей, спорном отцовстве и т. д., тем больше вероятности получения положительного результата. Наличие в крови ребенка группового антигена, отсутствующего в крови обоих родителей хотя бы по одной групповой системе, является несомненным признаком, позволяющим исключить предполагаемое отцовство (или материнство).

Так же решаются эти вопросы при включении в экспертизу определения групповых антигенов белков плазмы - Gm, Нр, Gc и др.

В решении этих вопросов начинают использовать определение групповых признаков лейкоцитов, а также групповой дифференциации ферментных систем крови.

Для решения вопроса о возможности происхождения крови на вещественных доказательствах от конкретного лица также определяют групповые свойства эритроцитов, сывороточных систем и групповые различия ферментов. При исследовании пятен крови часто определяют антигены следующих изосеро л. систем: AB0, MN, P, Le, Rh. Для определения Г. к. в пятнах прибегают к специальным методам исследования.

Агглютиногены изосеро л. систем могут быть обнаружены в пятнах крови путем применения соответствующих сывороток различными методами. В судебной медицине наиболее часто прибегают для этих целей к реакции абсорбции в количественной модификации, абсорбции-элюции и смешанной агглютинации.

Метод абсорбции заключается в том, что предварительно определяют титр сывороток, вводимых в реакцию. Затем сыворотки вводят в соприкосновение с материалом, взятым из пятна крови. Через нек-рое время сыворотки отсасывают от пятна крови и снова титруют. По снижению титра той или иной примененной сыворотки судят о наличии в пятне крови соответствующего антигена. Напр., пятно крови значительно понизило титр сыворотки анти-В и анти-Р, следовательно, в исследуемой крови имеются антигены В и Р.

Реакции абсорбции-элюции и смешанной агглютинации применяют для выявления групповых антигенов крови особенно в тех случаях, когда на вещественных доказательствах имеются следы крови малых размеров. Перед постановкой реакции из исследуемого пятна берут одну или несколько ниточек материала, с к-рыми и работают. При выявлении антигенов ряда изосеро л. систем кровь на ниточках фиксируют метиловым спиртом. Для выявления антигенов некоторых систем фиксации не требуется: она может привести к снижению абсорбционных свойств антигена. Ниточки помещают в соответствующие сыворотки. Если в крови на ниточке имеется групповой антиген, соответствующий антителам сыворотки, то эти антитела будут абсорбированы этим антигеном. Затем антитела, оставшиеся свободными, удаляют путем отмывания материала. В фазе элюции (процесс, обратный абсорбции) ниточки помещают во взвесь эритроцитов, соответствующих примененной сыворотке. Напр., если в фазе абсорбции применялась сыворотка а, то прибавляют эритроциты группы А, если применялась сыворотка анти-Lea, то, соответственно, эритроциты, содержащие антиген Le(a) и т. д. Затем производят тепловую элюцию при t° 56°. При этой температуре антитела выходят в окружающую среду, т. к. нарушается их связь с антигенами крови. Эти антитела при комнатной температуре вызывают агглютинацию добавленных эритроцитов, что учитывается при микроскопии. Если же в исследуемом материале нет антигенов, соответствующих примененным сывороткам, то в фазе абсорбции антитела не абсорбируются и удаляются при промывании материала. В этом случае в фазе элюции не образуется свободных антител, и добавленные эритроциты не агглютинируются. Т. о. можно установить наличие в крови того или иного группового антигена.

Реакция абсорбции-элюции может быть выполнена в различных модификациях. Напр., элюцию можно производить в физиол, р-ре. Фаза элюции может выполняться на предметных стеклах либо в пробирках.

Метод смешанной агглютинации в начальных фазах выполняется, как и метод абсорбции-элюции. Различие только составляет последняя фаза. Вместо фазы элюции при методе смешанной агглютинации ниточки помещают на предметное стекло в каплю взвеси эритроцитов (эритроциты должны иметь антиген, соответствующий сыворотке, примененной в фазе абсорбции) и через нек-рое время наблюдают препарат микроскопически. Если в исследуемом объекте имеется антиген, соответствующий примененной сыворотке, то этот антиген абсорбирует антитела сыворотки, и в последней фазе добавленные эритроциты будут «прилипать» к ниточке в виде гвоздей или бус, т. к. их будут удерживать свободные валентности антител абсорбированной сыворотки. Если же в исследуемой крови нет антигена, соответствующего примененной сыворотке, то абсорбции не произойдет, и вся сыворотка будет удалена при промывании. В этом случае в последней фазе не наблюдается вышеописанная картина, а отмечается свободное распределение эритроцитов в препарате. Метод смешанной агглютинации апробирован гл. обр. в отношении системы AB0.

При исследовании системы AB0, кроме антигенов, исследуют и агглютинины методом покровного стекла. На предметные стекла помещают кусочки, вырезанные из исследуемого пятна крови, и к ним добавляют взвесь стандартных эритроцитов групп крови А, В и 0. Препараты накрывают покровными стеклами. Если в пятне есть агглютинины, то они, растворяясь, вызывают агглютинацию соответствующих эритроцитов. Напр., при наличии в пятне агглютинина а наблюдается агглютинация эритроцитов А и т. д.

Для контроля исследуется параллельно материал, взятый из вещественного доказательства вне участка, испачканного кровью.

При экспертизе сначала исследуют кровь лиц, проходящих по делу. Затем их групповую характеристику сравнивают с групповой характеристикой крови, имеющейся на вещественном доказательстве. Если кровь какого-либо лица отличается по своей групповой характеристике от крови на вещественных доказательствах, то в этом случае эксперт может категорически отвергнуть возможность происхождения крови на вещественном доказательстве от данного лица. При совпадении же групповой характеристики крови у какого-либо лица и на вещественных доказательствах эксперт не дает категорического заключения, т. к. он не может в этом случае отвергнуть возможность происхождения крови на вещественных доказательствах и от другого лица, кровь к-рого содержит те же антигены.

Библиография: Бойд У. Основы иммунологии, пер. с англ., М., 1969; Зотиков Е. А., Манишкина Р. П. и Канделаки М. Г. Антиген новой специфичности в гранулоцитах, Докл. АН СССР, сер. биол., т. 197, № 4, с. 948, 1971, библиогр.; Косяков П. Н. Изо-антигены и изоантитела человека в норме и патологии, М., 1974, библиогр.; Руководство по применению крови и кровезаменителей, под ред. А. Н. Филатова, с. 23, Л., 1973, библиогр.; Туманов А. К, Основы судебно-медицинской экспертизы вещественных доказательств, М., 1975, библиогр.; Туманов А. К. и T о м и-л и н В. В. Наследственный полиморфизм изоантигенов и ферментов крови в норме и патологии человека, М., 1969, библиогр.; Умнова М. А. и Уринсон Р. М. О разновидностях резус-фактора и их распределении среди населения Москвы, Вопр, антропол., в. 4, с. 71, 1960, библиогр.; Унифицированные методы клинических лабораторных исследований, под ред. В. В. Меньшикова, в. 4, с. 127, М. 1972, библиогр.; Blood group immunology and transfusion techniques, ed. by J. W. Lockyer, Oxford, 1975; Blood and tissue antigens, ed. by D. Aminoff, p. 17, 187, 265, N. Y.- L., 1970, bibliogr.; Boorm a n K.E. a. Dodd B.E. An introduction to blood group serology, L., 1970; Fagerhol M. K.a. BraendM. Serum prealbumin, polymorphism in man, Science, v. 149, p. 986, 1965; Giblett E. R. Genetic markers in human blood, Oxford - Edinburgh, 1969, bibliogr.; Histocompatibility testing, ed. by E. S. Cur-toni a. o., p. 149, Copenhagen, 1967, bibliogr.; Histocompatibility testing, ed. by P. I. Terasaki, p. 53, 319, Copenhagen, 1970, bibliogr.; Klein H. Serumgruppe Pa/Gc (Postalbumin - group specific components), Dtsch. Z. ges. gerichtl. Med., Bd 54, S. 16, 1963/1964; Landstei-n e r K. t)ber Agglutinationserscheinungen normalen menschlichen Blutes, Wien. klin. Wschr., S. 1132, 1901; Landsteiner K. a. Levine P. A new agglutinable factor differentiating individual human bloods, Proc. Soc. exp. Biol. (N. Y.), v. 24, p. 600, 1927; Landsteiner K. a. Wiener A. S. Agglutinable factor in human blood recognized by immune sera for rhesus blood, ibid., v. 43, p. 223, 1940; M o r g a n W. T. J. Human blood-group specific substances, в кн.: Immunchemie, ed. by O. Westhphal, В. a. o., p. 73, 1965, bibliogr.; O w e n J. A. a. Smith H. Detection of ceruloplasmin after zone electrophoresis, Clin. chim. Acta, v. 6, p. 441, 1961; P a y n e R. a. o. A new leukocyte isoantigen system in man, Cold Spr. Harb. Symp. quant. Biol., v. 29, p. 285, 1964, bibliogr.; Procop O. u. Uhlen-b г u c k G. Lehrbuch der menschlichen Blut-und Serumgruppen, Lpz., 1966, Bibliogr.; R a c e R. R. a. S a n g e r R. Blood groups in man, Oxford-Edinburgh, 1968; S h u 1 m a n N. R. a. o. Complement fixing isoantibodies against antigens common to platelets and leukocytes, Trans. Ass. Amer. Phycns, v. 75, p. 89, 1962; van der W e-erdt Ch. M. a. Lalezari P. Another Example of isoimmune neonatal neutropenia due to anti-Nal, Vox Sang., v. 22, p. 438, 1972, bibliogr.

П. H. Косяков; E. А. Зотиков (лейкоцитарные группы), А. К. Туманов (суд. мед.), М. А. Умнова (мет. иссл.).

Группа крови – это важный генетический признак человека. Он закладывается на генном уровне родителями при зачатии.

Группа крови и резус-фактор во многом определяют характер человека и его индивидуальные особенности. У человека с каждой группой крови есть определенная предрасположенность к заболеваниям, к тому или иному роду деятельности, образу жизни и т. д.

О характеристике носителей второй положительной группы крови поговорим в этой статье.

В 1900 году австрийский врач иммунолог Ландштейнер провел исследование, в результате которого выявил, что кровь у разных людей отличается по составу антигенов и антител к нему.

Ученый пришел к выводу, что в одной крови никогда не содержатся одновременно антигены и одноименные антитела. Это открытие стало новой ступенью в развитии медицины, а Ландштейнер был награжден за него Нобелевской премией.

По классификации AB0 группа крови носит такое название, какой антиген в ней присутствует: во 2 группе крови присутствует антиген A, поэтому ее обозначение по данной классификации – A(II).

Для справки. Второй группой крови обладают 30-40% мирового населения.

Совместимость при переливании

Переливание крови – процедура, используемая современной медициной, в процессе которой больному вводят кровь (или отдельные ее компоненты) другого человека.

При переливании крови первостепенную роль играет ее группа и резус-принадлежность.

Человек, отдающий свою кровь для переливания, называется донором. Человек, получающий кровь в ходе переливания, именуется реципиентом.

Обладатели второй положительной группы крови могут стать идеальными донорами только для обладателей такой же группы и резус-фактора.

При острой необходимости кровь второй положительной группы можно вливать обладателям четвертой группы крови (т.н. универсальным реципиентам) с положительным резус-фактором. Однако в настоящее время в медицине стараются избегать подобной практики.

Если в переливании крови нуждается человек со второй положительной группой крови, то, кроме своей собственной, ему подойдет кровь первой группы (т.к. ее обладатели являются универсальными донорами) с положительным резус-фактором.

При вливании крови, несовместимой по группе или резус-фактору, эритроциты начинают склеиваться, образуются комочки, которые закупоривают капилляры. Затем комочки эритроцитов разрушаются, а вредные продукты распада отравляют кровь. Этот процесс очень опасен для человека и может вызвать летальный исход.

Предрасположенность к заболеваниям

На протяжении многих лет исследовались все группы крови. В результате этого удалось узнать, что обладатели каждой группы склонны к тем или иным заболеваниям. Эта информация позволяет изучить список недугов, к развитию которых предрасположен организм, и сделать упор на их профилактику.

Обладатели второй положительной группы крови предрасположены к таким заболеваниям:

  1. Система пищеварения. Люди с этой группой крови склонны к появлению гастрита и панкреатита с низкой кислотностью. Еще у этого типа людей часто образуются камни в протоках желчного пузыря, и развивается его воспаление (холецистит).
  2. Сердечно-сосудистая система. Что касается сердца, существует склонность к ишемической болезни, пороку сердца. Из болезней сосудов люди со второй группой крови склонны к атеросклерозу и тромбозу.
  3. Кровеносная система. Существует предрасположенность к одному из самых страшных заболеваний крови – острому лейкозу.
  4. Выделительная и мочеполовая система. Носители второй группы крови склонны к развитию мочекаменной болезни.
  5. Щитовидная железа. Часто встречаются патологии в функционировании щитовидной железы.
  6. Инфекционные заболевания. Здесь отмечается предрасположенность к оспе и пищевым инфекциям.
  7. Зубы. Люди этой группы склонны к кариесу и другим болезням зубов.
  8. Онкологические заболевания. Существует предрасположенность к раку желудка и крови.

Люди со второй положительной группой крови склонны к ожирению.

Рацион питания

Людям со второй положительной группой крови необходимо придерживаться определенных правил в питании, которые будут благоприятно воздействовать на состояние организма. Важно получать из продуктов максимум витаминов и минералов для нормального функционирования всех систем органов.

Следует помнить о том, что существуют продукты, которые противопоказаны носителям второй группы крови из-за их склонности к заболеваниям (например, слишком жирная пища может спровоцировать гастрит или ожирение).

Рассмотрим подробнее полезные и вредные продукты.

Полезные продукты

Люди со второй положительной группой крови генетически предрасположены к вегетарианству. Основу их питания должны составлять овощи и фрукты.

Овощи – это настоящий кладезь витаминов и минералов, отличный источник клетчатки и органических кислот. Нужно помнить, что при тепловой обработке овощи теряют часть своих полезных свойств, поэтому желательно употреблять их в пищу в свежем виде. Однако есть только сырые овощи тоже не рекомендуется, так как это может негативно отразиться на работе кишечника.

Наиболее полезные овощи для обладателей второй положительной группы крови – огурцы, болгарский перец, морковь, свекла, брокколи. В умеренном количестве можно употреблять томаты, картофель, белокочанную капусту и баклажаны.

Фрукты полезны почти все, за исключением слишком кислых — яблоки, персики, абрикосы, киви, виноград, клубника, вишня, смородина и т. д.

Если вы не можете полностью исключить мясо из рациона, рекомендуется употреблять его диетические виды – курицу, индейку, кролика. Мясо желательно есть отварное, приготовленное на пару или запеченное.

Рыба для обладателей второй группы крови будет полезна, но опять же – за исключением жирных сортов.

Отличным источником белка станут бобовые — фасоль, чечевица, соя.

Принесут пользу растительные масла — льняное, оливковое, тыквенное, кунжутное.

Из напитков следует отдавать предпочтение натуральным фруктовым сокам, чаю и кофе.

Вредные продукты

Поскольку органы ЖКТ у людей со второй положительной группой крови плохо справляются с перевариванием мясных продуктов, категорически противопоказаны любые жирные сорта мяса – свинина, баранина и т.д.

Стоит исключить также жирные сорта рыбы – треску, палтус, сельдь, скумбрию и др.

В связи с пониженной кислотностью желудка нежелательно включать в рацион кислые продукты в больших количествах. Противопоказаны все цитрусовые – лимоны, апельсины, мандарины, грейпфруты.

Нежелательно употребление молочных продуктов, так как они замедляют обмен веществ и могут способствовать развитию ожирения. В совсем небольших количествах можно употреблять твердый сыр, нежирный творог и натуральный йогурт.

Следует также исключить все кондитерские изделия – торты, пирожные, булочки, конфеты.

Желательно полностью отказаться от употребления алкоголя, так как он может спровоцировать нарушения в работе нервной системы.

Совместимость при зачатии ребенка

Самой безопасной считается беременность, когда у родителей будущего ребенка группы крови и резус-факторы совпадают. В этом случае эмбрион в большинстве случаев получает такую же группу крови как у родителей, благополучно развивается и рождается здоровым.

Однако существуют случаи, когда у родителей с одинаковой групповой принадлежностью рождается ребенок с другой группой крови. Это нередко рождает в головах мужчин мысли об измене и становится причиной раздоров в семье. Такие ситуации происходят из-за незнания основ генетики. Дело в том, что каждый человек при рождении получает генетическую информацию от двух родителей — матери и отца. Каждый из этих признаков человек может впоследствии передать своему ребенку, поэтому вполне вероятно, что ребенок родится с отличной от родителей групповой принадлежностью.

Наследование группы крови ребенком от родителей

Группы крови родителей Группа крови ребенка и вероятность ее получения в %
Первая, первая Первая (100%)
Вторая, вторая Первая (25%), вторая (75%)
Третья, третья Первая (25%), третья (75%)
Четвертая, четвертая Вторая (25%), третья (25%), четвертая (50%)
Первая, вторая Первая (50%), вторая (50%)
Первая, третья Первая (50%), Третья (50%)
Первая, четвертая Вторая (50%),Третья (50%)
Вторая, третья Первая (25%), вторая (25%), третья (25%), четвертая (25%)
Вторая, четвертая Вторая (50%), третья (25%), IV (25%)
Третья, четвертая Вторая (25%), третья (50%), IV (25%)

Как видно из таблицы, если у обоих родителей вторая группа крови, то в одной четвертой части случаев у них рождается ребенок с первой группой крови. А в случае, если у одного родителя вторая группа, а у другого родителя третья — ребенок может получить абсолютно любую группу крови с равной долей вероятности.

Если у отца и матери разные группы крови, ребенок чаще всего наследует материнскую. Если же случается так, что ребенок получает группу крови отличную от материнской, то развивается иммунологический конфликт. В этом случае существует вероятность выкидыша или рождения недоношенного ребенка.

Такая же ситуация происходит и с резус-фактором. Если у родителей он одинаковый, ребенок получает такой же, и беременность протекает благополучно. Если резус-фактор матери отрицательный, а отца – положительный, и ребенок при этом наследует положительный резус-фактор, происходит несовместимость матери и плода.

Организм женщины в этом случае считает плод чужеродным объектом и начинает с ним бороться. Антитела кровеносной системы матери проникают через плаценту и начинают атаковать эмбрион. Несформировавшиеся органы ребенка работают на износ, чтобы защитить себя от опасности, а эритроциты плода погибают.

Внимание! Иммунологический конфликт при вынашивании резус-отрицательной матерью резус-положительного плода может спровоцировать различные заболевания сердца, желудка и других органов у ребенка и даже летальный исход.

Видео — Чем отличаются группы крови

Современная медицина позволяет предупредить негативные последствия несовместимости групп крови, поэтому важно начинать контролировать беременность на самой ранней стадии. В особенно тяжелых случаях, когда предотвратить опасные последствия иммунологического конфликта другим способом нельзя, проводят внутриутробное переливания крови плоду от донора. Ребенку вливают его же группу или (если ее не удается установить) первую, но с отрицательным резус-фактором. Таким образом удается остановить резус-конфликт между матерью и ребенком и спасти ему жизнь.

Вторая положительная группа крови является одной из самых распространенных. Ее обладателям присущи определенные особенности характера – спокойствие, уравновешенность, упорство.

На генетическом уровне этой группе людей заложена склонность к ряду заболеваний, развитие которых нужно стараться предотвратить. Для этого важно вести здоровый образ жизни и правильно питаться, учитывая приведенные выше рекомендации.

При создании брака и зачатии ребенка также важно учитывать группу крови обоих партнеров, так как генетическая несовместимость может негативно отразиться на здоровье ребенка. Однако, если так получилось, что ребенок был зачат любящими родителями с несоответствием групп крови – не отчаивайтесь, на современном этапе медицина в силах предотвратить нежелательные последствия, сохранив жизнь и здоровье ребенку.

В теле взрослого человека непрерывно циркулирует примерно 5 литров крови. От сердца она разносится по организму достаточно разветвленной сосудистой сеткой. Сердцу необходимо около минуты, или 70 ударов, чтобы пропустить всю кровь, которая снабжает все участки тела жизненно необходимыми элементами.

Как работает кровеносная система?

Она доставляет полученный легкими кислород и вырабатываемые в пищевом тракте питательные вещества туда, где они необходимы. Кровь также транспортирует на место назначения гормоны и стимулирует вывод из организма продуктов распада. В легких обогащается кислородом, а углекислый газ из нее выходит в воздух, когда человек выдыхает. Она переносит продукты распада клеток в органы выделения. К тому же кровь заботится о том, чтобы тело всегда оставалось равномерно теплым. Если у человека холодные ноги или руки, это значит, что у него недостаточное кровоснабжение.

Эритроциты и лейкоциты

Это клетки со своими особенными качествами и "задачами". Красные кровяные тельца (эритроциты) формируются в костном мозге и постоянно обновляются. В 1 мм 3 крови находится 5 миллионов красных кровяных телец. Их задача - доставлять кислород к разным клеткам всего тела. Белые кровяные тельца - лейкоциты (6-8 тысяч в 1 мм 3). Они угнетают возбудителей болезней, которые проникли в организм. Когда белые тельца сами поражены болезнью, организм теряет защитные функции, и человек может умереть даже от такой болезни, как грипп, с которым при нормальной системе защиты быстро справляется. Белые кровяные клетки больного СПИДом поражены вирусом - организм уже не может сам сопротивляться болезням. Каждая клетка, лейкоцит или эритроцит - это живая система, и на ее жизнедеятельности отображаются все процессы, происходящие в организме.

Что значит группа крови?

Состав крови отличается у людей подобно тому, как внешность, цвет волос и кожи. Сколько групп крови существует? Их четыре: О (I), А (II), В (III) и АВ (IV). На то, к какой группе относится та или иная кровь, оказывают влияние белки, содержащиеся в эритроцитах и плазме.

Белки-антигены в эритроцитах именуются агглютиногенами. Белки плазмы имеют название существуют двух видов: А и В, агглютинины тоже подразделяются - а и в.

Вот что происходит. Возьмем 4 человека, к примеру, Андрея, Аллу, Алексея и Ольгу. У Андрея группа крови А с агглютиногенами А в клетках и агглютининами в плазме. У Аллы - группа В: агглютиногены В и агглютинины а. У Алексея группа АВ: особенности 4 группы крови в том, что в ней присутствуют агглютиногены А и В, но совсем нет агглютининов. Ольга имеет группу О - у нее совсем не присутствуют агглютиногены, но в плазме находятся агглютинины а и в. Каждый организм ведет себя с другими агглютиногенами как с чужеродным агрессором.

Совместимость

Если перелить Андрею с группой А кровь группы В, ее агглютинины не примут чужеродное вещество. Эти клетки не смогут свободно передвигаться по телу. А значит, не смогут доставлять кислород к таким органам, как мозг, а это опасно для жизни. То же самое произойдет, если соединить А и В группы. Вещества В оттолкнут вещества А, а для О (I) группы не подходит как А, так и В. Для предотвращения ошибок перед переливанием пациентов предварительно тестируют на группу крови. Люди, имеющие I группу крови, считаются лучшими донорами - она подойдет любому. Сколько групп крови существует - все они положительно воспринимают кровь группы О, она не содержит в эритроцитах агглютиногенов, которые могли бы не "понравиться" остальным. Такие люди (как в нашем случае Ольга) являются Группа АВ содержит как А-, так и В-протеины, она может соединяться с остальными. Следовательно, пациент с 4 группой крови (АВ), при необходимом переливании, может безопасно получить любую другую. Вот почему такие люди, как Алексей, получили название "универсальные потребители".

В наше время стараются при переливании пациенту использовать именно ту группу крови, которая имеется у больного, и лишь в экстренных случаях можно воспользоваться универсальной первой. В любом случае предварительно необходимо проверить их на совместимость, чтобы не навредить больному.

Что такое резус-фактор?

Красные тельца некоторых людей содержат белок под названием резус-фактор, поэтому они обладают положительным резус-фактором. О тех, у кого такого белка нет, говорят, что они обладают отрицательным резус-фактором, и им разрешается переливать только точно такую же кровь. В обратном случае их иммунная система будет отвергать ее после первого же переливания.

Очень важно определить резус-фактор в период беременности. Если у мамы вторая отрицательная группа, а у отца положительная, ребенок может унаследовать резус-фактор отца. В таком случае в крови матери накапливаются антитела, что может привести к разрушению эритроцитов. Вторая положительная группа плода создает резус-конфликт, опасный для жизни и здоровья ребенка.

Генетическая передача группы

Точно так же, как оттенок волос, кровь человек унаследует от своих родителей. Но это совсем не значит, что у ребенка будет такой же ее состав, как у обоих или любого из родителей. Иногда этот вопрос по незнанию становится причиной семейных ссор. На самом деле наследование крови подчиняется определенным законам генетики. Разобраться, какие и сколько групп крови существует при образовании новой жизни, поможет таблица, приведенная ниже.

Например, если у матери кровь 4 группы, а у отца первая, ребенок не будет иметь такую же кровь, как у матери. Согласно таблице, у него может быть и вторая, и третья группа.

Наследование ребенком группы крови:

Группа крови матери

Группа крови отца

Возможные генетические варианты у ребенка

Резус-фактор тоже наследуется. Если, например, оба или один из родителей имеет вторую положительную группу, то малыш может родиться и с положительным, и с отрицательным резусом. Если каждый из родителей имеет отрицательный резус, то срабатывают законы наследственности. У ребенка может быть первая или вторая отрицательная группа.

Зависимость от происхождения человека

Сколько групп крови существует, каково их соотношение у разных народов, зависит от места их происхождения. В мире так много людей проходят тест на определение группы крови, что это предоставило возможность исследователям проследить, как варьируется частота той или иной в зависимости от географического расположения. В США 41% европеоидов обладает кровью группы А, по сравнению с 27% афроамериканцев. Почти все индейцы в Перу имеют I группу, а в Центральной Азии самой распространенной оказывается III группа. Отчего существуют эти различия - не совсем изучено.

Подверженность некоторым болезням

Но ученые заметили кое-какие интересные взаимосвязи между кровяными клетками и некоторыми болезнями. Обладатели I группы крови, к примеру, больше подвержены риску заболевания язвой. А люди, имеющие вторую группу, получают риск заболеть раком желудка. Это очень странно, но белки, которые обусловливают состав крови, бывают очень схожими с белками, находящимися на поверхности отдельных патогенных бактерий и вирусов. Если человек заразится вирусом с поверхностными белками, подобными его собственным, иммунная система может воспринять их как свои и позволит им беспрепятственно размножаться.

Например, поверхностные белки микроорганизмов, вызывающих бубонную чуму, очень схожи с протеинами I группы крови. Научные исследователи подозревают, что такие люди могут быть особенно подвержены этой инфекции. Ученые считают, что заболевание возникло в юго-восточной Азии и распространилось на запад. Когда оно достигло Европы, то уничтожило четвертую часть ее населения в XIV веке: тогда болезнь назвали "черной смертью". В Центральной Азии проживает наименьшее количество населения с I группой крови. Следовательно, именно такая группа была "недостатком" в зонах, где чума особенно свирепствовала, а люди с другими группами имели больше шансов на выживание. Ученые считают, что наблюдается зависимость болезней от состава крови. Изучение этой версии поможет в будущем расшифровать генезис недугов и раскроет секреты выживания человечества.

Читайте также: