Физиология пищеварения пищеварение в желудке. Физиология пищеварения. Основные функции пищеварительной системы

Пищеварение является начальным этапом обмена веществ. Человек получает с пищей энергию и все необходимые вещества для обновления и роста тканей, однако, содержащиеся в пище белки, жиры и углеводы являются для организма чужеродными веществами и не могут быть усвоены его клетками. Для усвоения они должны из сложных, крупномолекулярных и нерастворимых в воде соединений превратиться в более мелкие молекулы, растворимые в воде и лишенные специфичности.

Пищеварение - это процесс превращения пищевых веществ в форму, доступную для усвоения тканями, осуществляемый в пищеварительной системе.

Пищеварительная система - система органов, в которой происходит переваривание пищи, всасывание переработанных и выделение непереваренных веществ. Она включает пищеварительный тракт и пищеварительные железы

Пищеварительный тракт состоит из следующих отделов: ротовая полость, глотка, пищевод, желудок, двенадцатиперстная кишка, тонкий кишечник, толстый кишечник (рис.1).

Пищеварительные железы располагаются по ходу пищеварительного тракта и вырабатывают пищеварительные соки (слюнные, желудочные железы, поджелудочная железа, печень, кишечные железы).

В пищеварительной системе пища подвергается физическим и химическим превращениям.

Физические изменения пищи - заключаются в ее механической обработке, размельчении, перемешивании и растворении.

Химические изменения - это ряд последовательных этапов гидролитического расщепления белков, жиров, углеводов.

В результате пищеварения образуются продукты переваривания, которые способны всасываться слизистой оболочкой пищеварительного тракта и поступать в кровь и лимфу , т.е. в жидкие среды организма, и затем усваиваться клетками организма.

Основные функции пищеварительной системы:

- Секреторная - обеспечивает выработку пищеварительных соков, содержащих ферменты. Слюнные железы вырабатывают слюну, желудочные железы - желудочный сок, поджелудочная железа - поджелудочный сок, печень - желчь, кишечные железы - кишечный сок. Всего за сутки вырабатывается около 8,5 л. соков. Ферменты пищеварительных соков обладают большой специфичностью - каждый фермент действует на определенное химическое соединение.

Ферменты являются белками и для их деятельности необходимы определенная температура, рН среды и др. Различают три основные группы пищеварительных ферментов: протеазы, расщепляющие белки до аминокислот ; липазы , расщепляющие жиры до глицерина и жирных кислот; амилазы , расщепляющие углеводы до моносахаров. В клетках пищеварительных желез присутсвует полный набор ферментов - конститутивные ферменты, соотношение между которыми может изменяться в зависимости от характера пищи. При поступлении специфического субстрата могут появляться адаптированные (индуцированные) ферменты с узкой направленностью действия.


- Моторно-эвакуаторная - это двигательная функция, осуществляемая мускулатурой пищеварительного аппарата и обеспечивающая изменение агрегатного состояния пищи, ее измельчение, перемешивание с пищеварительными соками и передвижение в орально-анальном направлении (сверху вниз).

- Всасывательная - эта функция осуществляет перенос конечных продуктов переваривания, воды, солей и витаминов, через слизистую оболочку пищеварительного тракта во внутреннюю среду организма.

- Экскреторная - это выделительная функция, обеспечивающая выделения из организма продуктов обмена (метаболитов), неусвоенной пищи и др.

- Инкреторная - заключается в том, что специфические клетки слизистой оболочки пищеварительного тракта и поджелудочной железы, выделяют гормоны, регулирующие пищеварение.

- Рецепторная (анализаторная )- обусловлена рефлекторной связью (через рефлекторные дуги) хемо- и механорецепторов внутренних поверхностей органов пищеварения с сердечно-сосудистой, выделительной и др. системами организма.

- Защитная - это барьерная функция, обеспечивающая защиту организма от вредных факторов (бактерицидное, бактериостатическое, дезинтоксикационное действие).

Для человека характерен собственный тип пищеварения , подразделяющийся на три вида:

- внутриклеточное пищеварение - филогенетически наиболее древний тип, при котором ферменты гидролизуют мельчайшие частицы пищевых веществ, поступивших в клетку, путем мембранных транспортных механизмов.

- внеклеточное, дистантное или полостное - происходит в полостях пищеварительного тракта под действием гидролитических ферментов, причем секреторные клетки пищеварительных желез находятся на некотором отдалении. В результате внеклеточного пищеварения пищевые вещества распадаются до размеров, доступных для внутриклеточного пищеварения.

- мембранное, пристеночное или контактное - происходит непосредственно на клеточных мембранах слизистой оболочки кишечника.

Строение и функции органов пищеварения

Ротовая полость

Ротовая полость - в ее состав входят язык, зубы, слюнные железы. Здесь осуществляется прием пищи, анализ, размельчение, смачивание слюной, и химическая обработка. Пища находится в полости рта в среднем 10-15 сек.

Язык - мышечный орган, покрытый слизистой оболочкой, состоящей из множества сосочков 4-х типов. Различают нитевидные и конусовидные сосочки общей чувствительности (прикосновение, температура, боль); а также листовидные и грибовидны е, которые содержат вкусовые нервные окончания. Кончик языка воспринимает сладкое, тело языка - кислое и соленое, корень - горькое .

Вкусовые ощущения воспринимаются, если анализируемое вещество растворено в слюне. Утром язык мало чувствителен к восприятию вкуса, усиливается чувствительность к вечеру (19-21ч.). Поэтому на завтрак следует включать продукты, усиливающие раздражение вкусовых рецепторов (салаты, закуски, фрукты и др.). Оптимальная температура для восприятия вкусовых ощущений 35-40 0 С. Чувствительность рецепторов падает в процессе еды, при однообразном питании, принятии холодной пищи, а также с возрастом. Установлено, что сладкая пища вызывает ощущение удовольствия, благоприятно влияет на настроение, в то время как кислая может оказывать обратное действие.

Зубы . В ротовой полости у взрослого человека всего 32 зуба - 8 резцов, 4 клыка, 8 малых и 12 больших коренных зубов. Передние зубы (резцы) откусывают пищу, клыки разрывают ее, коренные зубы разжевывают с помощью жевательных мышц. Зубы начинают прорезываться на седьмом месяце жизни, к году обычно появляется 8 зубов (все резцы). При рахите прорезывание зубов задерживается. У детей к 7-9 годам молочные зубы (всего их 20) меняются на постоянные.

Зуб состоит из коронки, шейки и корня. Зубная полость заполнена пульпой - соединительной тканью, пронизанной нервами и кровеносными сосудами. Основу зуба составляет дентин - костная ткань. Коронка зуба покрыта эмалью, а корни зубным цементом .

Тщательное пережевывание пищи зубами увеличивает ее контакт со слюной, высвобождает вкусовые и бактерицидные вещества и облегчает проглатывание пищевого комка.

Слюнные железы - в слизистой оболочке полости рта имеется большое количество мелких слюнных желез (губные, щечные, язычные, небные). Кроме того, в полость рта открываются выводные протоки трех пар крупных слюнных желез - околоушных, подъязычных и подчелюстных.

Слюна примернона 98,5% состоит из воды и на 1,5% из неорганических и органических веществ. Реакция слюны слабощелочная (рН около 7,5).

Неорганические вещества - Na, K, Ca, Mg, хлориды , фосфаты , азотистые соли, NH 3 и др. Из слюны кальций и фосфор проникают в эмаль зуба.

Органические вещества слюны главным образом представлены муцином, ферментами и антибактериальными веществами.

Муцин - мукопротеин, который придает слюне вязкость, склеивает пищевой комок, делая его скользким и легко проглатываемым.

Ферменты слюны представлены амилазой , расщепляющей крахмал до мальтозы и мальтазой, расщепляющей мальтозу до глюкозы. Эти ферменты высокоактивные, но вследствие непродолжительного нахождения пищи в ротовой полости полного расщепления этих углеводов не происходит.

Антибактериальные вещества - ферментоподобные вещества лизоцим, ингибины и сиаловые кислоты, которые обладают бактерицидными свойствами и защищают организм от микробов, поступающих с пищей и вдыхаемым воздухом.

Слюна смачивает пищу, растворяет ее, обволакивает твердые компоненты, облегчает проглатывание, частично расщепляет углеводы, нейтрализует вредные вещества, очищает зубы от остатков пищи.

За сутки у человека выделяется около 1,5 л слюны. Секреция слюны происходит непрерывно, но больше в дневное время. Слюноотделение возрастает при ощущении голода, виде и запахе пищи, во время приема пищи, особенно сухой, при воздействии вкусоароматических и экстрактивных веществ, при употреблении холодных напитков, при устной речи, письме, разговоре о пище, а также мысли о ней. Тормозит секрецию слюны, непривлекательная пища и обстановка, напряженная физическая и умственная работа, отрицательные эмоции и др.

Влияние пищевых факторов на функции ротовой полости .

Недостаточное поступление белков, фосфора, кальция, витаминов С, D, группы В и избыток сахара приводят к развитию кариеса зубов. Некоторые пищевые кислоты, например виннокаменная, а также соли кальция и других катионов, могут образовывать зубные камни. Резкая смена горячей и холодной пищи приводит к появлению микротрещин эмали зубов и развитию кариеса.

Дефицит в питании витаминов группы В, особенно В 2 (рибофлавин), способствует появлению трещин в углах рта, воспалении слизистой оболочки языка. Недостаточное поступление витамина А (ретинол) характеризуется ороговением слизистых оболочек ротовой полости, появлением трещин и их инфицированием. При дефиците витаминов С (аскорбиновая кислота) и Р (рутин) развивается парадонтоз , что приводит к ослаблению фиксации зубов в челюстях.

Отсутствие зубов, кариес , парадонтоз , нарушает процесс жевания и снижают процессы пищеварения в ротовой полости.

Система пищеварения – сложная физиологическая система, обеспечивающая переваривание пищи, всасывание питательных компонентов и адаптацию этого процесса к условиям существования.

Система пищеварения включает:

1) весь желудочно-кишечный тракт;

2) все пищеварительные железы;

3) механизмы регуляции.

Желудочно-кишечный тракт начинается с ротовой полости, продолжается пищеводом, желудком и заканчивается кишечником. Железы расположены на протяжении всей пищеварительной трубки и выделяют в просвет органов секреты.

Все функции делятся на пищеварительные и непищеварительные. К пищеварительным относятся:

1) секреторная активность пищеварительных желез;

2) моторная деятельность желудочно-кишечного тракта (осуществляется благодаря наличию гладкомышечных клеток и скелетных мышц, обеспечивающих механическую обработку и продвижение пищи);

3) всасывательная функция (поступление конечных продуктов в кровь и лимфу).

Непищеварительные функции:

1) эндокринная;

2) экскреторная;

3) защитная;

4) деятельность микрофлоры.

Эндокринная функция осуществляется за счет наличия в составе органов желудочно-кишечного тракта отдельных клеток, вырабатывающих гормоны – инкреты.

Экскреторная роль заключается в выделении непереваренных продуктов пищи, образующихся в ходе процессов метаболизма.

Защитная деятельность обусловлена наличием неспецифической резистентности организма, которая обеспечивается благодаря присутствию макрофагов и лизоцима секретов, а также за счет приобретенного иммунитета. Большую роль играет и лимфоидная ткань (миндалины глоточного кольца Пирогова, пейеровы бляшки или солитарные фолликулы тонкого кишечника, червеобразного отростка, отдельные плазматические клетки желудка), которая выделяет в просвет желудочно-кишечного тракта лимфоциты и иммуноглобулины. Лимфоциты обеспечивают тканевой иммунитет. Иммуноглобулины, особенно группы А, не подвергаются деятельности протеолитических ферментов пищеварительного сока, препятствуют фиксации антигенов пищи на слизистой оболочке и способствуют их распознаванию, формируя определенный ответ организма.

Деятельность микрофлоры связана с присутствием в составе аэробных бактерий (10 %) и анаэробных (90 %). Они расщепляют растительные волокна (целлюлозу, гемицеллюлозу и др.) до жирных кислот, участвуют в синтезе витаминов К и группы В, тормозят процессы гниения и брожения в тонком кишечнике, стимулируют иммунную систему организма. Отрицательным является образование в ходе молочнокислого брожения индола, скатола и фенола.

Таким образом, система пищеварения обеспечивает механическую и химическую обработку пищи, осуществляет всасывание конечных продуктов распада в кровь и лимфу, транспортирует к клеткам и тканям питательные вещества, выполняет энергетическую и пластическую функции.

2. Типы пищеварения

Выделяют три типа пищеварения:

1) внеклеточное;

2) внутриклеточное;

3) мембранное.

Внеклеточное пищеварение происходит за пределами клетки, которая синтезирует ферменты. В свою очередь, оно делится на полостное и внеполостное. При полостном пищеварении ферменты действуют на расстоянии, но в определенной полости (например, это выделение секрета слюнными железами в ротовую полость). Внеполостное осуществляется за пределами организма, в котором образуются ферменты (например, микробная клетка выделяет секрет в окружающую среду).

Мембранное (пристеночное) пищеварение было описано в 30-е гг. XVIII в. А. М. Уголевым. Оно осуществляется на границе между внеклеточным и внутриклеточным пищеварением, т. е. на мембране. У человека осуществляется в тонком кишечнике, поскольку там имеется щеточная кайма. Она образована микроворсинками – это микровыросты мембраны энтероцитов длиной примерно 1–1,5 мкм и шириной до 0,1 мкм. На мембране 1 клетки может образовываться до нескольких тысяч микроворсинок. Благодаря такому строению увеличивается площадь контакта (более чем в 40 раз) кишечника с содержимым. Особенности мембранного пищеварения:

1) осуществляется за счет ферментов, имеющих двойное происхождение (синтезируются клетками и абсорбируются содержимого кишечника);

2) ферменты фиксируются на клеточной мембране таким образом, чтобы активный центр был направлен в полость;

3) происходит только в стерильных условиях;

4) является заключительным этапом в обработке пищи;

5) сближает процесс расщепления и всасывания за счет того, что конечные продукты переносятся на транспортных белках.

В организме человека полостное пищеварение обеспечивает расщепление 20–50 % пищи, а мембранное – 50–80 %.

3. Секреторная функция системы пищеварения

Секреторная функция пищеварительных желез заключается в выделении в просвет желудочно-кишечного тракта секретов, принимающих участие в обработке пищи. Для их образования клетки должны получать определенные количества крови, с током которой поступают все необходимые вещества. Секреты желудочно-кишечного тракта – пищеварительные соки. Любой сок состоит на 90–95 % воды и сухого остатка. В сухой остаток входят органические и неорганические вещества. Среди неорганических наибольший объем занимают анионы и катионы, соляная кислота. Органические представлены:

1) ферментами (главный компонент – протеолитические ферменты, расщепляющие белки до аминокислот, полипептидов и отдельных аминокислот, глюколитические ферменты преобразуют углеводы до ди– и моносахаров, липолитические ферменты превращают жиры в глицерин и жирные кислоты);

2) лизином. Основной компонент слизи, придающий вязкость и способствующий образованию пищевого комка (болеоса), в желудке и кишечнике взаимодействует с бикарбонатами желудочного сока и образует мукозобикарбонатный комплекс, который выстилает слизистую оболочку и предохраняет ее от самопереваривания;

3) веществами, которые обладают бактерицидным действием (например, муропептидазой);

4) веществами, которые подлежат удалению из организма (например, азотосодержащие – мочевина, мочевая кислота, креатинин и т. д.);

5) специфическими компонентами (это желчные кислоты и пигменты, внутренний фактор Кастла и др.).

На состав и количество пищеварительных соков оказывает влияние рацион питания.

Регуляция секреторной функции осуществляется тремя способами – нервным, гуморальным, местным.

Рефлекторные механизмы представляют собой отделение пищеварительных соков по принципу условного и безусловного рефлексов.

Гуморальные механизмы включают три группы веществ:

1) гормоны желудочно-кишечного тракта;

2) гормоны желез внутренней секреции;

3) биологически активные вещества.

Гормоны желудочно-кишечного тракта относятся к простым пептидам, которые вырабатываются клетками APUD-системы. Большинство действует эндокринным путем, но некоторые из них осуществляют свое действие параэндокринным способом. Поступая в межклеточные пространства, они действуют на находящиеся рядом клетки. Так, например, гормон гастрин вырабатывается в пилорической части желудка, двенадцатиперстной кишке и верхней трети тонкого кишечника. Он стимулирует секрецию желудочного сока, особенно соляной кислоты и поджелудочных ферментов. Бамбезин образуется в том же месте и является активатором для синтеза гастрина. Секретин стимулирует отделение сока поджелудочной железы, воды и неорганических веществ, подавляет секрецию соляной кислоты, оказывает незначительное влияние на другие железы. Холецистокинин-панкреозинин вызывает отделение желчи и поступление ее в двенадцатиперстную кишку. Тормозное действие оказывают гормоны:

1) гастрон;

3) панкреатический полипептид;

4) вазоактивный интестинальный полипептид;

5) энтероглюкагон;

6) соматостатин.

Среди биологически активных веществ усиливающим действием обладают серотонин, гистамин, кинины и др. Гуморальные механизмы появляются в желудке и наиболее выражены в двенадцатиперстной кишке и в верхнем отделе тонкого кишечника.

Местная регуляция осуществляется:

1) через метсимпатическую нервную систему;

2) через непосредственное воздействие пищевой кашицы на секреторные клетки.

Стимулирующее влияние оказывают также кофе, пряные вещества, алкоголь, жидкая пища и т. д. Местные механизмы наиболее выражены в нижних отделах тонкого кишечника и в толстом кишечнике.

4. Моторная деятельность желудочно-кишечного тракта

Моторная деятельность представляет собой координированную работу гладких мышц желудочно-кишечного тракта и специальных скелетных мышц. Они лежат в три слоя и состоят из циркулярно расположенных мышечных волокон, которые постепенно переходят в продольные мышечные волокна и заканчиваются в подслизистом слое. К скелетным мышцам относятся жевательные и другие мышцы лица.

Значение моторной деятельности:

1) приводит к механическому расщеплению пищи;

2) способствует продвижению содержимого по желудочно-кишечному тракту;

3) обеспечивает открытие и закрытие сфинктеров;

4) влияет на эвакуацию переваренных пищевых веществ.

Существуют несколько видов сокращений:

1) перистальтические;

2) неперистальтические;

3) антиперистальтические;

4) голодовые.

Перистальтические относятся к строго координированным сокращениям циркулярного и продольного слоев мышц.

Циркулярные мыщцы сокращаются позади содержимого, а продольные – перед ним. Такой вид сокращений характерен для пищевода, желудка, тонкого и толстого кишечника. В толстом отделе также присутствуют масс-перистальтика и опорожнение. Масс-перистальтика происходит в результате одновременного сокращения всех гладкомышечных волокон.

Неперистальтические сокращения – это согласованная работа скелетной и гладкомышечной мускулатуры. Существуют пять видов движений:

1) сосание, жевание, глотание в ротовой полости;

2) тонические движения;

3) систолические движения;

4) ритмические движения;

Тонические сокращения – состояние умеренного напряжения гладких мышц желудочно-кишечного тракта. Значение заключается в изменении тонуса в процессе пищеварения. Например, при приеме пищи происходит рефлекторное расслабление гладких мышц желудка для того, чтобы он увеличился в размерах. Также они способствуют адаптации к различным объемам поступающей пищи и приводят к эвакуации содержимого за счет повышения давления.

Систолические движения возникают в антральном отделе желудка при сокращении всех слоев мышц. В результате происходит эвакуация пищи в двенадцатиперстную кишку. Большая часть содержимого выталкивается в обратном направлении, что способствует лучшему перемешиванию.

Ритмическая сегментация характерна для тонкого кишечника и возникает при сокращении циркулярных мышц на протяжении 1,5–2 см через каждые 15–20 см, т. е. тонкий кишечник делится на отдельные сегменты, которые через несколько минут возникают в другом месте. Такой вид движений обеспечивает перемешивание содержимого вместе с кишечными соками.

Маятникообразные сокращения возникают при растяжении циркулярных и продольных мышечных волокон. Такие сокращения характерны для тонкого кишечника и приводит к перемешиванию пищи.

Неперистальтические сокращения обеспечивают измельчение, перемешивание, продвижение и эвакуацию пищи.

Антиперистальтические движения возникают при сокращении циркулярных мышц впереди и продольных – позади пищевого комка. Они направлены от дистального отдела к проксимальному, т. е. снизу вверх, и приводят к рвоте. Акт рвоты – удаление содержимого через рот. Он возникает при возбуждении комплексного пищевого центра продолговатого мозга, которое происходит за счет рефлекторных и гуморальных механизмов. Значение заключается в перемещении пищи за счет защитных рефлексов.

Голодовые сокращения появляется при длительном отсутствии пищи каждые 45–50 мин. Их активность приводит к возникновению пищевого поведения.

5. Регуляция моторной деятельности желудочно-кишечного тракта

Особенностью моторной деятельности является способность некоторых клеток желудочно-кишечного тракта к ритмической спонтанной деполяризации. Это значит, что они могут ритмически возбуждаться. В результате возникает слабые сдвиги мембранного потенциала – медленные электрические волны. Поскольку они не достигают критического уровня, то сокращение гладких мышц не возникает, но происходит открытие быстрых потенциал зависимых кальциевых каналов. Ионы Ca движутся внутрь клетки и генерируют потенциал действия, приводящий к сокращению. После прекращения потенциал действия мышцы не расслабляются, а находятся в состоянии тонического сокращения. Это объясняется тем, что после потенциала действия остаются открытыми медленные потенциал зависимые каналы Na и Ca.

В гладкомышечных клетках имеются и хемочувствительные каналы, которые отрываются при взаимодействии рецепторов с какими-либо биологически активными веществами (например, медиаторами).

Регуляция этого процесса осуществляется тремя механизмами:

1) рефлекторным;

2) гуморальным;

3) местным.

Рефлекторный компонент вызывает торможение или активацию моторной деятельности при возбуждении рецепторов. Повышает моторную функцию парасимпатический отдел: для верхний части – блуждающие нервы, для нижней – тазовые. Тормозное влияние осуществляется за счет чревного сплетения симпатической нервной системы. При активации нижележащего отдела желудочно-кишечного тракта происходит торможение выше расположенного отдела. В рефлекторной регуляции выделяют три рефлекса:

1) гастроэнтеральный (при возбуждении рецепторов желудка активируются другие отделы);

2) энтеро-энтеральный (оказывают как тормозное, так и возбуждающие действие на нижележащие отделы);

3) ректо-энтеральный (при наполнении прямой кишки возникает торможение).

Гуморальные механизмы преобладают в основном в двенадцатиперстной кишке и верхней трети тонкого кишечника.

Возбуждающее действие оказывают:

1) мотилин (вырабатывается клетками желудка и двенадцатиперстной кишки, оказывает активирующее влияние на весь желудочно-кишечный тракт);

2) гастрин (стимулирует моторику желудка);

3) бамбезин (вызывает отделение гастрина);

4) холецистокинин-панкреозинин (обеспечивает общее возбуждение);

5) секретин (активирует моторку, но тормозит сокращения в желудке).

Тормозное влияние оказывают:

1) вазоактивный интестинальный полипептид;

2) гастроингибирующий полипептид;

3) соматостатин;

4) энтероглюкагон.

Гормоны желез внутренней секреции также влияют на моторную функцию. Так, например, инсулин ее стимулирует, а адреналин тормозит.

Местные механизмы осуществляются за счет наличия метсимпатической нервной системы и преобладают в тонком и толстом кишечнике. Стимулирующее действие оказывают:

1) грубые непереваренные продукты (клетчатка);

2) соляная кислота;

4) конечные продукты расщепления белков и углеводов.

Тормозное действие возникает при наличии липидов.

Таким образом, в основе моторной деятельности лежит способность к генерации медленных электрических волн.

6. Механизм работы сфинктеров

Сфинктер – утолщение гладкомышечных слоев, за счет которых весь желудочно-кишечный тракт делится на определенные отделы. Существуют следующие сфинктеры:

1) кардиальный;

2) пилорический;

3) илиоцикальный;

4) внутренний и наружный сфинктер прямой кишки.

В основу открытия и закрытия сфинктеров положен рефлекторный механизм, согласно которому парасимпатический отдел – открывает сфинктер, а симпатический – закрывает.

Кардиальный сфинктер располагается в месте перехода пищевода в желудок. При поступлении пищевого комка в нижние отделы пищевода возбуждаются механорецепторы. Они посылают импульсы по афферентным волокнам блуждающих нервов в комплексный пищевой центр продолговатого мозга и возвращаются по эфферентным путям к рецепторам, вызывая открытие сфинктеров. В результате пищевой комок поступает в желудок, что приводит к активации механорецепторов желудка, которые посылают импульсы по волокнам блуждающих нервов в комплексный пищевой центр продолговатого мозга. Они оказывают тормозное влияние на ядра блуждающих нервов, и под влиянием симпатического отдела (волокон чревного ствола) сфинктер закрывается.

Пилорический сфинктер находится на границе между желудком и двенадцатиперстной кишкой. В его работу включается еще один компонент, оказывающий возбуждающее влияние, – соляная кислота. Она действует на антральную часть желудка. При поступлении содержимого в желудок происходит возбуждение хеморецепторов. Импульсы направляются в комплексный пищевой центр продолговатого мозга, и сфинктер открывается. Поскольку в кишечнике щелочная среда, то при попадании подкисленной пищи в двенадцатиперстной кишке возбуждаются хеморецепторы. Это приводит к активации симпатического отдела и закрытию сфинктера.

Механизм работы остальных сфинктеров аналогичен принципу кардиального.

Основной функцией сфинктеров является эвакуация содержимого, которая не только способствует открытию и закрытию, но и приводит к повышению тонуса гладких мышц желудочно-кишечного тракта, систолическим сокращениям антральной части желудка, увеличению давления.

Таким образом, моторная деятельность способствует лучшему перевариванию, продвижению и удалению продуктов из организма.

7. Физиология всасывания

Всасывание – процесс переноса питательных веществ из полости желудочно-кишечного тракта во внутреннюю среду организма – кровь и лимфу. Всасывание происходит на протяжении всего желудочно-кишечного тракта, но его интенсивность неодинакова и зависит от трех причин:

1) строения слизистой оболочки;

2) наличия конечных продуктов;

3) времени нахождения содержимого в полости.

Слизистая оболочка нижней части языка и дна ротовой полости истончена, но способна к всасыванию воды и минеральных веществ. Вследствие короткой продолжительности нахождения пищи в пищеводе (примерно 5–8 с) всасывания не происходит. В желудке и двенадцатиперстной кишке всасывается небольшое количество воды, минеральных веществ, моносахаридов, пептонов и полипептидов, лекарственных компонентов, алкоголя.

Основное количество воды, минеральных веществ, конечных продуктов расщепления белков, жиров, углеводов, лекарственных компонентов всасывается в тонком кишечнике. Это связано с рядом морфологических особенностей строения слизистой оболочки, за счет которых значительно увеличивается площадь контакта с наличием складок, ворсинок и микроворсинок). Каждая ворсинка покрыта однослойным цилиндрическим эпителием, который обладает высокой степенью проницаемости.

В центре располагается сеть лимфоидных и кровеносных капилляров, относящихся к классу фенестрированных. Они имеют поры, через которые проходят питательные вещества. В соединительной ткани также находятся гладкомышечные волокна, обеспечивающие движения ворсинок. Оно может быть нагнетательным и колебательным. Метсимпатическая нервная система осуществляет иннервацию слизистой оболочки.

В толстом кишечнике происходит формирование каловых масс. Слизистая этого отдела обладает способностью к всасыванию питательных веществ, но этого не происходит, так как в норме они поглощаются в вышележащих структурах.

8. Механизм всасывания воды и минеральных веществ

Всасывание осуществляется за счет физико-химический механизмов и физиологических закономерностей. В основе этого процесса лежат активный и пассивный виды транспорта. Большое значение имеет строение энтероцитов, поскольку поглощение происходит неодинаково через апикальную, базальную и латеральные мембраны.

Исследованиями доказано, что всасывание – активный процесс деятельности энтероцитов. В опыте вводили в просвет желудочно-кишечного тракта монойодуксусную кислоту, которая вызывает гибель клеток кишечника. Это привело к резкому снижению интенсивности всасывания. Для этого процесса характерны транспортировка питательных веществ в двух направлениях и избирательность.

Всасывание воды осуществляется на протяжении всего желудочно-кишечного тракта, но наиболее интенсивно в тонком кишечнике. Процесс идет пассивно в двух направлениях за счет наличия осмотического градиента, который создается при движении Na, Cl и глюкозы. Во время приема пищи, содержащей большое количество воды, из просвета кишечника вода поступает во внутреннюю среду организма. И наоборот, при употреблении гиперосмотической пищи вода из плазмы крови выделяется в полость кишечика. За сутки всасывается около 8–9 л воды, из которых около 2,5 л поступает с пищей, а остальной объем входит в состав пищеварительных соков.

Всасывание Na, так же как и воды, происходит во всех отделах, но наиболее – интенсивно в толстом кишечнике. Na проникает через апикальную мембрану щеточной каймы, в которой находится транспортный белок – пассивный транспорт. А через базальную мембрану осуществляется активный транспорт – движение по электрохимическому градиенту концентрации.

Транспорт Cl связан с Na и также направлен по электрохимическому градиенту концентрации Na, содержащегося во внутренней среде.

Всасывание бикарбонатов основано на поступлении ионов H из внутренней среды во время транспорта Na. Ионы H взаимодействуют с бикарбонатами и образуют угольную кислоту. Под влиянием карбоангидразы кислота распадается на воду и углекислый газ. Далее всасывание во внутреннюю среду продолжается пассивно, выделение образовавшихся продуктов происходит через легкие при дыхании.

Всасывание двухвалентных катионов идет гораздо труднее. Наиболее легко транспортируется Ca. При небольших концентрациях катионы переходят внутрь энтероцитов с помощью кальцийсвязывающего белка путем облегченной диффузии. Из клеток кишечника он поступает во внутреннюю среду при помощи активного транспорта. При высокой концентрации катионы всасываются благодаря простой диффузии.

Железо поступает внутрь энтероцита путем активного транспорта, в ходе которого образуется комплекс железа и белка ферритина.

9. Механизмы всасывания углеводов, жиров и белков

Всасывание углеводов происходит в виде конечных продуктов метаболизма (моно– и дисахаридов) в верхней трети тонкого кишечника. Глюкоза и галактоза поглощаются путем активного транспорта, причем всасывание глюкозы сопряжено с ионами Na – симпорт. Манноза и пентоза поступают пассивно по градиенте концентрации глюкозы. Фруктоза поступает с помощью облегченной диффузии. Наиболее интенсивно идет всасывание глюкозы в кровь.

Всасывание белков наиболее интенсивно протекает в верхних отделах тонкого кишечника, причем белки животного происхождения составляют 90–95 %, а растительного – 60–70 %. Основными продуктами распада, которые образуются в результате обмена веществ, являются аминокислоты, полипептиды, пептоны. Для транспорта аминокислот необходимо наличие молекул переносчика. Выделено четыре группы транспортных белков, обеспечивающих активный процесс всасывания. Поглощение полипептидов происходит пассивно по градиенту концентрации. Продукты поступают непосредственно во внутреннюю среду и с током крови разносятся по организму.

Скорость всасывания жиров значительно меньше, наиболее активно всасывание протекает в верхних отделах тонкого кишечника. Транспорт жиров осуществляется в виде двух форм – глицерина и жирных кислот, состоящих из длинных цепей (олеиновой, стеариновой, пальмитиновой и др.). Глицерин поступает пассивно внутрь энтероцитов. Жирные кислоты образуют мицеллы с желчными кислотами и только в такой форме направляются к мембране кишечных клеток. Здесь комплекс распадается: жирные кислоты растворяются в липидах клеточной мембраны и проходят в клетку, а желчные кислоты остаются в полости кишечника. Внутри энтероцитов начинается активный синтез липопротеидов (хиломикрона) и липопротеидов очень низкой плотности. Затем эти вещества путем пассивного транспорта попадают в лимфатические сосуды. Уровень липидов, обладающих короткими и средними цепями, низкий. Поэтому они практически в неизменном виде путем простой диффузии всасываются внутрь энтероцитов, где под действием эстераз расщепляются на конечные продукты и принимают участие в синтезе липопротеидов. Такой способ транспорта требует меньших затрат, поэтому в некоторых случаях при перегрузке желудочно-кишечного тракта активируется данный вид всасывания.

Таким образом, процесс всасывания идет по механизму активного и пассивного транспорта.

10. Механизмы регуляции процессов всасывания

Нормальная функция клеток слизистой оболочки желудочно-кишечного такта регулируется нейрогуморальными и местными механизмами.

В тонком кишечнике основная роль принадлежит местному способу, так как на деятельность органов большое влияние оказывают интрамуральные сплетения. Они осуществляют иннервацию ворсинок. За счет этого увеличивается площадь взаимодействия пищевой кашицы со слизистой оболочкой, что увеличивает интенсивность процесса всасывания. Местное действие активируется при наличии конечных продуктов расщепления веществ и соляной кислоты, а также в присутствии жидкостей (кофе, чая, супа).

Гуморальная регуляция происходит за счет гормона желудочно-кишечного тракта вилликинина. Он вырабатывается в двенадцатиперстной кишке и стимулирует движение ворсинок. На интенсивность всасывания также оказывают воздействие секретин, гастрин, холецистокинин-панкреозинин. Не последнюю роль играют гормоны желез внутренней секреции. Так, инсулин стимулирует, а адреналин тормозит транспортную активность. Среди биологически активных веществ серотонин и гистамин обеспечивают всасывание.

Рефлекторный механизм основан на принципах безусловного рефлекса, т. е. стимуляция и угнетение процессов происходят с помощью парасимпатического и симпатического отделов вегетативной нервной системы.

Таким образом, регуляция процессов всасывания осуществляется с помощью рефлекторных, гуморальных и местных механизмов.

11. Физиология пищеварительного центра

Первые представления о строении и функциях пищевого центра были обобщены И. П. Павловым в 1911 г. По современным представлениям пищевой центр – это совокупность нейронов, расположенных на разных уровнях ЦНС, основная функция которых заключается в регуляции деятельности системы пищеварения и обеспечении адаптации к потребностям организма. В настоящее время выделены следующее уровни:

1) спинальный;

2) бульбарный;

3) гипоталамический;

4) корковый.

Спинальный компонент образован нервными клетками боковых рогов спинного мозга, обеспечивающих иннервацию всего желудочно-кишечного тракта и пищеварительных желез. Самостоятельного значения не имеет и подчиняется импульсам из вышележащих отделов. Бульбарный уровень представлен нейронами ретикулярной формации продолговатого мозга, которые входят в состав ядер тройничного, лицевого, языкоглоточного, блуждающего и подъязычного нервов. Совокупность этих ядер и образует комплексный пищевой центр продолговатого мозга, который регулирует секреторную, моторную и всасывательную функцию всего желудочно-кишечного тракта.

Ядра гипоталамуса обеспечивают определенные формы пищевого поведения. Так, например, латеральные ядра составляют центр голода или питания. При раздражении нейронов возникает булимия – обжорство, а при их разрушении животное погибает от недостатка питательных веществ. Вентромедиальные ядра образуют центр насыщения. При их активации животное отказывается от пищи, и наоборот. Перифорникальные ядра относятся к центру жажды, при раздражении животное постоянно требует воду. Значение этого отдела заключается в обеспечении различных форм пищевого поведения.

Корковый уровень представлен нейронами, входящими в состав мозгового отдела вкусовой и обонятельной сенсорных систем. Кроме этого, обнаружены отдельные точечные очаги в лобных долях коры больших полушарий, которые принимают участие в регуляции процессах пищеварения. По принципу условного рефлекса достигается более совершенное приспособление организма к условиям существования.

12. Физиология голода, аппетита, жажды, насыщения

Голод – состояние организма, возникающее при длительном отсутствии пищи, в результате возбуждения латеральных ядер гипоталамуса. Для чувства голода характерны два проявления:

1) объективное (возникновение голодовых сокращений желудка, приводящих к пищедобывающему поведению);

2) субъективное (неприятные ощущения в эпигастральной области, слабость, головокружение, тошнота).

В настоящее время существует две теории, объясняющие механизмы возбуждения нейронов гипоталамуса:

1) теория «голодной крови»;

2) «периферическая» теория.

Теория «голодной крови» была разработана И. П. Чукичевым. Ее суть заключается в том, что при переливании крови голодного животного сытому у последнего возникает пищедобывающее поведение (и наоборот). «Голодная кровь» активирует нейроны гипоталамуса за счет низких концентраций глюкозы, аминокислот, липидов и т. д.

Выделено два пути влияния:

1) рефлекторный (через хеморецепторы рефлексогенных зон сердечно-сосудистой системы);

2) гуморальный (бедная питательными веществами кровь притекает к нейронам гипоталамуса и вызывает их возбуждение).

Согласно «периферической» теории голодовые сокращения желудка передаются на латеральные ядра и приводят к их активации.

Аппетит – страстное желание еды, эмоциональные ощущения, связанные с приемом пищи. Он возникает на уровне коры больших полушарий по принципу условного рефлекса и не всегда в ответ на состояние голода, а иногда и на снижение уровня питательных веществ в крови (в основном глюкозы). Появление чувства аппетита связано с выделением большого количества пищеварительных соков, содержащих высокий уровень ферментов.

Насыщение возникает при удовлетворении чувства голода, сопровождающееся возбуждением вентромедиальных ядер гипоталамуса по принципу безусловного рефлекса. Существует два вида проявлений:

1) объективные (прекращение пищедобывающего поведения и голодовых сокращений желудка);

2) субъективные (наличие приятных ощущений).

В настоящее время разработано две теории насыщения:

1) первичная сенсорная;

2) вторичная или истинная.

Первичная теория основана на раздражении механорецепторов желудка. Доказательство: в опытах при введении в желудок животного баллончика через 15–20 мин наступает насыщение, сопровождающееся повышением уровня питательных веществ, взятых из депонирующих органов.

Согласно вторичной (или метаболической) теории истинное насыщение возникает лишь спустя 1,5–2 ч после приема пищи. В результате повышается уровень питательных веществ в крови, приводящих к возбуждению вентромедиальных ядер гипоталамуса. За счет наличия реципрокных взаимоотношений в коре больших полушарий наблюдается торможение латеральных ядер гипоталамуса.

Жажда – состояние организма, возникающее при отсутствии воды. Она возникает:

1) при возбуждении перифорникальных ядер во время уменьшения жидкости за счет активации волюморецепторов;

2) при уменьшении объема жидкости (происходит повышение осмотического давления, на что реагируют осмотические и натрийзависимые рецепторы);

3) при подсыхании слизистых оболочек ротовой полости;

4) при местном согревании нейронов гипоталамуса.

Различают истинную и ложную жажду. Истинная жажда появляется при уменьшении уровня жидкости в организме и сопровождается желанием выпить. Ложная жажда сопровождается подсыханием слизистой оболочки ротовой полости.

Таким образом, пищевой центр регулирует деятельность системы пищеварения и обеспечивает различные формы пищедобывающего поведения организмам человека и животных.

Пищеварение - совокупность физических, химических и физиологических процессов, обеспечивающих обработку и превращение пищевых продуктов в простые химические соединения, способные усваиваться клетками организма. Эти процессы идут в определенной последовательности во всех отделах пищеварительного тракта (полости рта, глотке, пищеводе, желудке, тонкой и толстой кишке с участием печени и желчного пузыря, поджелудочной железы), что обеспечивается регуляторными механизмами различного уровня. Последовательная цепь процессов, приводящая к расщеплению пищевых веществ до мономеров, способных всасываться, носит название пищеварительного конвейера.

В зависимости от происхождения гидролитических ферментов пищеварение делят на 3 типа: собственное, симбионтное и аутолитическое.

Собственное пищеварение осуществляется ферментами, синтезированными железами человека или животного.

Симбионтное пищеварение происходит под влиянием ферментов, синтезированных симбионтами макроорганизма (микроорганизмами) пищеварительного тракта. Так происходит переваривание клетчатки пищи в толстой кишке.

Аутолитическое пищеварение осуществляется под влиянием ферментов, содержащихся в составе принимаемой пищи. Материнское молоко содержит ферменты, необходимые для его створаживания.

В зависимости от локализации процесса гидролиза питательных веществ различают внутриклеточное и внеклеточное пищеварение.

Внутриклеточное пищеварение представляет собой процесс гидролиза веществ внутри клетки клеточными (лизосомальными) ферментами. Вещества поступают в клетку путем фагоцитоза и пиноцитоза. Внутриклеточное пищеварение характерно для простейших животных. У человека внутриклеточное пищеварение встречается в лейкоцитах и клетках лимфоретикуло-гистиоцитарной системы. У высших животных и человека пищеварение осуществляется внеклеточно.

Внеклеточное пищеварение делят на дистантное (полостное) и контактное (пристеночное, или мембранное).

Дистантное (полостное) пищеварение осуществляется с помощью ферментов пищеварительных секретов в полостях желудочно-кишечного тракта на расстоянии от места образования этих ферментов.
Контактное (пристеночное, или мембранное) пищеварение происходит в тонкой кишке в зоне гликокаликса, на поверхности микроворсинок с участием ферментов, фиксированных на клеточной мембране и заканчивается всасыванием - транспортом питательных веществ через энтероцит в кровь или лимфу.

Функции желудочно-кишечного тракта (ЖКТ)

Секреторная функция связана с выработкой железистыми клетками пищеварительных соков: слюны, желудочного, поджелудочного, кишечного соков и желчи.

Двигательная, или моторная, функция осуществляется мускулатурой пищеварительного аппарата на всех этапах процесса пищеварения и заключается в жевании, глотании, перемешивании и передвижении пищи по пищеварительному тракту и удалении из организма непереваренных остатков. К моторике также относятся движения ворсинок и микроворсинок.

Всасывательная функция осуществляется слизистой оболочкой желудочно-кишечного тракта. Из полости органа в кровь или лимфу поступают продукты расщепления белков, жиров, углеводов (аминокислоты, глицерин и жирные кислоты, моносахариды), вода, соли, лекарственные вещества.

Инкреторная, или внутрисекреторная, функция заключается в выработке ряда гормонов, оказывающих регулирующее влияние на моторную, секреторную и всасывательную функции желудочно-кишечного тракта. Это гастрин, секретин, холецистокинин-панкреозимин, мотилин и др.

Экскреторная функция обеспечивается выделением пищеварительными железами в полость желудочно-кишечного тракта продуктов обмена (мочевина, аммиак, желчные пигменты), воды, солей тяжелых металлов, лекарственных веществ, которые затем удаляются из организма.

Органы желудочно-кишечного тракта выполняют и ряд других не пищеварительных функций, например, участие в водно-солевом обмене, в реакциях местного иммунитета, гемопоэзе, фибринолизе и т.д.

Общие принципы регуляции процессов пищеварения

Функционирование пищеварительной системы, сопряжение моторики, секреции и всасывания регулируются сложной системой нервных и гуморальных механизмов.

Выделяют три основных механизма регуляции пищеварительного аппарата: центральной рефлекторный, гуморальный и локальный, т.е. местный. Значимость этих механизмов в различных отделах пищеварительного тракта не одинакова.

Центральные рефлекторные влияния (условно-рефлекторные и безусловно-рефлекторные) в большей мере выражены в верхней части пищеварительного тракта. По мере удаления от ротовой полости их участие снижается, однако возрастает роль гуморальных механизмов. Особо выражено это влияние на деятельность желудка, двенадцатиперстной кишки, поджелудочной железы, желчеобразование и желчевыведение. В тонкой и особенно толстой кишке проявляются преимущественно локальные механизмы регуляции (механические и химические раздражения).

Пища оказывает активирующее воздействие на секрецию и моторику пищеварительного аппарата непосредственно в месте действия и в каудальном направлении. В краниальном направлении она, напротив, вызывает торможение.

Афферентная импульсация поступает от механо-, хемо-, осмо- и терморецепторов, находящихся в стенке пищеварительного тракта к нейронам интра- и экстрамуральных ганглиев, спинного головного мозга. Из этих нейронов по эфферентным вегетативным волокнам импульсы следуют в органы пищеварительной системы к клеткам-эффекторам: гландулоцитам, миоцитам, энтероцитам.

Регуляция процессов пищеварения осуществляется симпатическим, парасимпатическим и внутриорганным отделами вегетативной нервной системы. Внутриорганный отдел представлен рядом нервных сплетений, из которых наибольшее значение регуляции функций желудочно-кишечного тракта имеют межмышечное (ауэрбаховское) и подслизистое (мейснеровское) сплетения. С их помощью осуществляются местные рефлексы, замыкающиеся на уровне интрамуральных ганглиев.

В симпатических преганглионарных нейронах выделяются ацетилхолин, энкефалин, нейротензин; в постсинаптических - норадреналин, ацетилхолин, ВИП, в парасимпатических преганглионарных нейронах - ацетилхолин и энкефалин; постганглионарных - ацетилхолин, энкефалин, ВИП. В качестве медиаторов в желудке и кишечнике выступают также гастрин, соматостатин, субстанция P, холецистокинин. Основными возбуждающими моторику и секрецию желудочно-кишечного тракта нейронами являются холинергические, тормозными - адренергические.

Гастроинтестимальные гормоны играют большую роль в гуморальной регуляции пищеварительными функциями. Эти вещества продуцируются эндокринными клетками слизистой оболочки желудка, двенадцатиперстной кишки, поджелудочной железы и представляют собой пептиды и амины. По общему для всех этих клеток свойству поглощать аминный предшественник и карбоксилировать его эти клетки объединены в АПУД-систему. Гастроинтестинальные гормоны оказывают регуляторные влияния на клетки-мишени различными способами: эндокринным (доставляются к органам-мишеням общим и региональным кровотоком) и паракринным (диффундируют через интерстициальную ткань к рядом или близко расположенной клетке).

Некоторые из этих веществ продуцируются нервными клетками и играют роль нейротрансмиттеров. Гастроинтестинальные гормоны участвуют в регуляции секреции, моторики, всасывания, трофики, высвобождения других регуляторных пептидов, а также оказывают общие эффекты: изменения в обмене веществ, деятельности сердечно-сосудистой и эндокринной систем, пищевом поведении.

Пищеварение в полости рта

Пищеварение начинается в ротовой полости, где происходит механическая и химическая обработка пищи. Механическая обработка заключается в измельчении пищи, смачивании ее слюной и формировании пищевого комка. Химическая обработка происходит за счет ферментов, содержащихся в слюне.

В полость рта впадают протоки трех пар крупных слюнных желез: околоушных, подчелюстных, подъязычных и множества мелких желез, находящихся на поверхности языка и в слизистой оболочке нёба и щек.

Околоушные железы и железы, расположенные на боковых поверхностях языка, - серозные (белковые). Их секрет содержит много воды, белка и солей. Железы, расположенные на корне языка, твердом и мягком нёбе, относятся к слизистым слюнным железам, секрет которых содержит много муцина. Подчелюстные и подъязычные железы являются смешанными.

Состав и свойства слюны

Слюна, находящаяся в ротовой полости, является смешанной. Ее рН равна 6,8-7,4. У взрослого человека за сутки образуется 0,5-2 л слюны. Она состоит из 99% воды и 1% сухого остатка. Сухой остаток представлен органическими и неорганическими веществами. Среди неорганических веществ - анионы хлоридов, бикарбонатов, сульфатов, фосфатов; катионы натрия, калия, кальция магния, а также микроэлементы: железо, медь, никель и др. Органические вещества слюны представлены в основном белками. Белковое слизистое вещество муцин склеивает отдельные частицы пищи и формирует пищевой комок.

Основными ферментами слюны являются амилаза и мальтаза, которые действуют только в слабощелочной среде. Амилаза расщепляет полисахариды (крахмал, гликоген) до мальтозы (дисахарида). Мальтаза действует на мальтозу и расщепляет ее до глюкозы. В слюне в небольших количествах обнаружены также и другие ферменты: гидролазы, оксиредуктазы, трансферазы, протеазы, пептидазы, кислая и щелочная фосфатазы. В слюне содержится белковое вещество лизоцим (мурамидаза), обладающее бактерицидным действием. Пища находится в полости рта всего около 15 секунд, поэтому здесь не происходит полного расщепления крахмала. Но пищеварение в ротовой полости имеет очень большое значение, так как является пусковым механизмом для функционирования желудочно-кишечного тракта и дальнейшего расщепления пищи.

Функции слюны
Пищеварительная функция - о ней было сказано выше.
Экскреторная функция. В составе слюны могут выделяться некоторые продукты обмена, такие как мочевина, мочевая кислота, лекарственные вещества (хинин, стрихнин), а также вещества, поступившие в организм (соли ртути, свинца, алкоголь).
Защитная функция. Слюна обладает бактерицидным действием благодаря содержанию лизоцима. Муцин способен нейтрализовать кислоты и щелочи. В слюне находится большое количество иммуноглобулинов, что защищает организм от патогенной микрофлоры. В слюне обнаружены вещества, относящиеся к системе свертывания крови: факторы свертывания крови, обеспечивающие местный гемостаз; вещества, препятствующие свертыванию крови и обладающие фибринолитической активностью; вещество, стабилизирующее фибрин. Слюна защищает слизистую оболочку полости рта от пересыхания.
Трофическая функция. Слюна является источником кальция, фосфора, цинка для формирования эмали зуба.

Регуляция слюноотделения

При поступлении пищи в ротовую полость происходит раздражение механо-, термо- и хеморецепторов слизистой оболочки. Возбуждение от этих рецепторов по чувствительным волокнам язычного (ветвь тройничного нерва) и языкоглоточного нервов, барабанной струны (ветвь лицевого нерва) и верхнегортанного нерва (ветвь блуждающего нерва) поступает в центр слюноотделения в продолговатом мозге. От слюноотделительного центра по эфферентным волокнам возбуждение доходит до слюнных желез и железы начинают выделять слюну. Эфферентный путь представлен парасимпатическими и симпатическими волокнами. Парасимпатическая иннервация слюнных желез осуществляется волокнами языкоглоточного нерва и барабанной струны, симпатическая иннервация - волокнами, отходящими от верхнего шейного симпатического узла. Тела преганглионарных нейронов находятся в боковых рогах спинного мозга на уровне II-IV грудных сегментов. Ацетилхолин, выделяющийся при раздражении парасимпатических волокон, иннервирующих слюнные железы, приводит к отделению большого количества жидкой слюны, которая содержит много солей и мало органических веществ. Норадреналин, выделяющийся при раздражении симпатических волокон, вызывает отделение небольшого количества густой, вязкой слюны, которая содержит мало солей и много органических веществ. Такое же действие оказывает адреналин. Субстанция Р стимулирует секрецию слюны. СО2 усиливает слюнообразование. Болевые раздражения, отрицательные эмоции, умственное напряжение тормозят секрецию слюны.

Слюноотделение осуществляется не только с помощью безусловных, но и условных рефлексов. Вид и запах пищи, звуки, связанные с приготовлением пищи, а также другие раздражители, если они раньше совпадали с приемом пищи, разговор и воспоминание о пище вызывают условно-рефлекторное слюноотделение.

Пищеварение в желудке

Пища из ротовой полости поступает в желудок, где она подвергается дальнейшей химической и механической обработке. Кроме того, желудок является пищевым депо. Механическая обработка пищи обеспечивается моторной деятельностью желудка, химическая осуществляется за счет ферментов желудочного сока. Размельченные и химически обработанные пищевые массы в смеси с желудочным соком образуют жидкий или полужидкий химус.

Желудок выполняет следующие функции:
секреторную;
моторную;
всасывательную (эти функции будут описаны ниже);
экскреторную (выделение мочевины, мочевой кислоты, креатинина, солей тяжелых металлов, йода, лекарственных веществ);
инкреторную (образование гормонов гастрина и гистамина);
гомеостатическую (регуляция рН);
участие в гемопоэзе (выработка внутреннего фактора Касла).

Секреторная функция желудка

Секреторная функция желудка обеспечивается железами, находящимися в его слизистой оболочке, Различают три вида желез: кардиальные, фундальные (собственные железы желудка) и пиллорические (железы привратника). Железы состоят из главных, париетальных (обкладочных), добавочных клеток и мукоцитов. Главные клетки вырабатывают пепсиногены, париетальные - соляную кислоту, добавочные и мукоциты - мукоидный секрет. Фундальные железы содержат все три типа клеток. Поэтому в состав сока фундального отдела желудка входят ферменты и много соляной кислоты и именно этот сок играет ведущую роль в желудочном пищеварении.

Состав и свойства желудочного сока

У взрослого человека в течение суток образуется и выделяется около 2-2,5 л желудочного сока. Желудочный сок имеет кислую реакцию (рН 1,5- 1,8). В его состав входят вода - 99% и сухой остаток - 1%. Сухой остаток представлен органическими и неорганическими веществами. Главный неорганический компонент желудочного сока - соляная кислота, которая находится в свободном и связанном с протеинами состоянии. Соляная кислота выполняет ряд функций:
способствует денатурации и набуханию белков в желудке, что облегчает их последующее расщепление пепсинами;
активирует пепсиногены и превращает их в пепсины;
создает кислую среду, необходимую для действия ферментов желудочного сока;
обеспечивает антибактериальное действие желудочного сока;
способствует нормальной эвакуации пищи из желудка: открытию пилорического сфинктера со стороны желудка и закрытию со стороны 12-перстной кишки;
возбуждает панкреатическую секрецию.

Кроме того, в желудочном соке содержатся следующие неорганические вещества: хлориды, бикарбонаты, сульфаты, фосфаты, натрий, калий, кальций, магний и др.

В состав органических веществ входят протеолитические ферменты, главную роль среди которых играют пепсины. Пепсины выделяются в неактивной форме в виде пепсиногенов. Под влиянием соляной кислоты они активируются. Оптимум протеазной активности находится при рН 1,5-2,0. Они расщепляют белки до альбумоз и пептонов. Гастриксин гидролизует белки при рН 3,2-3,5. Реннин (химозин) вызывает створаживание молока в присутствии ионов кальция, так как переводит растворимый белок казеиноген в нерастворимую форму - казеин.

В желудочном соке имеются также и непротеолитические ферменты. Желудочная липаза мало активна и расщепляет только эмульгированные жиры. В желудке продолжается гидролиз углеводов под влиянием ферментов слюны. Это становится возможным потому, что пищевой комок, попавший в желудок, пропитывается кислым желудочным соком постепенно, И в это время во внутренних слоях пищевого комка в щелочной среде продолжается действие ферментов слюны.

В состав органических веществ входит лизоцим, обеспечивающий бактерицидные свойства желудочного сока. Желудочная слизь, содержащая муцин, защищает слизистую оболочку желудка от механических и химических раздражении и от самопереваривания. В желудке вырабатывается гастромукопротеид, или внутренний фактор Касла. Только при наличии внутреннего фактора возможно образование комплекса с витамином В12, участвующего в эритропоэзе. В желудочном соке содержатся также аминокислоты, мочевина, мочевая кислота.

Регуляция желудочной секреции

Железы желудка вне процесса пищеварения выделяют только слизь и пилорический сок. Отделение желудочного сока начинается при виде, запахе пищи, поступлении ее в ротовую полость. Процесс желудочного сокоотделения можно разделить на несколько фаз: сложно-рефлекторную (мозговую), желудочную и кишечную.

Сложно-рефлекторная (мозговая) фаза включает условно-рефлекторный и безусловно-рефлекторный механизмы.
Условно-рефлекторное отделение желудочного сока происходит при раздражении обонятельных, зрительных, слуховых рецепторов (запах, вид пищи, звуковые раздражители, связанные с приготовлением пищи, разговорами о пище). В результате синтеза афферентных зрительных, слуховых и обонятельных раздражении в таламусе, гипоталамусе, лимбической системе и коре больших полушарий головного мозга повышается возбудимость нейронов пищеварительного бульбарного центра и создаются условия для запуска секреторной активности желудочных желез. Сок, выделяющийся при этом, И. П. Павлов назвал запальным, или аппетитным.
Безусловно-рефлекторное желудочное сокоотделение начинается с момента попадания пищи в ротовую полость и связано с возбуждением рецепторов ротовой полости, глотки, пищевода. Импульсы по афферентным волокнам язычного (V пара черепно-мозговых нервов), языкоглоточного (IX пара) и верхнего гортанного (X пара) нервов поступают в центр желудочного сокоотделения в продолговатом мозге. От центра импульсы по эфферентным волокнам блуждающего нерва передаются к железам желудка, что приводит к усилению секреции. Сок, выделяющийся в первую фазу желудочной секреции, обладает большой протеолитической активностью и имеет большое значение для пищеварения, так как благодаря ему желудок оказывается заранее подготовленным к приему пищи. Торможение секреции желудочного сока происходит за счет раздражения эфферентных симпатических волокон, идущих из центров спинного мозга.

Желудочная фаза секреции наступает с момента попадания пищи в желудок. Эта фаза реализуется за счет блуждающего нерва, внутриорганного отдела нервной системы и гуморальных факторов. Желудочная секреция в эту фазу обусловлена раздражением пищей рецепторов слизистой желудка, откуда импульсы передаются по афферентным волокнам блуждающего нерва в продолговатый мозг, а затем по эфферентным волокнам блуждающего нерва поступают к секреторным клеткам. Блуждающий нерв оказывает свое влияние на желудочную секрецию несколькими путями: прямой контакт с главными, обкладочными и добавочными клетками желудочных желез (возбуждение ацетилхолином М-холинорецепторов), через внутриорганную нервную систему и через гуморальное звено, так как волокна блуждающего нерва иннервируют G-клетки пилорической части желудка, которые продуцируют гастрин. Гастрин повышает активность главных, но в большей степени обкладочных клеток. В то же время продукция гастрина увеличивается под влиянием экстрактивных веществ мяса, овощей, продуктов переваривания белков, бомбезина. Снижение рН в антральном отделе желудка уменьшает высвобождение гастрина. Под влиянием блуждающего нерва повышается также секреция гистамина ЕС2-клетками желудка. Гистамин, взаимодействуя с Н2-гистаминовыми рецепторами обкладочных клеток, повышает секрецию желудочного сока высокой кислотности с низким содержанием пепсинов. К числу химических веществ, способных оказывать непосредственное влияние на секрецию желез слизистой оболочки желудка, относятся экстрактивные вещества мяса, овощей, спирты, продукты расщепления белков (альбумозы и пептоны).

Кишечная фаза секреции начинается при переходе химуса из желудка в кишечник. Химус воздействует на хемо-, осмо-, механорецепторы кишечника и рефлекторно изменяет интенсивность желудочной секреции. В зависимости от степени гидролиза пищевых веществ, в желудок поступают сигналы, повышающие желудочную секрецию или, наоборот, тормозящие. Стимуляция осуществляется за счет местных и центральных рефлексов и реализуется через блуждающий нерв, внутриорганную нервную систему и гуморальные факторы (выделение гастрина G-клетками двенадцатиперстной кишки). Эта фаза характеризуется длительным скрытым периодом, большой продолжительностью. Кислотность желудочного сока в этот период низкая. Торможение желудочной секреции происходит за счет выделения секретина, ХЦК-ПЗ, которые угнетают секрецию соляной кислоты, но усиливают секрецию пепсиногенов. Уменьшают продукцию соляной кислоты также глюкагон, ЖИП, ВИП, нейротензин, соматостатин, серотонин, бульбогастрон, продукты гидролиза жира.

Продолжительность секреторного процесса, количество, переваривающая способность желудочного сока, его кислотность находятся в строгой зависимости от характера пищи, что обеспечивается нервными и гуморальными влияниями. Эти данные используются при назначении диеты у больных с гипо- и гиперсекрецией желудочных желез. Так, пациентам с гиперсекрецией рекомендуется молочная диета, с гипосекрецией - овощная и мясная с высоким содержанием экстрактивных веществ.

Пищеварение в тонкой кишке

Состав и свойства панкреатического сока

Внешнесекреторная деятельность поджелудочной железы заключается в образовании и выделении в двенадцатиперстную кишку 1,5-2,0 л панкреатического сока. В состав поджелудочного сока входят вода и сухой остаток (0,12%), который представлен неорганическими и органическими веществами. В соке содержатся катионы Na+, Ca2+, К+, Мg2+ и анионы Cl-, SO32-, HPO42-. Особенно много в нем бикарбонатов, благодаря которым рН сока равна 7,8-8,5. Ферменты поджелудочного сока активны в слабощелочной среде.

Панкреатический сок представлен протеолитическими, липолитическими и амилолитическими ферментами, переваривающими белки, жиры, углеводы и нуклеиновые кислоты. Альфа-амилаза, липаза и нуклеаза секретируются в активном состоянии; протеазы - в виде проэнзимов.
Альфа-амилаза поджелудочной железы расщепляет полисахариды до олиго-, ди- и моносахаридов. Нуклеиновые кислоты расщепляются рибо- и дезоксирибонуклеазами.

Панкреатическая липаза, активная в присутствии солей желчных кислот, действует на липиды, расщепляя их до моноглицеридов и жирных кислот. На липиды действуют также фосфолипаза А и эстераза. В присутствии ионов кальция гидролиз жиров усиливается. Протеолитические ферменты секретируются в виде проэнзимов - трипсиногена, химотрипсиногена, прокарбоксипептидазы А и В, проэластазы. Под влиянием энтерокиназы двенадцатиперстной кишки трипсиноген превращается в трипсин. Затем сам трипсин действует автокаталитически на оставшееся количество трипсиногена и на другие пропептидазы, превращая их в активные ферменты. Трипсин, химотрипсин, эластаза расщепляют премущественно внутренние пептидные связи белков пищи, в результате чего образуются низкомолекулярные пептиды и аминокислоты. Карбоксипептидазы А и В расщепляют С-концевые связи в белках и пептидах.

Регуляция секреции поджелудочной железы

Регуляция поджелудочной экзокринной секреции осуществляется нервными и гуморальными механизмами. Блуждающий нерв усиливает секрецию поджелудочной железы. Симпатические нервы уменьшают количество секрета, но усиливают синтез органических веществ (бета-адренергический эффект). Снижение секреции происходит также и за счет уменьшения кровоснабжения поджелудочной железы путем сужения кровеносных сосудов (альфа-адренергический эффект). Напряженная физическая и умственная работа, боль, сон вызывают торможение секреции. Гастроинтестинальные гормоны, секретин и ХЦК-ПЗ усиливают секрецию поджелудочного сока. Секретин стимулирует выделение сока, богатого бикарбонатами, ХЦК-ПЗ - богатого ферментами. Секрецию поджелудочной железы усиливают гастрин, серотонин, бомбезин, инсулин, соли желчных кислот. Химоденин стимулирует секрецию химотрипсиногена. Тормозящее действие оказывают ЖИП, ПП, глюкагон, кальцитонин, соматостатин, энкефалин.

Выделяют 3 фазы панкреатической секреции: сложнорефлекторную, желудочную и кишечную. На отделение сока поджелудочной железы влияет характер принятой пищи. Эти влияния опосредованы через соответствующие гастроинтестинальные гормоны. Так, пищевые продукты, усиливающие секрецию соляной кислоты в желудке (экстрактивные вещества мяса, овощей, продукты переваривания белков), стимулируют выработку секретина, а значит, приводят к выделению поджелудочного сока, богатого бикарбонатами. Продукты начального гидролиза белков и жиров стимулируют секрецию ХЦК-ПЗ, который, в свою очередь, способствует выделению сока с большим количеством ферментов. Таким образом, при длительном преобладании в пищевом рационе только углеводов, или белков, или жиров происходит и соответствующее изменение ферментного состава панкреатического сока. Поджелудочная железа обладает и внутрисекреторной активностью, продуцируя инсулин, глюкагон, соматостатин, панкреатический полипептид, серотонин, ВИП, гастрин, энкефалин, калликреин, липоксин и ваготонин.

Состав и свойства кишечного сока

Кишечный сок представляет собой секрет желез, расположенных в слизистой оболочке вдоль всей тонкой кишки (дуоденальных, или бруннеровых желез, кишечных крипт, или либеркюновых желез, кишечных эпителиоцитов, бокаловидных клеток, клеток Панета). У взрослого человека за сутки отделяется 2 - 3 л кишечного сока, рН от 7,2 до 9,0. Сок состоит из воды и сухого остатка, который представлен неорганическими и органическими веществами. Из неорганических веществ в соке содержится много бикарбонатов, хлоридов, фосфатов натрия, кальция, калия. В состав органических веществ входят белки, аминокислоты, слизь. В кишечном соке находится более 20 ферментов, обеспечивающих конечные стадии переваривания всех пищевых веществ. Это энтерокиназа, пептидазы, щелочная фосфатаза, нуклеаза, липаза, фосфолипаза, амилаза, лактаза, сахараза. Встречаются наследственные и приобретенные дефициты кишечных ферментов, расщепляющих углеводы (дисахаридаз), что приводит к непереносимости соответствующих дисахаридов. Например, у многих людей, особенно народов Азии и Африки, выявлена лактазная недостаточность. Основная часть ферментов поступает в кишечный сок при отторжении клеток слизистой оболочки кишки. Значительное количество ферментов адсорбируется на поверхности эпителиальных клеток кишки, осуществляя пристеночное пищеварение.

Регуляция кишечной секреции

Регуляция деятельности желез тонкой кишки осуществляется местными нервно-рефлекторными механизмами, а также гуморальными влияниями и ингредиентами химуса. Механическое раздражение слизистой оболочки тонкой кишки вызывает выделение жидкого секрета с малым содержанием ферментов. Местное раздражение слизистой кишки продуктами переваривания белков, жиров, соляной кислотой, панкреатическим соком вызывает отделение кишечного сока, богатого ферментами. Усиливают кишечное сокоотделение ГИП, ВИП, мотилин. Гормоны энтерокринин и дуокринин, выделяемые слизистой оболочкой тонкой кишки, стимулируют соответственно секрецию либеркюновых и бруннеровых желез. Тормозное действие оказывает соматостатин.

Полостное и пристеночное пищеварение в тонкой кишке

В тонкой кишке различают два вида пищеварения: полостное и пристеночное.

Полостное пищеварение происходит с помощью ферментов пищеварительных секретов, поступающих в полость тонкой кишки (поджелудочный сок, желчь, кишечный сок). В результате полостного пищеварения крупномолекулярные вещества (полимеры) гидролизуются в основном до стадии олигомеров. Дальнейший их гидролиз идет в зоне, прилегающей к слизистой оболочке и непосредственно на ней.

Пристеночное пищеварение в широком смысле происходит в слое слизистых наложений, находящемся над гликокаликсом, зоне гликокаликса и на поверхности микроворсинок. Слой слизистых наложений состоит из слизи, продуцируемой слизистой оболочкой тонкой кишки и слущивающегося кишечного эпителия. В этом слое находится много ферментов поджелудочной железы и кишечного сока.

Питательные вещества, проходя через слой слизи, подвергаются воздействию этих ферментов. Гликокаликс адсорбирует из полости тонкой кишки ферменты пищеварительных соков, которые осуществляют промежуточные стадии гидролиза всех основных питательных веществ. Продукты гидролиза поступают на апикальные мембраны энтероцитов, в которые встроены кишечные ферменты, осуществляющие собственное мембранное пищеварение, в результате которого образуются мономеры, способные всасываться. Благодаря близкому расположению встроенных в мембрану собственных кишечных ферментов и транспортных систем, обеспечивающих всасывание, создаются условия для сопряжения процессов конечного гидролиза питательных веществ и начала их всасывания.

Для мембранного пищеварения характерна следующая зависимость: секреторная активность эпителиоцитов убывает от крипты к вершине кишечной ворсинки. В верхней части ворсинки идет в основном гидролиз дипептидов, у основания - дисахаридов. Пристеночное пищеварение зависит от ферментного состава мембран энтероцитов, сорбционных свойств мембраны, моторики тонкой кишки, от интенсивности полостного пищеварения, диеты. На мембранное пищеварение оказывают влияние гормоны надпочечников (синтез и транслокация ферментов).

Пищеварение в толстой кишке

Из тонкой кишки химус через илеоцекальный сфинктер (баугиниеву заслонку) переходит в толстую кишку. Роль толстой кишки в процессе переваривания пищи небольшая, так как пища почти полностью переваривается и всасывается в тонкой кишке, за исключением растительной клетчатки. В толстой кишке происходят концентрирование химуса путем всасывания воды, формирование каловых масс и удаление их из кишечника. Здесь также происходит всасывание электролитов, водорастворимых витаминов, жирных кислот, углеводов.

Секреторная функция толстой кишки

Железы слизистой оболочки толстой кишки выделяют небольшое количество сока (рН 8,5-9,0), который содержит в основном слизь, отторгнутые эпителиальные клетки и небольшое количество ферментов (пептидазы, липаза, амилаза, щелочная фосфатаза, катепсин, нуклеаза) со значительно меньшей активностью, чем в тонкой кишке. Однако при нарушении пищеварения вышележащих отделов пищеварительного тракта толстая кишка способна их компенсировать путем значительного повышения секреторной активности. Регуляция сокоотделения в толстой кишке обеспечивается местными механизмами. Механическое раздражение слизистой оболочки кишечника усиливает секрецию в 8-10 раз.

Моторика пищеварительного тракта

Этот процесс состоит в механической обработке пищи между верхними и нижними рядами зубов за счет движений нижней челюсти по отношению к верхней неподвижной. Жевательные движения осуществляются специальными жевательными мышцами, мимическими, а также мышцами языка. В процессе жевания происходит измельчение пищи, смешивание ее со слюной и формирование пищевого комка, создаются условия для возникновения вкусовых ощущений.

Пища, поступая в ротовую полость, раздражает механо-, термо- и хеморецепторы ее слизистой оболочки. Возбуждение от этих рецепторов по афферентным волокнам в основном тройничного нерва передается в чувствительные ядра продолговатого мозга, зрительный бугор и кору больших полушарий. От ствола мозга и зрительного бугра коллатерали отходят к ретикулярной формации. В акте жевания также принимают участие проприорецепторы жевательных мышц и механорецепторы опорного аппарата зуба - парадонта. В результате анализа и синтеза поступившей информации принимается решение о съедобности попавших в ротовую полость веществ. Несъедобная пища отвергается, съедобная - остается в полости рта.

Совокупность нейронов различных отделов мозга, управляющих актом жевания, называется жевательным центром. От двигательных ядер ретикулярной формации ствола мозга по эфферентным волокнам тройничного, подъязычного и лицевого нервов импульсы поступают к мышцам, обеспечивающим жевание. В результате происходят движения нижней челюсти. Мышцы языка и щек подают и удерживают пищу между зубами.

Моторная функция желудка

Моторная функция желудка способствует перемешиванию пищи с желудочным соком, продвижению и порционному появлению содержимого желудка в двенадцатиперстную кишку. Она обеспечивается работой гладкой мускулатуры. Мышечная оболочка желудка состоит из трех слоев гладких мышц: внешнего продольного, среднего кругового и внутреннего косого. В пилорической части желудка волокна кругового и продольного слоев образуют сфинктер. Для некоторых мышечных клеток внутреннего косого слоя характерно наличие пейсмекерной активности.

Пустой желудок обладает некоторым тонусом. Периодически происходит его сокращение (голодная моторика), которое сменяется состоянием покоя. Этот вид сокращения мышц связан с ощущением голода. Сразу после приема пищи происходит релаксация гладких мышц стенки желудка (пищевая рецептивная релаксация). Спустя некоторое время, что зависит от вида пищи, начинается сокращение желудка. Различают перистальтические, систематические и тонические сокращения желудка. Перистальтические движения осуществляются за счет сокращения циркулярных мышц желудка. Сокращения мышц начинаются на большой кривизне в непосредственной близости от пищевода, где локализуется кардиальный водитель ритма.

В препилорической части локализуется второй водитель ритма. Сокращения мышц дистальной части антрального отдела и пилоруса представляют собой систолические сокращения. Эти движения обеспечивают переход содержимого желудка в двенадцатиперстную кишку. Тонические сокращения обусловлены изменением тонуса мышц. В желудке возможны также и антиперистальтические движения, которые наблюдаются при акте рвоты.

Рвота - это сложнорефлекторный координированный двигательный процесс, в нормальных условиях выполняющий защитную функцию,
в результате которой из организма удаляются вредные для него вещества.

Эвакуация химуса из желудка в двенадцатиперстную кишку

Содержимое желудка поступает в двенадцатиперстную кишку отдельными порциями благодаря сокращению мускулатуры желудка и открытию сфинктера привратника. Открытие пилорического сфинктера происходит вследствие раздражения рецепторов слизистой пилорической части желудка соляной кислотой. Перейдя в двенадцатиперстную кишку, НС1, находящаяся в химусе, воздействует на хеморецепторы слизистой кишки, что приводит к рефлекторному закрытию пилорического сфинктера (запирательный пилорический рефлекс).

После нейтрализации кислоты в двенадцатиперстной кишке щелочным дуоденальным соком пилорический сфинктер снова открывается. Скорость перехода содержимого желудка в двенадцатиперстную кишку зависит от состава, объема, консистенции, осмотического давления, температуры и рН желудочного содержимого, степени наполнения двенадцатиперстной кишки, состояния сфинктера привратника. Жидкость переходит в двенадцатиперстную кишку сразу после поступления в желудок.

Углеводная пища эвакуируется быстрее, чем пища, богатая белками. Жирная пища переходит в двенадцатиперстную кишку с наименьшей скоростью. Время полной эвакуации смешанной пищи из желудка составляет 6-10 часов.

Моторная функция тонкой кишки

За счет двигательной активности наружных продольных и внутренних (кольцевых) мышц тонкой кишки происходит перемешивание химуса с соком поджелудочной железы и кишечным соком и продвижение химуса по тонкой кишке. В тонкой кишке различают несколько видов движений: ритмическая сегментация, маятникообразные, перистальтические, тонические сокращения. Ритмическая сегментация обеспечивается сокращением кольцевых мышц. В результате этих сокращений образуются поперечные перехваты, которые делят кишку (и пищевую кашицу) на небольшие сегменты, что способствует лучшему растиранию химуса и перемешиванию его с пищеварительными соками.

Маятникообразные движения обусловлены сокращением кольцевых и продольных мышц кишечника. В результате последовательных сокращений кольцевых и продольных мышц отрезок кишки то укорачивается и расширяется, то удлиняется и суживается. Это приводит к перемещению химуса то в одну, то в другую сторону, наподобие маятника, что способствует тщательному перемешиванию химуса с пищеварительными соками.

Перистальтические движения обусловлены согласованными сокращениями продольного и циркулярного слоев мышц. За счет сокращения кольцевых мышц верхнего отрезка кишки происходит выдавливание химуса в одновременно расширяющийся за счет сокращения продольных мышц нижний участок. Перистальтические движения обеспечивают продвижение химуса по кишечнику. Все сокращения происходят на фоне общего тонуса стенок кишки. Отсутствие тонуса мышц (атония) при парезах делает невозможным любой вид сокращений. Кроме того, в течение всего процесса пищеварения наблюдается постоянное сокращение и расслабление ворсинок кишки, что обеспечивает соприкосновение их с новыми порциями химуса, улучшает всасывание и отток лимфы.

Моторная функция толстой кишки

Моторная функция толстой кишки обеспечивает резервную функцию, т.е. накопление кишечного содержимого и периодическое удаление каловых масс из кишечника. Кроме того, моторная активность кишки способствует всасыванию воды. В толстой кишке наблюдаются следующие виды сокращений: перистальтические, антиперистальтические, пропульсивные, маятникообразные, ритмическая сегментация. Наружный продольный слой мышц располагается в виде полос и находится в постоянном тонусе. Сокращения отдельных участков циркулярного мышечного слоя образуют складки и вздутия (гаустры). Обычно волны гаустрации медленно проходят по толстой кишке. Три-четыре раза в сутки возникает сильная пропульсивная перистальтика, которая продвигает содержимое кишки в дистальном направлении.

Регуляция моторики желудочно-кишечного тракта

Регуляция моторной функции пищеварительного тракта осуществляется нейрогуморальными механизмами. Активация блуждающего нерва усиливает перистальтику пищевода и расслабляет тонус кардии желудка. Симпатические волокна оказывают противоположный эффект. Кроме того, регуляция моторики осуществляется межмышечным, или ауэрбаховским, сплетением.

Блуждающие нервы возбуждают моторную активность желудка, симпатические - угнетают. Большое значение в регуляции моторики желудка имеет внутриорганный отдел вегетативной нервной системы (ауэрбаховское сплетение) за счет местных периферических рефлексов. Возбуждающим действием на сократительную активность гладкой мускулатуры желудка обладают гастрин, гистамин, серотонин, мотилин, инсулин, ионы калия.

Торможение моторики желудка вызывают энтерогастрон, адреналин, норадреналин, секретин, глюкагон, ХЦК-ПЗ, ЖИП, ВИП, бульбогастрон. Механическое раздражение кишечника пищевыми веществами приводит к рефлекторному торможению двигательной активности желудка (энтерогастральный рефлекс). Особенно выражен этот рефлекс при поступлении в двенадцатиперстную кишку жира и соляной кислоты.

Двигательная активность тонкой кишки регулируется миогенными, нервными и гуморальными механизмами. Спонтанная двигательная активность гладких мышц кишечника обусловлена их автоматией. Известны два «датчика ритма» кишечных сокращений, один из которых находится у места впадения общего желчного протока в двенадцатиперстную кишку, другой - в подвздошной кишке. Организованная фазная сократительная деятельность стенки кишки осуществляется также с помощью нейронов ауэрбаховского нервного сплетения, которые обладают ритмической фоновой активностью. Эти механизмы находятся под влиянием нервной системы и гуморальных факторов. Парасимпатические нервы в основном возбуждают, а симпатические - тормозят сокращения тонкой кишки. Эффекты раздражения вегетативных нервов зависят от исходного состояния мышц, частоты и силы раздражения.

Большое значение для регуляции моторики тонкой кишки имеют рефлексы с различных отделов пищеварительного тракта, которые можно разделить на возбуждающие и тормозные.

К возбуждающим рефлексам относятся:
пищеводно-кишечный;
желудочно-кишечный;
кишечно-кишечный.

К тормозным рефлексам относятся:
кишечно-кишечный;
ректоэнтеральный;
рецепторное торможение тонкой кишки (рецепторная релаксация) во время еды, которое затем сменяется усилением ее моторики.

Рефлекторные дуги этих рефлексов замыкаются как на уровне интрамуральных ганглиев внутриорганного отдела вегетативной нервной системы, так и на уровне ядер блуждающих нервов в продолговатом мозге и в узлах симпатической нервной системы. Моторика тонкой кишки зависит от физических и химических свойств химуса. Грубая пища, содержащая большое количество клетчатки, жиры стимулируют двигательную активность тонкой кишки. Усиливают моторику кислоты, щелочи, концентрированные растворы солей, продукты гидролизa, особенно жиров. Гуморальные вещества осуществляют регуляцию моторики кишки, или непосредственно влияя на миоциты или на энтеральные нейроны. Стимулируют моторику вазопрессин, окситоцин, брадикинин, серотонин, гистамин, гастрин, мотилин, ХЦК-ПЗ, вещество Р, тормозят - секретин, ВИП, ГИП.

Регуляция двигательной активности толстой кишки осуществляется преимущественно внутриорганным отделом вегетативной нервной системы: интрамуральными нервными сплетениями (ауэрбаховским и мейсснеровским). В стимуляции моторной деятельности толстой кишки существенную роль играют рефлексы при раздражении рецепторов пищевода, желудка, тонкой кишки, а также и самой толстой кишки. Раздражение рецепторов прямой кишки тормозит моторику толстой кишки. Коррекция местных рефлексов происходит вышележащими центрами ВНС. Симпатические нервные волокна, проходящие в составе чревных нервов, тормозят моторику; парасимпатические, идущие в составе блуждающих и тазовых нервов, - усиливают.

Механические и химические раздражители повышают двигательную активность и ускоряют продвижение химуса по кишке. Поэтому, чем больше в пище клетчатки, тем выраженное моторная активность толстой кишки. Серотонин, адреналин, глюкагон тормозят моторику толстой кишки, кортизон - стимулирует.

Акт дефекации и его регуляция

Каловые массы удаляются с помощью акта дефекации, представляющего сложнорефлекторный процесс опорожнения дистального отдела толстой кишки через задний проход. При наполнении ампулы прямой кишки калом и повышении в ней давления до 40-50 см вод.ст. происходит раздражение механо- и барорецепторов. Возникшие при этом импульсы по афферентным волокнам тазового (парасимпатического) и срамного (соматического) нервов направляются в центр дефекации, который расположен в поясничной и крестцовой частях спинного мозга (непроизвольный центр дефекации). Из спинного мозга по эфферентным волокнам тазового нерва импульсы идут к внутреннему сфинктеру, вызывая его расслабление, и одновременно усиливают моторику прямой кишки.

Произвольный акт дефекации осуществляется при участии коры больших полушарий, гипоталамуса и продолговатого мозга, которые оказывают свой эффект через центр непроизвольной дефекации в спинном мозге. От альфа-мотонейронов крестцового отдела спинного мозга по соматическим волокнам срамного нерва импульсы поступают к наружному (произвольному) сфинктеру, тонус которого вначале повышается, а при увеличении силы раздражения тормозится. Одновременно происходит сокращение диафрагмы и брюшных мышц, что ведет к уменьшению объема брюшной полости и повышению внутрибрюшного давления, что способствует акту дефекации.

Продолжительность эвакуации, т.е. время, в течение которого происходит освобождение кишок от содержимого, у здорового человека достигает 24-36 часов. Парасимпатические нервные волокна, идущие в составе тазовых нервов, тормозят тонус сфинктеров, усиливают моторику прямой кишки и стимулируют акт дефекации. Симпатические нервы повышают тонус сфинктеров и тормозят моторику прямой кишки.

Всасывание

В полости рта всасывание незначительное, так как пища там не задерживается, но некоторые вещества, например, цианистый калий, а также лекарственные препараты (эфирные масла, валидол, нитроглицерин и др.) всасываются в ротовой полости и очень быстро попадают в кровеносную систему, минуя кишечник и печень. Это находит применение как способ введения лекарственных веществ.

В желудке всасываются некоторые аминокислоты, немного глюкозы, воды с растворенными в ней минеральными солями и довольно существенно всасывание алкоголя.

Тонкий кишечник. Основное всасывание продуктов гидролиза белков, жиров и углеводов происходит в тонком кишечнике. Белки всасываются в виде аминокислот, углеводы - в виде моносахаридов, жиры - в виде глицерина и жирных кислот. Всасыванию нерастворимых в воде жирных кислот помогают водорастворимые соли желчных кислот.

Толстый кишечник. Всасывание питательных веществ в толстой кишке незначительно, там всасывается много воды, что необходимо для формирования кала, в небольшом количестве глюкоза, аминокислоты, хлориды, минеральные соли, жирные кислоты и жирорастворимые витамины A, D, Е, К. Вещества из прямой кишки всасываются так же, как и из ротовой полости, т.е. непосредственно в кровь, минуя портальную кровеносную систему. На этом основано действие так называемых питательных клизм.

Что касается других отделов желудочно-кишечного тракта (желудка, тонкого и толстого кишечника), то всосавшиеся в них вещества вначале поступают по портальным венам в печень, а затем в общий кровоток. Лимфоотток от кишечника осуществляется по кишечным лимфатическим сосудам в млечную цистерну.
Наличие клапанов в лимфатических сосудах препятствует возврату лимфы в сосуды, которая по грудному протоку поступает в верхнюю полую вену.

Всасывание зависит от величины всасывательной поверхности. Особенно она велика в тонкой кишке и создается за счет складок, ворсинок и микроворсинок. Так, на 1 мм2 слизистой оболочки кишки приходится 30 - 40 ворсинок, а на каждый энтероцит - 1700 - 4000 микроворсинок. Каждая ворсинка - это микроорган, содержащий мышечные сократительные элементы, кровеносный и лимфатический микрососуды и нервное окончание.

Микроворсинки покрыты слоем гликоколикса, состоящего из мукополисахаридных нитей, связанных между собой кальциевыми мостиками, и образующего слой толщиной 0,1 мкм. Это молекулярное сито или сеть, которая благодаря отрицательному заряду и гидрофильности пропускает к мембране микроворсинок низкомолекулярные вещества и препятствует переходу через нее высокомолекулярных веществ и ксенобиотиков. Гликокаликс вместе с покрывающей кишечный эпителий слизью адсорбирует из полости кишки гидролитические ферменты, необходимые для полостного гидролиза питательных веществ, которые затем транспортируются на мембрану микроворсинок.

Большую роль во всасывании играют сокращения ворсинок, которые натощак сокращаются слабо, а при наличии в кишке химуса - до 6 сокращений в 1 минуту. В регуляции сокращения ворсинок принимает участие интрамуральная нервная система (подслизистое, мейснеровское сплетение). Экстрактивные вещества пищи, глюкоза, пептиды, некоторые аминокислоты усиливают сокращения ворсинок. Кислое содержимое желудка способствует образованию в тонкой кишке специального гормона - вилликинина, стимулирующего через кровоток сокращения ворсинок.

Механизмы всасывания

Для всасывания микромолекул - продуктов гидролиза питательных веществ, электролитов, лекарственных препаратов используются несколько видов транспортных механизмов.
Пассивный транспорт, включающий в себя диффузию, фильтрацию и осмос.
Облегченная диффузия.
Активный транспорт.

Диффузия основана на градиенте концентрации веществ в полости кишечника, в крови или лимфе. Путем диффузии через слизистую оболочку кишечника переносятся вода, аскорбиновая кислота, пиридоксин, рибофлавин и многие лекарственные препараты.

Фильтрация основана на градиенте гидростатического давления. Так, повышение внутрикишечного давления до 8-10 мм рт.ст. увеличивает в 2 раза скорость всасывания из тонкой кишки раствора поваренной соли. Способствует всасыванию увеличение моторики кишечника.

Осмос. Переходу веществ через полупроницаемую мембрану энтероцитов помогают осмотические силы. Если в желудочно-кишечный тракт ввести гипертонический раствор какой-либо соли (поваренной, английской и т.д.), то по законам осмоса жидкость из крови и окружающих тканей, т.е. из изотонической среды, будет всасываться в сторону гипертонического раствора, т.е. в кишечник, и оказывать очищающее действие. На этом основано действие солевых слабительных. По осмотическому градиенту всасываются вода, электролиты.

Облегченная диффузия осуществляется также по градиенту концентрации веществ, но с помощью особых мембранных переносчиков, без затраты энергии и быстрее, чем простая диффузия. Так, с помощью облегченной диффузии переносится фруктоза.

Активный транспорт осуществляется против электрохимического градиента даже при низкой концентрации этого вещества в просвете кишечника, при участии переносчика и требует затраты энергии. В качестве переносчика - транспортера чаще всего используется Na+, с помощью которого всасываются такие вещества, как глюкоза, галактоза, свободные аминокислоты, соли желчных кислот, билирубин, некоторые ди- и трипептиды. Путем активного транспорта всасываются также витамин В12, ионы кальция. Активный транспорт крайне специфичен и может угнетаться веществами, имеющими химическое сходство с субстратом. Тормозится активный транспорт при низкой температуре и недостатке кислорода. На процесс всасывания влияет рН среды. Оптимальная рН для всасывания - нейтральная.

Многие вещества могут всасываться при участии как активного, так и пассивного транспорта. Все зависит от концентрации вещества. При низкой концентрации преобладает активный транспорт, а при высокой - пассивный. Некоторые высокомолекулярные вещества транспортируются путем эндоцитоза (пиноцитоза и фагоцитоза). Этот механизм заключается в том, что мембрана энтероцита окружает всасываемое вещество с образованием пузырька, который погружается в цитоплазму, а затем переходит к базальной поверхности клетки, где заключенное в пузырек вещество выбрасывается из энтероцита. Этот вид транспорта имеет значение при переносе у новорожденного белков, иммуноглобулинов, витаминов, ферментов грудного молока. Некоторые вещества, например, вода, электролиты, антитела, аллергены могут проходить через межклеточные пространства. Такой вид транспорта называется персорбцией.

Печень - это железа внешней секреции, выделяющая свой секрет в двенадцатиперстную кишку. Печень представляет собой сложнейшую «химическую лабораторию», в которой происходят процессы, связанные с образованием тепла. Печень принимает самое активное участие в пищеварении. Кроме пищеварительной печень выполняет целый ряд других важнейших функций, которые будут рассмотрены ниже. Через нее проходят почти все вещества, в том числе и лекарственные, которые так же, как и токсические продукты, обезвреживаются.

Пищеварительная функция печени

Эту функцию можно разделить на секреторную, или желчеотделение (холерез) и экскреторную, или желчевыделение (холекинез). Желчеотделение происходит непрерывно и желчь накапливается в желчном пузыре, а желчевыделение - только во время пищеварения (через 3-12 мин после начала приема пищи). При этом желчь сначала выделяется из желчного пузыря, а затем из печени в двенадцатиперстную кишку. Поэтому принято говорить о печеночной и пузырной желчи.

За сутки отделяется 500 -1500 мл желчи. Она образуется в печеночных клетках - гепатоцитах, которые контактируют с кровеносными капиллярами. Из плазмы крови с помощью пассивного и активного транспорта в гепатоцит выходит ряд веществ: вода, глюкоза, креатинин, электролиты и др. В гепатоците образуются желчные кислоты и желчные пигменты, затем все вещества из гепатоцита секретируют в желчные капилляры. Далее желчь поступает в желчные печеночные протоки. Последние впадают в общий желчный проток, от которого отходит пузырный проток. Из общего желчного протока желчь попадает в двенадцатиперстную кишку.

Состав желчи

Печеночная желчь имеет золотисто-желтый цвет, пузырная - темно-коричневый; рН печеночной желчи - 7,3-8,0, относительная плотность - 1,008-1,015; рН пузырной желчи - 6.0-7,0 за счет всасывания гидрокарбонатов, а относительная плотность - 1,026-1,048.

Желчь состоит из 98% воды и 2% сухого остатка, куда входят органические вещества: соли желчных кислот, желчные пигменты - билирубин и биливердин, холестерин, жирные кислоты, лецитин, муцин, мочевина, мочевая кислота, витамины А, В, С; незначительное количество ферментов: амилаза, фосфатаза, протеаза, каталаза, оксидаза, а также аминокислоты и глюкокортикоиды; неорганические вещества: Nа+, К+, Са2+, Fe2+, С1-, HCO3-, SO42-, Р043-. В желчном пузыре концентрация всех этих веществ в 5-6 раз больше, чем в печеночной желчи.

Холестерин - 80% его образуется в печени, 10% - в тонком кишечнике, остальное - в коже. За сутки синтезируется около 1 г холестерина. Он принимает участие в образовании мицелл и хиломикронов и только 30% всасывается из кишечника в кровь. Если нарушается выведение холестерина (при заболевании печени или неправильной диете), то возникает гиперхолестеринемия, которая проявляется или в виде атеросклероза, или желчнокаменной болезни.

Желчные кислоты синтезируются из холестерина. Взаимодействуя с аминокислотами глицином и таурином, образуют соли гликохолевой (80%) и таурохолевой кислот (20%). Они способствуют эмульгированию и лучшему всасыванию в кровь жирных кислот и жирорастворимых витаминов (A, D, Е, К). За счет гидрофильности и липофильности жирные кислоты способны образовывать мицеллы с жирными кислотами и эмульгировать последние.

Желчные пигменты - билирубин и биливердин придают желчи специфическую желто-коричневую окраску. В печени, селезенке и костном мозге происходит разрушение эритроцитов и гемоглобина. Вначале из распавшегося гема образуется биливердин, а затем билирубин. Далее вместе с белком в нерастворенной в воде форме билирубин с кровью транспортируется в печень. Там, соединившись с глюкуроновой и серной кислотами, он образует водорастворимые конъюгаты, которые выделяются печеночными клетками в желчный проток и в двенадцатиперстную кишку, где от конъюгата под действием микрофлоры кишечника отщепляется глюкуроновая кислота и образуется стеркобилин, придающий калу соответствующую окраску, а после всасывания из кишечника в кровь, а затем в мочу - уробилин, окрашивающий мочу в желтый цвет. При поражении клеток печени, например, при инфекционном гепатите или закупорке желчных протоков камнями или опухолью, в крови накапливаются желчные пигменты, появляется желтая окраска склер и кожи. В норме содержание билирубина в крови составляет 0,2-1,2 мг%, или 3,5- 19 мкмоль/л (если больше 2-3 мг%, возникает желтуха).

Функции желчи
Эмульгирует жиры, делая водорастворимыми жирные кислоты.
Способствует всасыванию триглицеридов и образованию мицелл и хиломикронов.
Активирует липазу.
Стимулирует моторику тонкого кишечника.
Инактивирует пепсин в двенадцатиперстной кишке.
Оказывает бактерицидное и бактериостатическое действие на кишечную флору.
Стимулирует пролиферацию и слущивание энтероцитов.
Усиливает гидролиз и всасывание белков и углеводов.
Стимулирует желчеобразование и желчевыделение.

Регуляция желчеотделения и желчевыделения

Желчеотделение и желчевыделение усиливаются при стимуляции парасимпатических волокон и снижаются - при раздражении симпатических. Стимуляция парасимпатических нервных волокон вызывает сокращение тела желчного пузыря и расслабление сфинктера, в результате желчь выделяется в двенадцатиперстную кишку. Раздражение симпатических нервов сокращает сфинктер и расслабляет тело желчного пузыря - желчный пузырь не опорожняется. Рефлекторные изменения желчеобразования и желчевыделения наблюдаются при раздражении интерорецепторов пищеварительного тракта, а также при условно-рефлекторных воздействиях. К гуморальным желчегонным факторам относится сама желчь. Поэтому в состав таких хорошо известных препаратов, как аллохол, холензим, входит желчь. Усиливают секрецию желчи гастрин, ХЦК-ПЗ, секретин, простагландины. Некоторые пищевые продукты, такие как желтки, молоко, жирная пища, хлеб, мясо, стимулируют желчеобразование и желчевыделение.

Вид, запах пищи, разговоры о пище, подготовка к ее приему вызывают соответствующие изменения в деятельности желчного пузыря и всего желчевыделительного аппарата. В первые 7-10 минут желчный пузырь сначала расслабляется, а затем сокращается и небольшая порция желчи через сфинктер Одди выходит в двенадцатиперстную кишку. После этого следует основной период опорожнения желчного пузыря. В результате его периодических сокращений, чередующихся с расслаблением, в двенадцатиперстную кишку выходит желчь вначале из общего желчного протока, затем пузырная и в последнюю очередь - печеночная. Желчевыделение стимулируется ХЦК-ПЗ, гастрином, секретином, бомбезином, ацетилхолином, гистамином. Тормозят желчевыделение глюкагон, кальцишонин, ВИП, ПП.

(Visited 54 times, 1 visits today)

В процессе пищеварения, как отмечено выше, принимают участие ферменты слюны, желудочного сока, поджелудочной железы и кишечного сока. При помощи их органы пищеварения обеспечивают расщепление огромного числа природных веществ, из которых весьма немногие соединения пригодны для последующего всасывания и клеточного питания.

Каждому из пищевых раздражителей соответствует специфический характер секреторного процесса.
Обработка пищи, процесс переваривания начинается в ротовой полости, где происходит пережевывание и смачивание слюной, выделяемой тремя парами слюнных желез (подъязычная, подчелюстные и околоушные), которые выполняют следующие функции:
- секреторную (выделяют слюну),
- выделительную (со слюной выводятся ненужные продукты обмена веществ),
- гормональную (вырабатывают и выделяют гормон, стимулирующий углеводный обмен).
Слюна имеет щелочную реакцию (рН 7,4 - 8,0) и состоит из 98,5-99 % воды, органических и неорганических веществ. В состав слюны входят ферменты птиалин, мальтаза, лизоцим, соли калия и кальция, азотные соли, кислород, С0 2 , азот.
Фермент птиалин расщепляет крахмал (полисахарид) до мальтозы (дисахарид, солодовый сахар), фермент мальтаза мальтозу до глюкозы (моносахарид). Оба фермента активны только в щелочной среде слюны. В желудке под влиянием соляной кислоты желудочного сока действие их прекращается.
Фермент лизоцим обладает бактерицидным действием.
Процесс пережевывания пищи стимулирует выработку слюны: чем лучше измельчается пища, тем больше выделяется слюны, тем больше площадь соприкосновения пищи с птиалином, мальтазой слюны и, следовательно, полнее переваривание крахмала. За сутки выделяется около 1,5 л слюны. В процессе пережевывания через слюнные, железы протекает до 6 л крови (практически весь ее объем), что позволяет очистить ее от шлаков.
В ротовой полости пища находится 15-20 с.
Чем большую работа выполняет слюна, тем легче задача других пищеварительных ферментов, тем меньше возможность брожения в кишечнике.
Одной из функций ротовой полости является регулирование работы других органов пищеварения, для которого необходимо тщательное пережевывание пищи до полного развития вкусового ощущения. Самые тонкие ароматы от пищи получаются вследствие длительного ее пережевывания, которое дает достаточное время для воздействия слюны на пищу.
Оценка качеств пищи окончаниями вкусовых нервов подготавливает к работе желудок, печень, поджелудочную железу и другие органы пищеварения, чем дольше пища остается во рту: чем тщательнее она пережевывается, тем больше будет сока в желудке, тем лучше он будет адаптирован к потребностям съеденной пищи. Проба на вкус до сих пор еще полностью «е оценена, она регулирует процесс питания путем отключения аппетита последовательно на каждый съеденный вид пищи по мере получения организмом достаточного ее количества.
Вкус - это инстинктивный регулятор питания, и если он нормальный (неизвращенный), то является надежным ориентиром при определении количества и качества необходимой пищи.
При попадании в желудок дальнейшее переваривание крахмала прекращается в связи с нейтрализацией ферментов птиалина и мальтазы соляной кислотой желудочного сока. Желудок вмещает 1-2 л пищи. В нем различают: кардиальную (вход) часть, фундальную (дно) часть и привратниковую, пилорическую (выход).
Слизистая оболочка желудка имеет сложное строение. Отдельные участки желудка вырабатывают различные по составу пищеварительные соки. Так, в верхней части желудка (малая кривизна, кардиальная часть) быстро вырабатывается очень кислый желудочный сок, который нейтрализует действие птиалина и мальтазы, в нижней части (дно желудка, большая кривизна) он менее кислый и выделяется более длительное время, в пилорической части желудка (место перехода желудка в двенадцатиперстную кишку) желудочный сок щелочной и действует все время нахождения пищевой массы в желудке.
В пустом желудке для защиты собственной слизистой оболочки от действия соляной кислоты желудочного сока выделяется слизь нейтральной реакции, которая обволакивает стенки желудка.
Содержание соляной кислоты в желудочном соке 0,4-0,5 %. За сутки у человека выделяется
1,5-2,5 л желудочного сока; при смешанном питании за один прием - 0,7-0,8 л. Количество выделенного сока прямо пропорционально количеству пищи.
Секреторная деятельность желудка зависит от функционального состояния желудочных желез, которое связано с характером пищи, режимом питания, состоянием ЦНС. Благодаря этому организм приспосабливает работу пищеварительного тракта и весь процесс пищеварения к различному пищевому режиму, что имеет большое биологическое значение. Выделение желудочного сока - процесс легко тормозимый, очень сильно подверженный влиянию эмоций.
Желудочный сок, кроме соляной кислоты, содержит фермент пепсин, расщепляющий белок на альбумозы и пептоны, который действует только в кислой среде, а также ферменты липазу, химозин и сычужный фермент.
Липаза расщепляет жиры на жирные кислоты и глицерин. Причем в желудке переваривается только эмульгированный жир (например, жир молока). Химозин и сычужный фермент вызывают свертывание молока (их используют в сыроварении, которое без них невозможно).
Ферментов, переваривающих углеводы, в желудочном соке нет. Здесь некоторое время до полной нейтрализации пищевой массы соляной кислотой продолжают действовать ферменты слюны птиалин и мальтаза.
Желудок, кроме секреторной и переваривающей белки и жиры функций, выполняет и двигательную функцию. Периодические сокращения стенки желудка по 10-30 с способствуют перемешиванию и перетиранию пищевой массы, обеспечивают эвакуацию пищи в двенадцатиперстную кишку.
Выделительная функция желудка состоит в выделении через слизистую оболочку продуктов распада белков (мочевой кислоты, мочевины и др.). Эта роль желудка (а также легких и кожи) особенно повышается при заболеваниях почек.
Желудок вместе с костным мозгом, селезенкой, печенью и кишечником является депо ферритина (белкового соединения железа), участвующего в синтезе гемоглобина.
Количество и состав желудочного сока различны при переваривании хлеба, мяса, молока; больше всего выделяется его на мясо, меньше на хлеб и еще меньше на молоко.
Продолжительность секреции желудочного сока также различна: на мясо сок выделяется в течение 7 ч, на хлеб - 10 ч, на молоко - 6 ч.
Количество ферментов (переваривающая сила желудочного сока) также меняется в зависимости от характера пищи. Больше всего ферментов в соке выделяется на хлеб, меньше всего - на молоко.
В механизме выделения желудочного сока играют важную роль:
- нервное возбуждение (условное и безусловное),
- механическое раздражение, которое испытывают стенки желудка при попадании в него пищи,
- гуморально-химическое влияние, связанное с действием химических веществ (таких как гистамин и гастрин), попадающих при всасывании их в кровь и через нее возбуждающих секрецию желудочных желез.
Пища в желудке в зависимости от состава, консистенции (жидкая или твердая) и переваривающей способности желудка может задерживаться от 3 до 10 ч. Вода покидает желудок немедленно по мере поступления.
Под влиянием кислого желудочного сока происходит повышение проницаемости мембран клеток, изменяется активность протеолитических (расщепляющих белок) ферментов, изменяется чувствительность белков к действию ферментов.
А. М. Угол ев установил, что соляная кислота желудочного сока, проникая в клетки пищи, вызывает в них разрушение лизосом (особых клеточных органов), в которых находятся клеточные ферменты - гидролазы; они разрушают все клеточные структуры. Следовательно, желудочный сок провоцирует самопереваривание пищи ее же ферментами. Оказывается, что около 50 % гидролиза пищевых продуктов определяется не ферментами желудочного сока, а ферментами самой аутолизированной ткани (пищи).
Биохимик А. Паргетти обнаружил, что нагревание пищи при температуре свыше 54 °С в течение любой продолжительности снижает активность ее ферментов и аутолиз становится невозможным. Все животные используют аутолитическое пищеварение и только человек подвергает пищу термической обработке, "улучшая" ее.
Из желудка пища поступает в двенадцатиперстную кишку (длиной 12 поперечных пальцев, перстов), причем не беспрерывно, а определенными порциями, в виде значительно переваренной кашицы. Этот процесс регулируется пилорическим сфинктером - кольцевыми мышцами, которые расположены между пилорической частью желудка и двенадцатиперстной кишкой. При сокращении кольцевых мышц сфинктера происходит закрытие отверстия, при расслаблении их сфинктер открывается и пропускает очередную порцию пищевой кашицы. Механизм действия сфинктера состоит в том, что кислый желудочный сок раздражает нервные окончания в слизистой стенке сфинктера, возбуждение передается в ЦНС, а оттуда на сфинктер, и он раскрывается.
В двенадцатиперстной кишке реакция щелочная. Переход пищи в нее происходит до тех пор, пока реакция не станет кислой. Поступившая кислота раздражает нервные окончания в слизистой оболочке кишки и вызывает рефлекторное закрытие сфинктера и т. д.
Поступление пищи в двенадцатиперстную кишку зависит также и от степени растянутости ее стенок: если она переполнена, то поступление пищи прекращается.
Таким образом, переход пищи из желудка представляет собой сложный рефлекторный акт, который называется пилорическим запирательным рефлексом.
"Переваривание пищи в двенадцатиперстной кишке происходит под влиянием пищеварительных соков стенки самой кишки, поджелудочной железы и желчи. Здесь белки, жиры и углеводы перевариваются до такого состояния, когда могут всасываться в кровь и лимфу.
В двенадцатиперстной кишке происходит переход от желудочного пищеварения к кишечному при слабощелочной реакции. В ней осуществляются:
- три основных типа пищеварения (полостное, мембранное и внутриклеточное);
- всасывание и экскреция (выделение);
- сочетание внешней и внутренней секреции: в двенадцатиперстную кишку открываются протоки поджелудочной железы, печени и собственных бруннеровых и либеркюновых желез); вырабатываются кишечные гормоны и другие биологически активные вещества, обладающие как пищеварительными, так непищеварительными свойствами. Так, в двенадцатиперстной кишке образуются гормоны секретин (стимулирует секрецию поджелудочной железы и желчи), холецистокинин (стимулирует сокращение желчного пузыря и открывает желчный проток) и вилликинин (вызывает движение ворсинок тонкого кишечника).
Поджелудочная железа -жизненно важный орган, после ее удаления наступает смерть. Ткань ее состоит из двух видов клеток, одни из которых вырабатывают поджелудочный сок (внешний секрет), изливающийся в двенадцатиперстную кишку, а другие (островки Лангерганса) вырабатывают гормон инсулин, всасывающийся в кровь (внутренний секрет).
В двенадцатиперстную кишку, кроме поджелудочного сока, выделяется желчь. Она непрерывно образуется в печени и собирается в желчном пузыре, а в двенадцатиперстную кишку поступает только во время пищеварения. За сутки образуется 0,8-1 л желчи.
Под влиянием желчи усиливается действие всех ферментов (белкового, жирового и углеводного обмена), желчь эмульгирует жиры, способствует всасыванию жирных кислот и, наконец, усиливает перистальтику, что помогает продвижению пищевой массы по кишечнику. Всосавшись в кровь, желчь действует на печень, стимулирует образование желчи.
Выделение желчи начинается после приема пищи: на мясо - через 8 мин, на хлеб - через 12, на молоко - через 3 мин, и длится несколько часов, в течение всего периода пищеварения: после приема молока - в течение 5-7 ч, после хлеба - 8-9 ч.
Процесс переработки пищевых веществ заканчивается в тонком кишечнике, где происходит окончательное расщепление всех пищевых веществ и всасывание продуктов расщепления.
Тонкий кишечник имеет длину 6 м при общей площади поверхности с учетом ворсинок около 5 м2, что примерно в 3 раза превышает наружную поверхность тела.
Здесь происходят основные процессы, связанные с усвоением пищевых продуктов (ассимиляция): полостное и мембранное пищеварение и всасывание.
Стенки тонкого кишечника имеют сложное устройство. На слизистой оболочке стенок есть до 4000 выростов - микроворсинок, которые, располагаясь плотно одна к другой, образуют "щетку", называемую щеточной каймой. Стенки тонкого кишечника являются одним из важнейших органов внутренней секреции, выделяющих множество гормонов, осуществляющие процесс расщепления и ассимиляции питательных веществ.
В последнее время установлено, что в желудочно-кишечном тракте, как в эндокринном органе, подобно мозговым структурам, продуцируются эндогенные морфиноподобные вещества - эндорфины и энкефалины, обладающие болеутоляющим, успокаиващим и эйфоризирующим действием.
Всасывание. Под всасыванием понимается процесс прохождения питательных веществ через слой или ряд слоев клеток пищеварительного тракта в кровь и лимфу, благодаря чему все питательные вещества из пищеварительного тракта поступают в кровь.
Всасывание представляет собой сложный физиологический процесс прохождения продуктов пищеварения через живую слизистую оболочку желудочно-кишечного тракта, через стенки лимфатических и кровеносных сосудов.
Всасыванию способствует и движение ворсинок. Гладкие мышцы в стенках ворсинок сокращаются и выдавливают содержимое лимфатического, млечного сосудика ворсинки в более крупный лимфатический сосуд. После расслабления мышцы млечный сосудик всасывает питательный раствор из полости кишечника (действует как насос). Всасывание, движение ворсинок регулируется нервным и гуморальным (гумор - сок, жидкость) путем с помощью продуктов распада питательных веществ (желчные кислоты, глюкоза, некоторые аминокислоты).
Аминокислоты растворимы в кишечном содержимом и легко всасываются непосредственно в кровь.
Углеводы всасываются преимущественно в виде глюкозы и только частью в виде других моносахаридов (фруктозы и Галактозы). Всасывание глюкозы начинается в верхних отделах кишечника, в нижних отделах тонкого кишечника ее уже практически нет. Углеводы всасываются непосредственно в кровь венозных капилляров и через воротную вену доставляются в печень, где откладываются про запас в виде гликогена. Часть гликогена депонируется в мышцах, остальная глюкоза разносится кровью во все органы и ткани.
Образующийся при распаде глицерин хорошо растворяется и всасывается, а жирные кислоты всасываются только после омыления под влиянием желчных кислот и щелочей. В таком виде они становятся растворимыми и всасываются не в кровь, а в лимфатические сосуды. При прохождении через клетки слизистой оболочки кишечника глицерин и мыла (омыленные жирные кислоты) вновь соединяются и образуют жир, поэтому в лимфе находятся капельки вновь образованного жира.
Вода всасывается в желудке, тонком и толстом кишечнике и поступает в кровь. Минеральные соли всасываются в кровь в растворенном виде.
Процесс пищеварения в тонком кишечнике протекает следующим образом.
В полости кишок под влиянием ферментов осуществляются главным образом начальные стадии (фазы) гидролиза (распада) белков, жиров и углеводов. В пристеночной части кишки, в щеточной кайме, происходит промежуточный этап, а на мембране микроворсинок идет заключительная стадия гидролиза с последующим всасыванием.
Пища у пристеночной каймы уменьшает поверхностное натяжение и этим создает благоприятные условия для перехода питательных веществ из середины химуса (пищевой массы) на поверхность к щеточной кайме, то есть переход от полостного к мембранному пищеварению.
Пищеварение и всасывание питательных веществ заканчивается в основном в тонком кишечнике.
В толстом кишечнике происходит всасывание воды, электролитов и глюкозы, витаминов и аминокислот, вырабатываемых микробами, обитающими в толстом кишечнике.
Растительная клетчатка поступает в толстый кишечник в неизмененном виде, так как ни сок поджелудочной железы, ни секреты кишечника не переваривают ее.
В толстом кишечнике имеется большое количество бактерий, которые вызывают брожение углеводов и гниение белков. Благодаря бактериям клетчатка распадается, а продукты этого распада под влиянием ферментов кишечного сока перевариваются и всасываются.
При гниении белков и других невсосавшихся продуктов распада образуются ядовитые вещества: индол, скатол, фенол и другие, которые, всосавшись в кровь, могут вызвать отравление, однако этому препятствует защитная функция печени.
Благодаря всасыванию воды жидкая пищевая кашица становится более плотной. Из 4000 г пищевой кашицы остается 130-150 г каловых масс, остальная всасывается в кровь (3850- 3870 г). Комочки слизи кишечного сока склеивают и окончательно формируют каловые массы. Кал состоит из непереваренных частиц пищи, слизи, отмерших клеток кишечной стенки, большого количества бактерий (30-50 % кала) и распавшихся желчных пигментов, которые придают ему темный цвет.
В толстом кишечнике наблюдается маятникообразное и перистальтическое движение. Сокращение толстого кишечника происходит очень медленно; этим и объясняется длительное задерживание остатков пищи в нем: половина общего времени пищеварения приходится на пребывание остатков пищи в толстом кишечнике.
Микрофлора кишечника. Содержимое кишечника очень богато различными микроорганизмами.
Уже через 30 мин после поступления пищи наступает значительная активация и размножение бактерий в полости желудочно-кишечного тракта и на поверхности слизистой оболочки кишечника.
Оказывается, микрофлора кишечника также переваривается и утилизируется организмом. Микробы, бактерии, дрожжи, составляющие нормальную микрофлору, представляют собой прекрасное пищевое сырье. Их белок содержит все важнейшие аминокислоты. В сухих дрожжах их может содержаться до 58 %. Кроме того, внутри микробов, бактерий и дрожжей могут синтезироваться и накапливаться многие витамины, особенно группы В и D.
Отсюда вытекает важнейшая задача - сохранить нормальную микрофлору, для которой особенно благоприятным условием является свежая растительная пища. В ней кроме всех полезных элементов, содержится много кислорода, необходимого для дыхания бактерий.
При раздельном (мономерном) питании мембранное пищеварение как защитный механизм не функционирует и патогенные бактерии оказываются в очень выгодных условиях, что увеличивает количество пищевых токсинов.
Вареная пища содержит значительно меньше кислорода, что вызывает развитие бактерий, использующих бескислородное разложение пищевых продуктов, вследствие чего угнетается нормальная микрофлора, возникает дисбактериоз. А это в свою очередь ведет к снижению активности ферментов тонкого кишечника и, следовательно, к нарушению мембранного пищеварения.
Развитию дисбактериоза способствует неправильное питание: однообразная или подвергшаяся длительной кулинарной обработке пища, неправильное потребление ее.
Применение антибиотиков сильно угнетает нормальную микрофлору кишечника и формируют патогенную микрофлору. В связи с огромной скоростью размножения микробов в кишечнике пищевые потребности 1 бактерии в сутки равны пищевым потребностям 15-летнего ребенка. В процессе быстрого размножения бактерий образуется большое количество ядовитых метаболитов, которые всасываются через кишечную стенку и вызывают отравление организма.
В кишечнике обитает до 500 различных видов бактерий. В 1 г испражнений их содержится до 40 млрд., в сутки выделяется до 17 трлн. микробов.
Нормальная микрофлора кишечника не только участвует в конечном процессе пищеварения и оказывает защитную роль, но и производит целый ряд жизненно важных веществ из пищевых волокон: витаминов, аминокислот, ферментов, гормонов, дает пищевую добавку к нашему питанию, делает его более устойчивым и независимым от окружающей среды.
В условиях нормального функционирования кишечника микробы способны подавлять и уничтожать патогенные и гнилостные микробы.
Кишечные палочки синтезируют 9 различных витаминов: В1, В2, В6, В12, К, биотин, пантотеновую, фолиевую, никотиновую кислоты. Кишечная палочка и другие микробы, благодаря ферментативной деятельности, разлагают пищевые продукты подобно пищеварительным ферментам кишечного сока; синтезируют ацетилхолин, способствуют усвоению железа; продукты их жизнедеятельности оказывают регулирующее действие на вегетативную нервную систему, стимулируют иммунную систему.
Для нормальной жизнедеятельности кишечной микрофлоры необходима слабокислая среда и пищевые волокна. При неправильном питании в кишечнике гниющие пищевые продукты создают щелочную среду, что способствуют росту патогенной флоры.

Для нормальной жизнедеятельности организму необходим пластический и энергетический материал. Эти вещества поступают в организм с пищей. Но только минеральные соли, вода и витамины усваиваются человеком в том виде, в котором они находятся в пище. Белки, жиры и углеводы попадают в организм в виде сложных комплексов, и для того чтобы всосаться и подвергнуться усвоению, требуется сложная физическая и химическая переработка пищи. При этом компоненты пищи должны утратить свою видовую специфичность, иначе они будут приняты системой иммунитета как чужеродные вещества. Для этих целей и служит система пищеварения.

Пищеварение - совокупность физических, химических и физиологических процессов, обеспечивающих обработку и превращение пищевых продуктов в простые химические соединения, способные усваиваться клетками организма. Эти процессы идут в определенной последовательности во всех отделах пищеварительного тракта (полости рта, глотке, пищеводе, желудке, тонкой и толстой кишке с участием печени и желчного пузыря, поджелудочной железы), что обеспечивается регуляторными механизмами различного уровня. Последовательная цепь процессов, приводящая к расщеплению пищевых веществ до мономеров, способных всасываться, носит название пищеварительного конвейера.

В зависимости от происхождения гидролитических ферментов пищеварение делят на 3 типа: собственное, симбионтное и аутолитическое.

Собственное пищеварение осуществляется ферментами, синтезированными железами человека или животного.

Симбионтное пищеварение происходит под влиянием ферментов, синтезированных симбионтами макроорганизма (микроорганизмами) пищеварительного тракта. Так происходит переваривание клетчатки пищи в толстой кишке.

Аутолитическое пищеварение осуществляется под влиянием ферментов, содержащихся в составе принимаемой пищи. Материнское молоко содержит ферменты, необходимые для его створаживания.

В зависимости от локализации процесса гидролиза питательных веществ различают внутриклеточное и внеклеточное пищеварение. Внутриклеточное пищеварение представляет собой процесс гидролиза веществ внутри клетки клеточными (лизосомальными) ферментами. Вещества поступают в клетку путем фагоцитоза и пиноцитоза. Внутриклеточное пищеварение характерно для простейших животных. У человека внутриклеточное пищеварение встречается в лейкоцитах и клетках лимфоретикуло-гистиоцитарной системы. У высших животных и человека пищеварение осуществляется внеклеточно.

Внеклеточное пищеварение делят на дистантное (полостное) и контактное (пристеночное, или мембранное). Дистантное (полостное) пищеварение осуществляется с помощью ферментов пищеварительных секретов в полостях желудочно-кишечного тракта на расстоянии от места образования этих ферментов. Контактное (пристеночное, или мембранное) пищеварение (А.М. Уголев) происходит в тонкой кишке в зоне гликокаликса, на поверхности микроворсинок с участием ферментов, фиксированных на клеточной мембране и заканчивается всасыванием - транспортом питательных веществ через энтероцит в кровь или лимфу.

ПИЩЕВАРЕНИЕ В ПОЛОСТИ РТА.

Пищеварение начинается в ротовой полости, где происходит механическая и химическая обработка пищи. Механическая обработка заключается в измельчении пищи, смачивании ее слюной и формировании пищевого комка. Химическая обработка происходит за счет ферментов, содержащихся в слюне. В полость рта впадают протоки трех пар крупных слюнных желез: околоушных, подчелюстных, подъязычных и множества мелких желез, находящихся на поверхности языка и в слизистой оболочке нёба и щек. Околоушные железы и железы, расположенные на боковых поверхностях языка, - серозные (белковые). Их секрет содержит много воды, белка и солей. Железы, расположенные на корне языка, твердом и мягком нёбе, относятся к слизистым слюнным железам, секрет которых содержит много муцина. Подчелюстные и подъязычные железы являются смешанными.

Состав и свойства слюны.

Слюна, находящаяся в ротовой полости, является смешанной. Ее рН равна 6,8-7,4. У взрослого человека за сутки образуется 0,5-2 л слюны. Она состоит из 99% воды и 1% сухого остатка. Сухой остаток представлен органическими и неорганическими веществами. Среди неорганических веществ - анионы хлоридов, бикарбонатов, сульфатов, фосфатов; катионы натрия, калия, кальция магния, а также микроэлементы: железо, медь, никель и др. Органические вещества слюны представлены в основном белками. Белковое слизистое вещество муцин склеивает отдельные частицы пищи и формирует пищевой комок. Основными ферментами слюны являются амилаза и мальтаза, которые действуют только в слабощелочной среде. Амилаза расщепляет полисахариды (крахмал, гликоген) до мальтозы (дисахарида). Мальтаза действует на мальтозу и расщепляет ее до глюкозы.

В слюне в небольших количествах обнаружены также и другие ферменты: гидролазы, оксиредуктазы, трансферазы, протеазы, пептидазы, кислая и щелочная фосфатазы. В слюне содержится белковое вещество лизоцим (мурамидаза), обладающее бактерицидным действием.

Пища находится в полости рта всего около 15 секунд, поэтому здесь не происходит полного расщепления крахмала. Но пищеварение в ротовой полости имеет очень большое значение, так как является пусковым механизмом для функционирования желудочно-кишечного тракта и дальнейшего расщепления пищи.

Функции слюны

Слюна выполняет указанные ниже функции. Пищеварительная функция - о ней было сказано выше.

Экскреторная функция. В составе слюны могут выделяться некоторые продукты обмена, такие как мочевина, мочевая кислота, лекарственные вещества (хинин, стрихнин), а также вещества, поступившие в организм (соли ртути, свинца, алкоголь).

Защитная функция. Слюна обладает бактерицидным действием благодаря содержанию лизоцима. Муцин способен нейтрализовать кислоты и щелочи. В слюне находится большое количество иммуноглобулинов, что защищает организм от патогенной микрофлоры. В слюне обнаружены вещества, относящиеся к системе свертывания крови: факторы свертывания крови, обеспечивающие местный гемостаз; вещества, препятствующие свертыванию крови и обладающие фибринолитической активностью; вещество, стабилизирующее фибрин. Слюна защищает слизистую оболочку полости рта от пересыхания.

Трофическая функция. Слюна является источником кальция, фосфора, цинка для формирования эмали зуба.

Регуляция слюноотделения

При поступлении пищи в ротовую полость происходит раздражение механо-, термо- и хеморецепторов слизистой оболочки. Возбуждение от этих рецепторов по чувствительным волокнам язычного (ветвь тройничного нерва) и языкоглоточного нервов, барабанной струны (ветвь лицевого нерва) и верхнегортанного нерва (ветвь блуждающего нерва) поступает в центр слюноотделения в продолговатом мозге. От слюноотделительного центра по эфферентным волокнам возбуждение доходит до слюнных желез и железы начинают выделять слюну. Эфферентный путь представлен парасимпатическими и симпатическими волокнами. Парасимпатическая иннервация слюнных желез осуществляется волокнами языкоглоточного нерва и барабанной струны, симпатическая иннервация - волокнами, отходящими от верхнего шейного симпатического узла. Тела преганглионарных нейронов находятся в боковых рогах спинного мозга на уровне II-IV грудных сегментов. Ацетилхолин, выделяющийся при раздражении парасимпатических волокон, иннервирующих слюнные железы, приводит к отделению большого количества жидкой слюны, которая содержит много солей и мало органических веществ. Норадреналин, выделяющийся при раздражении симпатических волокон, вызывает отделение небольшого количества густой, вязкой слюны, которая содержит мало солей и много органических веществ. Такое же действие оказывает адреналин. Субстанция Р стимулирует секрецию слюны. СО2 усиливает слюнообразование. Болевые раздражения, отрицательные эмоции, умственное напряжение тормозят секрецию слюны.

Слюноотделение осуществляется не только с помощью безусловных, но и условных рефлексов. Вид и запах пищи, звуки, связанные с приготовлением пищи, а также другие раздражители, если они раньше совпадали с приемом пищи, разговор и воспоминание о пище вызывают условно-рефлекторное слюноотделение.

Качество и количество отделяемой слюны зависят от особенностей пищевого рациона. Например, при приеме воды слюна почти не отделяется. В слюне, выделяющейся на пищевые вещества, содержится значительное количество ферментов, она богата муцином. При попадании в ротовую полость несъедобных, отвергаемых веществ выделяется жидкая и обильная слюна, бедная органическими соединениями.

ПИЩЕВАРЕНИЕ В ЖЕЛУДКЕ.

Пища из ротовой полости поступает в желудок, где она подвергается дальнейшей химической и механической обработке. Кроме того, желудок является пищевым депо. Механическая обработка пищи обеспечивается моторной деятельностью желудка, химическая осуществляется за счет ферментов желудочного сока. Размельченные и химически обработанные пищевые массы в смеси с желудочным соком образуют жидкий или полужидкий химус.

Желудок выполняет следующие функции: секреторную, моторную, всасывательную (эти функции будут описаны ниже), экскреторную (выделение мочевины, мочевой кислоты, креатинина, солей тяжелых металлов, йода, лекарственных веществ), инкреторную (образование гормонов гастрина и гистамина), гомеостатическую (регуляция рН), участие в гемопоэзе (выработка внутреннего фактора Касла).

Секреторная функция желудка

Секреторная функция желудка обеспечивается железами, находящимися в его слизистой оболочке, Различают три вида желез: кардиальные, фундальные (собственные железы желудка) и пиллорические (железы привратника). Железы состоят из главных, париетальных (обкладочных), добавочных клеток и мукоцитов. Главные клетки вырабатывают пепсиногены, париетальные - соляную кислоту, добавочные и мукоциты - мукоидный секрет. Фундальные железы содержат все три типа клеток. Поэтому в состав сока фундального отдела желудка входят ферменты и много соляной кислоты и именно этот сок играет ведущую роль в желудочном пищеварении.

Читайте также: