Амнион. Амнион Внезародышевые органы человека

Часть бластомеров и клеток после дробления зиготы идет на образование органов, способствующих развитию зародыша и плода. Такие органы и называются внезародышевыми.

После рождения некоторые внезародышевые органы отторгаются, другие на последних этапах эмбриогенеза подвергаются обратному развитию или перестраиваются. У разных животных развивается неодинаковое количество провизорных органов, отличающихся по строению и по выполняемым функциям.

У млекопитающих, в том числе и у человека, развиваются четыре внезародышевых органа:

1) хорион;

2) амнион;

3) желточный мешок;

4) аллантоис.

Хорион (или ворсинчатая оболочка) выполняет защитную и трофическую функции. Часть хориона (ворсинчатый хорион) внедряется в слизистую оболочку матки и входит в состав плаценты, которую иногда рассматривают как самостоятельный орган.

Амнион (или водная оболочка) образуется только у наземных животных. Клетки амниона продуцируют амниотическую жидкость (околоплодные воды), в которой и развивается эмбрион, а затем – плод.

После рождения ребенка хориальная и амниотическая оболочки отторгаются.

Желточный мешок развивается в наибольшей степени у зародышей, образующихся из полилецитальных клеток, и потому содержит много желтка, откуда и происходит его название. Желточный меток выполняет следующие функции:

1) трофическую (за счет трофического включения (желтка) обеспечивается питание зародыша, особенно развивающегося в яйце, на более поздних стадиях развития для доставки трофического материала к зародышу формируется желточный круг кровообращения);

2) кроветворную (в стенке желточного мешка (в мезенхиме) образуются первые клетки крови, которые затем мигрируют в кроветворные органы зародыша);

3) гонобластическую (в стенке желточного мешка (в энтодерме) образуются первичные половые клетки (гонобласты), которые затем мигрируют в закладки половых желез зародыша).

Аллантоис – слепое выпячивание каудального конца кишечной трубки, окруженное внезародышевой мезенхимой. У животных, развивающихся в яйце, аллантоис достигает большого развития и выполняет функцию резервуара для продуктов обмена зародыша (главным образом мочевины). Именно поэтому аллантоис нередко называю мочевым мешком.

У млекопитающих необходимость в накоплении продуктов обмена отсутствует, так как они поступают через маточно-плацентарный кровоток в организм матери и выводятся ее экскреторными органами. Поэтому у таких животных и человека аллантоис развит слабо и выполняет другие функции: в его стенке развиваются пупочные сосуды, которые разветвляются в плаценте и благодаря которым формируется плацентарный круг кровообращения.

Тема 7. ЭМБРИОЛОГИЯ ЧЕЛОВЕКА

Прогенез

Рассмотрение закономерностей эмбриогенеза начинается с прогенеза. Прогенез – гаметогенез (спермато– и овогенез) и оплодотворение.

Сперматогенез осуществляется в извитых канальцах семенников и подразделяется на четыре периода:

1) период размножения – I;

2) период роста – II;

3) период созревания – III;

4) период формирования – IV.

Процесс сперматогенеза будет обстоятельно рассмотрен при изучении мужской половой системы. Сперматозоид человека состоит из двух основных частей: головки и хвоста.

Головка содержит:

1) ядро (с гаплоидным набором хромосом);

2) чехлик;

3) акросому;

4) тонкий слой цитоплазмы, окруженный цитолеммой.

Хвост сперматозоида подразделяется на:

1) связующий отдел;

2) промежуточный отдел;

3) главный отдел;

4) терминальный отдел.

Главные функции сперматозоида – хранение и передача яйцеклеткам генетической информации при их оплодотворении. Оплодотворяющая способность сперматозоидов в половых путях женщины сохраняется до 2 суток.

Овогенез осуществляется в яичниках и подразделяется на три периода:

1) период размножения (в эмбриогенезе и в течение 1-го года постэмбрионального развития);

2) период роста (малого и большого);

3) период созревания.

Яйцеклетка состоит из ядра с гаплоидным набором хромосом и выраженной цитоплазмы, в которой содержатся все органеллы, за исключением цитоцентра.

Оболочки яйцеклетки:

1) первичная (плазмолемма);

2) вторичная – блестящая оболочка;

3) третичная – лучистый венец (слой фолликулярных клеток).

Оплодотворение у человека внутреннее – в дистальной части маточной трубы.

Подразделяется на три фазы:

1) дистантное взаимодействие;

2) контактное взаимодействие;

3) проникновение и слияние пронуклеусов (фаза синкариона).

В основе дистантного взаимодействия лежат три механизма:

1) реотаксис – движение сперматозоидов против тока жидкости в матке и маточной трубе;

2) хемотаксис – направленное движение сперматозоидов к яйцеклетке, которая выделяет специфические вещества – гиногамоны;

3) канацитация – активация сперматозоидов гиногамонами и гормоном прогестероном.

Через 1,5 – 2 ч сперматозоиды достигают дистальной части маточной трубы и вступают в контактное взаимодействие с яйцеклеткой.

Основным моментом контактного взаимодействия является акросомальная реакция – выделение ферментов (трипсина и гиалуроновой кислоты) из акросом сперматозоидов. Эти ферменты обеспечивают:

1) отделение фолликулярных клеток лучистого венца от яйцеклетки;

2) постепенное, но неполное разрушение блестящей оболочки яйцеклетки.

При достижении одним из сперматозоидов плазмолеммы яйцеклетки в этом месте образуется небольшое выпячивание – бугорок оплодотворения. После этого начинается фаза проникновения. В области бугорка плазмолеммы яйцеклетки и сперматозоида сливаются, и часть сперматозоида (головка, связующий и промежуточные отделы) оказывается в цитоплазме яйцеклетки. Плазмолемма сперматозоида встраивается в плазмолемму яйцеклетки. После этого начинается кортикальная реакция – выход кортикальных гранул из яйцеклетки по типу экзоцитоза, которые между плазмолеммой яйцеклетки и остатками блестящей оболочки сливаются, затвердевают и образуют оболочку оплодотворения, препятствующую проникновению в яйцеклетку других сперматозоидов. Таким образом у млекопитающих и человека обеспечивается моноспермия.

Главным событием фазы проникновения является внедрение в цитоплазму яйцеклетки генетического материала сперматозоидов, а также цитоцентра. После этого происходит набухание мужского и женского пронуклеусов, их сближение, а затем и слияние – синакрион. Одновременно в цитоплазме начинаются перемещения содержимого цитоплазмы и обособление (сегрегация) отдельных ее участков. Так формируются предположительные (презумптивные) зачатки будущих тканей – проходит этап дифференцировки тканей.

Условия, необходимые для оплодотворения яйцеклетки:

2) проходимость женских половых путей;

3) нормальное анатомическое положение матки;

4) нормальная температура тела;

5) щелочная среда в половых путях женщины.

С момента слияния пронуклеусов образуется зигота – новый одноклеточный организм. Время существования организма зиготы – 24 – 30 ч. С этого периода начинается онтогенез и его первый этап – эмбриогенез.

Эмбриогенез

Эмбриогенез человека подразделяется (в соответствии с происходящими в нем процессами) на:

1) период дробления;

2) период гаструляции;

3) период гисто– и органогенеза.

В акушерстве эмбриогенез подразделяется на другие периоды:

1) начальный период – 1-я неделя;

2) зародышевый период (или период эмбриона) – 2 – 8-я недели;

3) плодный период – с 9-й недели и до конца эмбриогенеза.

I. Период дробления . Дробление у человека полное, неравномерное, асинхронное. Бластомеры неравной величины и подразделяются на два типа: темные крупные и светлые мелкие. Крупные бластомеры дробятся реже, располагаются о центре и составляют эмбриобласт. Мелкие бластомеры чаще дробятся, располагаются по периферии от эмбриобласта и в дальнейшем формируют трофобласт.

Первое дробление начинается примерно через 30 ч после оплодотворения. Плоскость первого деления проходит через область направительных телец. Поскольку желток в зиготе распределен равномерно, выделение анимального и вегетативных полюсов крайне затруднено. Область отделения направительных телец обычно называют анимальным полюсом. После первого дробления образуются два бластомера, несколько различных по величине.

Второе дробление. Образование второго митотического веретена в каждом из образовавшихся бластомеров происходит вскоре после окончания первого деления, плоскость второго деления проходит перпендикулярно плоскости первого дробления. При этом концептус переходит в стадию 4 бластомеров. Однако дробление у человека асинхронное, поэтому в течение некоторого времени можно наблюдать 3-х клеточный концептус. На стадии 4 бластомеров синтезируются все основные виды РНК.

Третье дробление. На этой стадии асинхронность дробления проявляется в большей мере, в итоге образуется концептус с различным количеством бластомеров, при этом условно его можно разделить на 8 бластомеров. До этого бластомеры расположены рыхло, но вскоре концептус уплотняется, поверхность соприкосновения бластомеров увеличивается, объем межклеточного пространства уменьшается. В результате этого наблюдаются сближение и компактизация – крайне важное условие для образования между бластомерами плотных и щелевидных контактов. Перед формированием в плазматическую мембрану бластомеров начинает встраиваться увоморулин – белок адгезии клеток. В бластомерах ранних концептусов увоморулин равномерно распределен в клеточной мембране. Позднее в области межклеточных контактов образуются скопления (кластеры) молекул увоморулина.

На 3 – 4-е сутки образуется морула, состоящая из темных и светлых бластомеров, а с 4-х суток начинается накопление жидкости между бластомерами и формирование бластулы, которая называется бластоцистой.

Развитая бластоциста состоит из следующих структурных образований:

1) эмбриобласты;

2) трофобласты;

3) бластоцели, заполненной жидкостью.

Дробление зиготы (формирование морулы и бластоцисты) осуществляется в процессе медленного перемещения зародыша по маточной трубе к телу матки.

На 5-е сутки бластоциста попадает в полость матки и находится в ней в свободном состоянии, а с 7-х суток происходит имплантация бластоцисты в слизистую оболочку матки (эндометрий). Процесс этот подразделяется на две фазы:

1) фазу адгезии – прилипания к эпителию;

2) фазу инвазии – внедрения в эндометрий.

Весь процесс имплантации происходит на 7 – 8-е сутки и продолжается в течение 40 ч.

Внедрение зародыша осуществляется при помощи разрушения эпителия слизистой оболочки матки, а затем соединительной ткани и стенок сосудов эндометрия протеолитическими ферментами, которые выделяются трофобластом бластоцисты. В процессе имплантации происходит смена гистиотрофного типа питания зародыша на гемотрофный.

На 8-е сутки зародыш оказывается полностью погруженным в собственную пластинку слизистой оболочки матки. Дефект эпителия области внедрения зародыша при этом зарастает, а зародыш оказывается окруженным со всех сторон лакунами (или полостями), заполненными материнской кровью, изливающейся из разрушенных сосудов эндометрия. В процессе имплантации зародыша происходят изменения как в трофобласте, так и в эмбриобласте, где происходит гаструляция.

II. Гаструляция у человека подразделяется на две фазы. Первая фара гаструляции протекает на 7 – 8-е сутки (в процессе имплантации) и осуществляется способом деламинации (формируется эпибласт, гипобласт).

Вторая фаза гаструляции происходит с 14-х на 17-е сутки. Ее механизм будет рассмотрен несколько позже.

В период между I и II фазами гаструляции, т. е. с 9-х по 14-е сутки формируются внезародышевая мезенхима и три внезародышевых органа – хорион, амнион, желточный мешок.

Развитие, строение и функции хориона . В процессе имплантации бластоцисты ее трофобласт по мере внедрения из однослойного становится двухслойным и состоит из цитотрофобласта и симпатотрофобласта. Симпатотрофобласт представляет собой структуру, в которой в единой цитоплазме содержится большое число ядер и клеточных органелл. Образуется он посредствам слияния клеток, выталкиваемых из цитотрофобласта. Таким образом, эмбриобласт, в котором происходит I фаза гаструляции, окружен внезародышевой оболочкой, состоящей из цито– и симпластотрофобласта.

В процессе имплантации из эмбриобласта выселяются в полость бластоцисты клетки, образующие внезародышевую мезенхиму, которая подрастает изнутри к цитотрофобласту.

После этого трофобласт становится трехслойным – состоит из симпластотрофобласта, цитотрофобласта и париентального листка внезародышевой мезенхимы и носит название хориона (или ворсинчатой оболочки). По всей поверхности хориона располагаются ворсины, которые вначале состоят из цито– и симпластотрофобласта и называются первичными. Затем в них врастает изнутри внезародышевая мезенхима, и они становятся вторичными. Однако постепенно на большей части хориона ворсинки редуцируются и сохраняются только в той части хориона, которая направлена к базальному слою эндометрия. При этом ворсинки разрастаются, в них врастают сосуды, и они становятся третич-ными.

При развитии хориона выделяют два периода:

1) формирование гладкого хориона;

2) формирование ворсинчатого хориона.

Из ворсинчатого хориона в последующем формируется плацента.

Функции хориона:

1) защитная;

2) трофическая, газообменная, экскреторная и другие, в которых хорин принимает участие, будучи составной частью плаценты и которые выполняет плацента.

Развитие, строение и функции амниона . Внезародышевая мезенхима, заполняя полость бластоцисты, оставляет свободными небольшие участки бластоцели, прилежащие к эпибласту и гипобласту. Эти участки составляют мезенхимальные закладки амниотического пузырька и желточного мешка.

Стенка амниона состоит из:

1) внезародышевой эктодермы;

2) внезародышевой мезенхимы (висцерального листка).

Функции амниона – образование околоплодных вод и защитная функция.

Развитие, строение и функции желточного мешка . Из гипобласта выселяются клетки, составляющие внезародышевую (или желточную) энтодерму, и, обрастая изнутри мезенхимальную закладку желточного мешка, образуют вместе с ней стенку желточного мешка. Стенка желточного мешка состоит из:

1) внезародышевой (желточной) энтодермы;

2) внезародышевой мезенхимы.

Функции желточного мешка:

1) кроветворение (образование стволовых клеток крови);

2) образование половых стволовых клеток (гонобластов);

3) трофическая (у птиц и рыб).

Развитие, строение и функции аллантоиса . Часть зародышевой энтодермы гипобласта в виде пальцевидного выпячивания врастает в мезенхиму амниотической ножки и формирует аллантоис. Стенка аллантоиса состоит из:

1) зародышевой энтодермы;

2) внезародышевой мезенхимы.

Функциональная роль аллантоиса:

1) у птиц полость аллантоиса достигает значительного развития и в ней накапливается мочевина, поэтому его называют мочевым мешком;

2) у человека нет необходимости накопления мочевины, поэтому полость аллантоиса очень незначительная и к концу 2-го месяца полностью зарастает.

Однако в мезенхиме аллантоиса развиваются кровеносные сосуды, которые проксимальными концами соединяются с сосудами тела зародыша (эти сосуды возникают в мезенхиме тела зародыша позже, чем в аллантоисе). Дистальными концами сосуды аллантоиса врастают во вторичные ворсинки ворсинчатой части хориона и превращают их в третичные. С 3-й по 8-ю недели внутриутробного развития за счет этих процессов формируется плацентарный круг кровообращения. Амниотическая ножка вместе с сосудами вытягивается и превращается в пупочный канатик, а сосуды (две артерии и вена) называются пупочными сосудами.

Мезенхима пупочного канатика преобразуется в слизистую соединительную ткань. В составе пупочного канатика содержатся также остатки аллантоиса и желточного стебелька. Функция аллантоиса – способствование выполнению функций плаценты.

По окончании второй стадии гаструляции зародыш носит название гаструлы и состоит из трех зародышевых листков – эктодермы, мезодермы и энтодермы и четырех внезародышевых органов – хориона, амниона, желточного мешка и аллантоиса.

Одновременно с развитием второй фазы гаструляции формируется зародышевая мезенхима посредством миграции клеток из все трех зародышевых листков.

На 2 – 3-й неделе, т. е. в процессе второй фазы гаструляции и сразу же после нее, происходит закладка зачатков осевых органов:

2) нервной трубки;

3) кишечной трубки.

Строение и функции плаценты

Плацента – это образование, которое осуществляет связь между плодом и организмом матери.

Плацента состоит из материнской части (базальная часть децидуальной оболочки) и плодной части (ворсинчатый хорион – производное трофобласта и внезародышевой мезодермы).

Функции плаценты:

1) обмен между организмами матери и плода газами-метаболитами, электролитами. Обмен осуществляется при помощи пассивного транспорта, облегченной диффузии и активного транспорта. Достаточно свободно в организм плода из материнского могут проходить стероидные гормоны;

2) транспорт материнских антител, осуществляющийся при помощи опосредованного рецепторами эндоцитоза и обеспечивающийся пассивный иммунитет плода. Данная функция очень важна, так как после рождения плод имеет пассивный иммунитет ко многим инфекциям (кори, краснухе, дифтерии, столбняку и др.), которыми либо болела мать, либо против которых была вакцинирована. Продолжительность пассивного иммунитета после рождения составляет 6 – 8 месяцев;

3) эндокринная функция. Плацента – это эндокринный орган. Она синтезирует гормоны и биологически активные вещества, которые играют очень большую роль в нормальном физиологическом протекания беременности и развития плода. К этим веществам относятся прогестерон, хорионический соматомаммотропин, фактор роста фибробластов, трансферрин, пролактин и релаксин. Кортиколиберины определяют срок родов;

4) детоксикация. Плацента способствует детоксикации некоторых лекарственных препаратов;

5) плацентарный барьер. В состав плацентарного барьера входят синцитиотрофобласт, цитотрофобласт, базальная мембрана трофобласта, соединительная ткань ворсины, базальная мембрана в стенке капилляра плода, эндотелий капилляра плода. Гематоплацентарный барьер препятствует контакту крови матери и плода, что очень важно для защиты плода от влияния иммунной системы матери.

Структурно-функциональной единицей сформировавшейся плаценты является котиледон. Он образован стволовой ворсиной и ее разветвлениями, содержащими сосуды плода. К 140-му дню беременности в плаценте сформировано около 10 – 12 больших, 40 – 50 мелких и до 150 рудиментарных котиледонов. К 4-му месяцу беременности формирование основных структур плаценты заканчивается. Лакуны полностью сформированной плаценты содержат около 150 мл материнской крови, полностью обменивающейся в течение 3 – 4 мин. Общая поверхность ворсин составляет около 15 м 2 , что обеспечивает нормальный уровень обмена веществ между организмами матери и плода.

Строение и функции децидуальной оболочки

Децидуальная оболочка образуется на всем протяжении эндометрия, но раньше всего она образуется в области имплантации. К конце 2-й недели внутриутробного развития эндометрий полностью замещается децидуальной оболочкой, в которой можно выделить базальную, капсулярную и пристеночные части.

Децидуальная оболочка, окружающая хорион, содержит базальную и капсулярную части.

Другие отделы децидуальной оболочки выстланы пристеночной частью. В децидуальной оболочке выделяют губчатую и компактные зоны.

Базальная часть децидуальной оболочки входит в состав плаценты. Она отделяет плодное яйцо от миометрия. В губчатом слое много желез, сохраняющихся до 6-го месяца беременности.

Капсулярная часть к 18-му дню беременности полностью смыкается над имплантированным плодным яйцом и отделяет его от полости матки. По мере роста плода капсулярная часть выпячивается в полость матки и к 16-й неделе внутриутробного развития срастается с пристеночной частью. При доношенной беременности капсулярная часть хорошо сохраняется и различима только в нижнем полюсе плодного яйца – над внутренним маточным зевом. Капсулярная часть не содержит поверхностного эпителия.

Пристеночная часть до 15-й недели беременности утолщается за счет компактной и губчатой зон. В губчатой зоне пристеночной части децидуальной оболочки железы развиваются до 8-й недели беременности. К моменту слияния пристеночной и капсулярной частей количество желез постепенно уменьшается, они становятся неразличимыми.

В конце доношенной беременности пристеночная часть децидуальной оболочки представлена несколькими слоями децидуальных клеток. С 12-й недели беременности поверхностный эпителий пристеночной части исчезает.

Клетки рыхлой соединительной ткани вокруг сосудов компактной зоны резко увеличены. Это молодые децидуальные клетки, которые по своему строению сходны с фибробластами. По мере дифференцировки размеры децидуальных клеток увеличиваются, они приобретают округлую форму, их ядра становятся светлыми, клетки более тесно прилегают друг к другу. К 4 – 6-й неделе беременности преобладают крупные светлые децидуальные клетки. Часть децидуальных клеток имеет костномозговое происхождение: по-видимому, они участвуют в иммунном ответе.

Функцией децидуальных клеток является продукция пролактина и простагландинов.

III. Дифференцировка мезодермы . В каждой мезодермальной пластинке, происходит дифференцировка ее на три части:

1) дорзсальную часть (сомиты);

2) промежуточную часть (сегментные ножки, или нефротомы);

3) вентральную часть (спланхиотому).

Дорзсальная часть утолщается и подразделяется на отдельные участки (сегменты) – сомиты. В свою очередь, в каждом сомите выделяют три зоны:

1) периферическую зону (дерматому);

2) центральную зону (миотому);

3) медиальную часть (склеротому).

По сторонам зародыша образуются туловищные складки, которые отделяют зародыш от внезародышевых органов.

Благодаря туловищным складкам кишечная энтодерма сворачивается в первичную кишку.

Промежуточная часть каждого мезодермального крыла также сегментируется (за исключением каудального отдела – нефрогенной ткани) на сегментные ножки (или нефротомы, нефрогонотомы).

Вентральная часть каждого мезодермального крыла не сегментируется. Она расщепляется на два листка, между которыми располагается полость – целом, и носит название «спланхиотома». Следовательно, спланхиотома состоит из:

1) висцерального листка;

2) париентального листка;

3) полости – целома.

IV. Дифференцировка эктодермы . Наружный зародышевый листок дифференцируется на четыре части:

1) нейроэктодерму (из нее разминается нервная трубка и ганглиозная пластинка);

2) кожная эктодерма (развивается эпидермис кожи);

3) переходная пластика (развивается эпителий пищевода, трахеи, бронхов);

4) плакоды (слуховая, хрусталиковая и др.).

V. Дифференцировка энтодермы . Внутренний зародышевый листок подразделяется на:

1) кишечную (или зародышевую), энтодерму;

2) внезародышевую (или желточную), энтодерму.

Из кишечной энтодермы развиваются:

1) эпителий и железы желудка и кишечника;

2) печень;

3) поджелудочная железа.

Органогенез

Развитие подавляющего большинства органов начинается с 3 – 4-й недели, т. е. с конца 1-го месяца существования зародыша. Органы образуются в результате перемещения и сочетания клеток и их производных, нескольких тканей (например, печень состоит из эпителиальной и соединительной тканей). При этом клетки разных тканей оказывают индуктивное влияние друг на друга и тем самым обеспечивают направленный морфогенез.

  • Банковское регулирование и надзор. В России Центробанк является органом банковского регулиро­вания и надзора, хотя во многих странах они возлагаются на специаль­ные органы
  • Валютный контроль: понятие, правовая основа агенты и органы валютного контроля, их задачи и функции. Валютное регулирование
  • Виды органов государственного управления природопользованием и охраной окружающей среды. Органы общей компетенции
  • ВЛИЯНИЕ КОРКОВЫХ И АРСЕНАЛЬНЫХ СТРУКТУР НА НИЖЕРАСПОЛОЖЕННЫЕ ОРГАНЫ И СИСТЕМЫ

  • Характерно образование временных (провизорных) органов, таких как хорион, желточный мешок, аллантоис и амнион. Последний из них играет одну их самых главных ролей, так как вырабатывает околоплодные воды, обеспечивающие среду для развития организма. О том, что такое амнион, как он образуется, какое имеет строение и назначение - читайте далее.

    Что такое амниотическая оболочка?

    Амниотическая оболочка или амнион - это временный орган, обеспечивающий для развития зародыша комфортную водную среду. Он представляет собой сплошную оболочку, которая участвует в выработке околоплодных вод, начиная с седьмой недели эмбриогенеза.

    Амнион возникает в тесной взаимосвязи с хорионом или, как его часто называют, серозой. Их закладка возникает на определенном расстоянии от головного конца зародыша в виде поперечной складки, которая в дальнейшем по мере роста изгибается над ним и закрывает подобно капюшону. Далее амниотические складки, а точнее их боковые участки, нарастают по обеим сторонам эмбриона по направлению спереди назад, сближаясь все сильнее. В конце концов они соединяются друг с другом и срастаются. Зародыш оказывается заключенным в водную оболочку (амниотическую полость).

    Однако жидкостью она заполняется не сразу, а постепенно. Первоначально полость имеет вид узкой щели между внутренней поверхностью амниотической складки и зародышем. Далее она заполняется амниотической жидкостью (продукт жизнедеятельности клеток) и растягивается. С внезародышевыми частями организма эмбрион связан только посредством пупочного канатика. На фото выше эмбрион человека на 7 неделе развития.

    Амниоты и анамнии

    Амнион возник в процессе эволюции в связи с переходом позвоночных животных на сушу из воды. Изначально основное его предназначение - это защита зародышей от высыхания при развитии не в водной среде. В связи с этим все позвоночные, откладывающие яйца (пресмыкающиеся и птицы), а также млекопитающие - это амниоты или, иначе говоря животные, чьи зародыши имеют яйцевые оболочки.

    Предшествующие им классы и земноводные, круглоротые, головохордовые) откладывают икру в водной среде, и какая-либо дополнительная оболочка им не требуется. Поэтому эту группу животных называют анамниями. Их существование связано с водной средой, в которой они проводят большую часть жизни, либо ее начальные стадии (яйцевые, личиночные).

    Развитие амниона и особенности строения

    Формирование амниона происходит из внезародышевой эктодермы и мезенхимы. У человеческого зародыша он появляется на второй стадии гаструляции в виде небольшого пузырька в составе эпибласта. На исходе седьмой недели соединительная ткань амниона и хориона входят в контакт. Эпителий амниотического мешка переходит на амниотическую ножку, которая позднее превращается в пупочный канатик и смыкается с эпителиальным покровом кожи эмбриона в области пупочного кольца. Амниотическая оболочка образует стенку своеобразного резервуара, заполненного жидкостью, в которой находится зародыш.

    На ранних эпителий амниона - это однослойный, плоский ряд тесно прилегающих друг к другу крупных полигональных клеток. Многие из них делятся митозом. На третьем месяце эмбриогенеза эпителий становится призматическим, на его поверхности появляются ворсинки. В апикальной части клеток присутствуют вакуоли различной величины, их содержимое выделяется в амниотическую полость. Эпителий амниона в районе плацентарного диска призматический и однослойный, лишь местами многорядный. Он выполняет в основном секреторную функцию. Эпителий вне плацентарного амниона, главным образом, проводит резорбцию околоплодных вод.

    Соединительная строма амниотической оболочки имеет базальную мембрану, слой волокнистой, плотной соединительной ткани и слой рыхлой, губчатой соединительной ткани, связывающей амнион с хорионом.

    Амнион у пресмыкающихся

    Как уже было сказано выше, амниоты - это хордовые животные, у которых в процессе индивидуального развития формируются особенные зародышевые оболочки (аллантоис и амнион). У млекопитающих, птиц и пресмыкающихся эмбриогенез имеет общие черты. Однако на самой нижней ступени эволюции находятся рептилии.

    Провизорные (временные) органы, к которым в том числе относится и амнион, у зародышей пресмыкающихся возникают также, как у костистых и хрящевых рыб. Большое количество желтка приводит к образованию желточного мешка. Первые животные, у зародышей которых в процессе эволюции появилась водная оболочка, - это рептилии. Их яйца не имеют белка и развивающийся эмбрион тесно прилегает к подскорлуповым оболочкам. Постепенно он погружается в разреженный желток, прогибая слой внезародышевой эктодермы, и она образует амниотические складки вокруг его тела. Процесс их смыкания идет постепенно. В конечном итоге образуется амниотическая полость. Складки не смыкаются только на заднем конце зародыша. Там остается узкий канал, связывающий амниотическую и серозную полость.

    Образование амниона у птиц

    Процесс образования провизорных органов у птиц и рептилий имеет много общего. Желточный мешок у пернатых образуется точно так же. Формирование серозной и амниотической оболочек происходит по-другому. Яйца птиц имеют толстый слой белка, располагающегося под подскорлуповой оболочкой. Погружение зародыша в желток не происходит, он приподнимается над ним, а по обеим сторонам формируются углубления, называемые туловищными складками. Разрастаясь и углубляясь, они приподнимают зародыш и способствуют сворачиванию в трубку кишечной энтодермы. Затем туловищные складки продолжаются в амниотические, которые срастаются над эмбрионом и образуют амниотическую полость.

    Различие в и рептилии не повлияли на механизм развития аллантоиса. У представителей этих двух групп амниот оно происходит аналогично. Аллантоис птиц и рептилий выполняет идентичные функции.

    Значение амниона

    Хорион, аллантоис и амнион - это зародышевые оболочки, характерные для всех высших позвоночных животных и некоторых беспозвоночных. С точки зрения эволюции данные органы можно рассматривать как выработавшиеся в течении длительного времени адаптации эмбриона. Они вместе с желточным мешком защищают его от разнообразных факторов внешней среды. Данные эмбриональные адаптации возникли и совершенствовались посредством естественного отбора, то есть под влиянием изменяющихся условий биотической и абиотической среды.

    Если выражаться образно, то амнион - это аквариум, в котором эмбрионы позвоночных и некоторых беспозвоночных животных повторяют водный образ жизни своих далеких предков. Наличие оболочки гарантирует развитие плода в среде с наиболее оптимальным составом белков, электролитов и углеводов.

    В околоплодных водах содержатся антитела, обеспечивающие защиту зародыша от болезнетворных факторов. Кроме того, водная среда выполняет амортизирующую функцию при различных ударах, сотрясениях и профилактическую - при механических повреждениях плода.

    ЭМБРИОЛОГИЯ. Глава 21. ОСНОВЫ ЭМБРИОЛОГИИ ЧЕЛОВЕКА

    ЭМБРИОЛОГИЯ. Глава 21. ОСНОВЫ ЭМБРИОЛОГИИ ЧЕЛОВЕКА

    Эмбриология (от греч. embryon - зародыш, logos - учение) - наука о закономерностях развития зародышей.

    Медицинская эмбриология изучает закономерности развития зародыша человека. Особое внимание обращается на эмбриональные источники и закономерные процессы развития тканей, метаболические и функциональные особенности системы мать-плацента-плод, критические периоды развития человека. Все это имеет большое значение для медицинской практики.

    Знание эмбриологии человека необходимо всем врачам, особенно работающим в области акушерства и педиатрии. Это помогает в постановке диагноза при нарушениях в системе мать-плод, выявлении причин уродств и заболеваний детей после рождения.

    В настоящее время знания по эмбриологии человека используются для раскрытия и ликвидации причин бесплодия, трансплантации фетальных органов, разработки и применения противозачаточных средств. В частности, актуальность приобрели проблемы культивирования яйцеклеток, экстракорпорального оплодотворения и имплантации зародышей в матку.

    Процесс эмбрионального развития человека является результатом длительной эволюции и в определенной степени отражает черты развития других представителей животного мира. Поэтому некоторые ранние стадии развития человека очень сходны с аналогичными стадиями эмбриогенеза более низко организованных хордовых животных.

    Эмбриогенез человека - часть его онтогенеза, включающая следующие основные стадии: I - оплодотворение и образование зиготы; II - дробление и образование бластулы (бластоцисты); III - гаструляцию - образование зародышевых листков и комплекса осевых органов; IV - гистогенез и органогенез зародышевых и внезародышевых органов; V - системогенез.

    Эмбриогенез тесно связан с прогенезом и ранним постэмбриональным периодом. Так, развитие тканей начинается в эмбриональном периоде (эмбриональный гистогенез) и продолжается после рождения ребенка (постэмбриональный гистогенез).

    21.1. ПРОГЕНЕЗ

    Это период развития и созревания половых клеток - яйцеклеток и сперматозоидов. В результате проге-неза в зрелых половых клетках возникает гаплоидный набор хромосом, формируются структуры, обеспечивающие способность к оплодотворению и развитию нового организма. Подробно процесс развития половых клеток рассмотрен в главах, посвященных мужской и женской половым системам (см. главу 20).

    Рис. 21.1. Строение мужской половой клетки:

    I - головка; II - хвост. 1 - рецептор;

    2 - акросома; 3 - «чехлик»; 4 - проксимальная центриоль; 5 - митохондрия; 6 - слой упругих фибрилл; 7 - аксоне-ма; 8 - терминальное кольцо; 9 - циркулярные фибриллы

    Основные характеристики зрелых половых клеток человека

    Мужские половые клетки

    Сперматозоиды человека образуются в течение всего активного полового периода в больших количествах. Подробное описание сперматогенеза - см. главу 20.

    Подвижность сперматозоидов обусловлена наличием жгутиков. Скорость движения сперматозоидов у человека равна 30-50 мкм/с. Целенаправленному движению способствуют хемотаксис (движение к химическому раздражителю или от него) и реотаксис (движение против тока жидкости). Через 30-60 мин после полового акта сперматозоиды обнаруживаются в полости матки, а через 1,5-2 ч - в дис-тальной (ампулярной) части маточной трубы, где происходят их встреча с яйцеклеткой и оплодотворение. Спермии сохраняют оплодотворяющую способность до 2 сут.

    Строение. Мужские половые клетки человека - сперматозоиды, или спер-мии, длиной около 70 мкм, имеют головку и хвост (рис. 21.1). Плазмолемма сперматозоида в области головки содержит рецептор, с помощью которого происходит взаимодействие с яйцеклеткой.

    Головка сперматозоида (caput spermatozoidi) включает небольшое плотное ядро с гаплоидным набором хромосом. Передняя половина ядра покрыта плоским мешочком, составляющим чехлик сперматозоида. В нем располагается акросома (от греч. асrоn - верхушка, soma - тело). Акросома содержит набор ферментов, среди которых важное место принадлежит гиалуронидазе и протеазам, способным растворять при оплодотворении оболочки, покрывающие яйцеклетку. Чехлик и акросома являются производными комплекса Гольджи.

    Рис. 21.2. Клеточный состав эякулята человека в норме:

    I - мужские половые клетки: А - зрелые (по Л. Ф. Курило и др.); Б - незрелые;

    II - соматические клетки. 1, 2 - типичный сперматозоид (1 - анфас, 2 - профиль); 3-12 - наиболее часто встречающиеся формы атипии сперматозоидов; 3 - макроголовка; 4 - микроголовка; 5 - удлиненная головка; 6-7 - аномалия формы головки и акросомы; 8-9 - аномалия жгутика; 10 - двужгутиковый сперматозоид; 11 - сросшиеся головки (двухголовый сперматозоид); 12 - аномалия шейки сперматозоида; 13-18 - незрелые мужские половые клетки; 13-15 - первичные сперматоциты в профазе 1-го деления мейоза - пролептотена, пахитена, диплотена соответственно; 16 - первичный сперматоцит в метафазе мейоза; 17 - типичные сперматиды - ранняя; б - поздняя); 18 - атипичная двуядерная сперматида; 19 - эпителиальные клетки; 20-22 - лейкоциты

    В ядре сперматозоида человека содержится 23 хромосомы, одна из которых является половой (X или Y), остальные - аутосомами. В 50 % сперматозоидов содержится Х-хромосома, в 50 % - Y-хромосома. Масса Х-хромосомы несколько больше массы Y-хромосомы, поэтому, видимо, сперматозоиды, содержащие Х-хромосому, менее подвижны, чем сперматозоиды, содержащие Y-хромосому.

    За головкой имеется кольцевидное сужение, переходящее в хвостовой отдел.

    Хвостовой отдел (flagellum) сперматозоида состоит из связующей, промежуточной, главной и терминальной частей. В связующей части (pars conjungens), или шейке (cervix), располагаются центриоли - проксимальная, прилежащая к ядру, и остатки дистальной центриоли, исчерченные колонны. Здесь начинается осевая нить (axonema), продолжающаяся в промежуточной, главной и терминальной частях.

    Промежуточная часть (pars intermedia) содержит 2 центральных и 9 пар периферических микротрубочек, окруженных расположенными по спирали митохондриями (митохондриальное влагалище - vagina mitochondrialis). От микротрубочек отходят парные выступы, или «ручки», состоящие из другого белка - динеина, обладающего АТФ-азной активностью (см. главу 4). Динеин расщепляет АТФ, вырабатываемую митохондриями, и преобразует химическую энергию в механическую, за счет которой осуществляется движение спермия. В случае генетически обусловленного отсутствия динеина спермии оказываются обездвиженными (одна из форм стерильности мужчин).

    Среди факторов, влияющих на скорость движения спермиев, большое значение имеют температура, рН среды и др.

    Главная часть (pars principalis) хвоста по строению напоминает ресничку с характерным набором микротрубочек в аксонеме (9×2)+2, окруженных циркулярно ориентированными фибриллами, придающими упругость, и плазмолеммой.

    Терминальная, или конечная, часть сперматозоида (pars terminalis) содержит аксонему, которая заканчивается разобщенными микротрубочками и постепенным уменьшением их числа.

    Движения хвоста бичеобразные, что обусловлено последовательным сокращением микротрубочек от первой до девятой пары (первой считается пара микротрубочек, которая лежит в плоскости, параллельной двум центральным).

    В клинической практике при исследовании спермы проводят подсчет различных форм сперматозоидов, подсчитывая их процентное содержание (спермиограмма).

    По данным Всемирной организации здравоохранения (ВОЗ), нормальными характеристиками спермы человека являются следующие показатели: концентрация сперматозоидов - 20-200 млн/мл, содержание в эякуляте более 60 % нормальных форм. Наряду с последними в сперме человека всегда присутствуют аномальные - двужгутиковые, с дефектными размерами головки (макро- и микроформы), с аморфной головкой, со сросшимися

    головками, незрелые формы (с остатками цитоплазмы в области шейки и хвоста), с дефектами жгутика.

    В эякуляте здоровых мужчин преобладают типичные сперматозоиды (рис. 21.2). Количество различных видов атипичных сперматозоидов не должно превышать 30 %. Кроме того, встречаются незрелые формы половых клеток - сперматиды, сперматоциты (до 2 %), а также соматические клетки - эпителиоциты, лейкоциты.

    Среди сперматозоидов в эякуляте живых клеток должно быть 75 % и более, а активно подвижных - 50 % и более. Установленные нормативные параметры необходимы для оценки отклонений от нормы при различных формах мужского бесплодия.

    В кислой среде сперматозоиды быстро утрачивают способность к движению и оплодотворению.

    Женские половые клетки

    Яйцеклетки, или овоциты (от лат. ovum - яйцо), созревают в неизмеримо меньшем количестве, чем сперматозоиды. У женщины в течение полового цикла (24-28 дней) созревает, как правило, одна яйцеклетка. Таким образом, за детородный период образуются около 400 яйцеклеток.

    Выход овоцита из яичника называется овуляцией (см. главу 20). Вышедший из яичника овоцит окружен венцом фолликулярных клеток, число которых достигает 3-4 тыс. Яйцеклетка имеет шаровидную форму, больший, чем у спермия, объем цитоплазмы, не обладает способностью самостоятельно передвигаться.

    Классификация яйцеклеток основывается на признаках наличия, количества и распределения желтка (lecithos), представляющего собой белково-липидное включение в цитоплазме, используемое для питания зародыша. Различают безжелтковые (алецитальные), маложелтковые (олиголециталь-ные), среднежелтковые (мезолецитальные), многожелтковые (полилециталь-ные) яйцеклетки. Маложелтковые яйцеклетки подразделяются на первичные (у бесчерепных, например у ланцетника) и вторичные (у плацентарных млекопитающих и человека).

    Как правило, в маложелтковых яйцеклетках желточные включения (гранулы, пластинки) распределены равномерно, поэтому они называются изолеци-тальными (греч. isos - равный). Яйцеклетка человека вторично изолецитального типа (как и у других млекопитающих животных) содержит небольшое количество желточных гранул, расположенных более или менее равномерно.

    У человека наличие малого количества желтка в яйцеклетке обусловлено развитием зародыша в организме матери.

    Строение. Яйцеклетка человека имеет диаметр около 130 мкм. К плазмо-лемме прилежат прозрачная (блестящая) зона (zona pellucida - Zp) и далее слой фолликулярных эпителиоцитов (рис. 21.3).

    Ядро женской половой клетки имеет гаплоидный набор хромосом с X-половой хромосомой, хорошо выраженное ядрышко, в оболочке ядра много поровых комплексов. В период роста овоцита в ядре происходят интенсивные процессы синтеза иРНК, рРНК.

    Рис. 21.3. Строение женской половой клетки:

    1 - ядро; 2 - плазмолемма; 3 - фолликулярный эпителий; 4 - лучистый венец; 5 - кортикальные гранулы; 6 - желточные включения; 7 - прозрачная зона; 8 - рецептор Zp3

    В цитоплазме развиты аппарат синтеза белка (эндоплазматическая сеть, рибосомы) и комплекс Гольджи. Количество митохондрий умеренно, они расположены около ядра, где идет интенсивный синтез желтка, клеточный центр отсутствует. Комплекс Гольджи на ранних стадиях развития располагается около ядра, а в процессе созревания яйцеклетки смещается на периферию цитоплазмы. Здесь располагаются производные этого комплекса - кортикальные гранулы (granula corticalia), число которых достигает 4000, а размеры 1 мкм. Они содержат гликозаминогликаны и различные ферменты (в том числе протеолитические), участвуют в кортикальной реакции, защищая яйцеклетку от полиспермии.

    Из включений овоплазмы особого внимания заслуживают желточные гранулы, содержащие белки, фосфолипиды и углеводы. Каждая гранула желтка окружена мембраной, имеет плотную центральную часть, состоящую из фосфовитина (фосфопротеин), и более рыхлую периферическую часть, состоящую из липовителлина (липопротеин).

    Прозрачная зона (zona pellucida - Zp) состоит из гликопротеинов и гли-козаминогликанов - хондроитинсерной, гиалуроновой и сиаловой кислот. Гликопротеины представлены тремя фракциями - Zpl, Zp2, Zp3. Фракции Zp2 и Zp3 образуют нити длиной 2-3 мкм и толщиной 7 нм, которые

    соединены между собой с помощью фракции Zpl. Фракция Zp3 является рецептором спермиев, a Zp2 препятствует полиспермии. В прозрачной зоне содержатся десятки миллионов молекул гликопротеина Zp3, каждая из которых имеет более 400 аминокислотных остатков, соединенных со многими олигосахаридными ветвями. В образовании прозрачной зоны принимают участие фолликулярные эпителиоциты: отростки фолликулярных клеток проникают через прозрачную зону, направляясь к плазмолемме яйцеклетки. Плазмолемма яйцеклетки в свою очередь формирует микроворсинки, располагающиеся между отростками фолликулярных эпителиоцитов (см. рис. 21.3). Последние выполняют трофическую и защитную функции.

    21.2. Эмбриогенез

    Внутриутробное развитие человека продолжается в среднем 280 сут (10 лунных месяцев). Принято выделять три периода: начальный (1-я нед), зародышевый (2-8-я нед), плодный (с 9-й нед развития до рождения ребенка). К концу зародышевого периода завершается закладка основных эмбриональных зачатков тканей и органов.

    Оплодотворение и образование зиготы

    Оплодотворение (fertilisatio) - слияние мужской и женской половых клеток, в результате чего восстанавливается диплоидный набор хромосом, характерный для данного вида животных, и возникает качественно новая клетка - зигота (оплодотворенная яйцеклетка, или одноклеточный зародыш).

    У человека объем эякулята - извергнутой спермы - в норме составляет около 3 мл. Для обеспечения оплодотворения общее количество сперматозоидов в сперме должно быть не менее 150 млн, а концентрация - 20- 200 млн/мл. В половых путях женщины после копуляции их число уменьшается по направлению от влагалища к ампулярной части маточной трубы.

    В процессе оплодотворения различают три фазы: 1) дистантное взаимодействие и сближение гамет; 2) контактное взаимодействие и активизация яйцеклетки; 3) проникновение сперматозоида в яйцеклетку и последующее слияние - сингамия.

    Первая фаза - дистантное взаимодействие - обеспечивается хемотаксисом - совокупностью специфических факторов, повышающих вероятность встречи половых клеток. Важную роль в этом играют гамоны - химические вещества, вырабатываемые половыми клетками (рис. 21.4). Например, яйцеклетки выделяют пептиды, способствующие привлечению сперматозоидов.

    Сразу после эякуляции спермии не способны к проникновению в яйцеклетку до тех пор, пока не произойдет капацитация - приобретение спер-миями оплодотворяющей способности под действием секрета женских половых путей, которое длится 7 ч. В процессе капацитации с плазмолеммы спермия в области акросомы удаляются гликопротеины и протеины семенной плазмы, что способствует акросомальной реакции.

    Рис. 21.4. Дистантное и контактное взаимодействие спермиев и яйцеклетки: 1 - сперматозоид и его рецепторы на головке; 2 - отделение углеводов с поверхности головки при капацитации; 3 - связывание рецепторов сперматозоида с рецепторами яйцеклетки; 4 - Zp3 (третья фракция гликопротеинов прозрачной зоны); 5 - плаз-молемма яйцеклетки; ГГI, ГГII - гиногамоны; АГI, АГII - андрогамоны; Гал - гли-козилтрансфераза; NАГ - N-ацетилглюкозамин

    В механизме капацитации большое значение принадлежит гормональным факторам, прежде всего прогестерону (гормон желтого тела), активизирующему секрецию железистых клеток маточных труб. Во время капацитации происходят связывание холестерина плазмолеммы спермия альбуминами женских половых путей и обнажение рецепторов половых клеток. Оплодотворение происходит в ампулярной части маточной трубы. Оплодотворению предшествует осеменение - взаимодействие и сближение гамет (дистантное взаимодействие), обусловленное хемотаксисом.

    Вторая фаза оплодотворения - контактное взаимодействие. Многочисленные спермии приближаются к яйцеклетке и вступают в контакт с ее оболочкой. Яйцеклетка начинает совершать вращательные движения вокруг своей оси со скоростью 4 оборота в минуту. Эти движения обусловлены биением хвостов сперматозоидов и продолжаются около 12 ч. Сперматозоиды при контакте с яйцеклеткой могут связывать десятки тысяч молекул гликопротеина Zp3. При этом отмечается запуск акросомальной реакции. Акросомальная реакция характеризуется повышением проницаемости плазмолеммы спермия к ионам Са 2 +, деполяризацией ее, что способствует слиянию плазмолеммы с передней мембраной акросомы. Прозрачная зона оказывается в непосредственном контакте с акросомальными ферментами. Ферменты разрушают ее, спермий проходит через прозрачную зону и

    Рис. 21.5. Оплодотворение (по Вассерману с изменениями):

    1-4 - стадии акросомной реакции; 5 - zona pellucida (прозрачная зона); 6 - периви-теллиновое пространство; 7 - плазматическая мембрана; 8 - кортикальная гранула; 8а - кортикальная реакция; 9 - проникновение спермия в яйцеклетку; 10 - зонная реакция

    входит в перивителлиновое пространство, расположенное между прозрачной зоной и плазмолеммой яйцеклетки. Через несколько секунд изменяются свойства плазмолеммы яйцеклетки и начинается кортикальная реакция, а через несколько минут изменяются свойства прозрачной зоны (зонная реакция).

    Инициация второй фазы оплодотворения происходит под влиянием суль-фатированных полисахаридов блестящей зоны, которые вызывают поступление ионов кальция и натрия в головку, спермия, замещение ими ионов калия и водорода и разрыв мембраны акросомы. Прикрепление спермия к яйцеклетке происходит под влиянием углеводной группы фракции гликопротеинов прозрачной зоны яйцеклетки. Рецепторы спермия представляют собой фермент гликозилтрансферазу, находящийся на поверхности акросомы головки, который

    Рис. 21.6. Фазы оплодотворения и начало дробления (схема):

    1 - овоплазма; 1а - кортикальные гранулы; 2 - ядро; 3 - прозрачная зона; 4 - фолликулярный эпителий; 5 - спермии; 6 - редукционные тельца; 7 - завершение митотического деления овоцита; 8 - бугорок оплодотворения; 9 - оболочка оплодотворения; 10 - женский пронуклеус; 11 - мужской пронуклеус; 12 - синкарион; 13 - первое митотическое деление зиготы; 14 - бластомеры

    «узнает» рецептор женской половой клетки. Плазматические мембраны в месте контакта половых клеток сливаются, и происходит плазмогамия - объединение цитоплазм обеих гамет.

    У млекопитающих при оплодотворении в яйцеклетку проникает лишь один сперматозоид. Такое явление называется моноспермией. Оплодотворению способствуют сотни других принимающих участие в осеменении сперматозоидов. Ферменты, выделяемые из акросом, - спермолизины (трипсин, гиалуронидаза) - разрушают лучистый венец, расщепляют гликозами-ногликаны прозрачной зоны яйцеклетки. Отделяющиеся фолликулярные эпителиоциты склеиваются в конгломерат, который вслед за яйцеклеткой перемещается по маточной трубе благодаря мерцанию ресничек эпителиальных клеток слизистой оболочки.

    Рис. 21.7. Яйцеклетка и зигота человека (по Б. П. Хватову):

    а - яйцеклетка человека после овуляции: 1 - цитоплазма; 2 - ядро; 3 - прозрачная зона; 4 - фолликулярные эпителиоциты, образующие лучистый венец; б - зигота человека в стадии сближения мужского и женского ядер (пронуклеусов): 1 - женское ядро; 2 - мужское ядро

    Третья фаза. В овоплазму проникают головка и промежуточная часть хвостового отдела. После вхождения сперматозоида в яйцеклетку на периферии овоплазмы происходит уплотнение ее (зонная реакция) и образуется оболочка оплодотворения.

    Кортикальная реакция - слияние плазмолеммы яйцеклетки с мембранами кортикальных гранул, в результате чего содержимое из гранул выходит в перивителлиновое пространство и воздействует на молекулы гликопро-теинов прозрачной зоны (рис. 21.5).

    Вследствие этой зонной реакции молекулы Zp3 модифицируются и утрачивают способность быть рецепторами спермиев. Образуется оболочка оплодотворения толщиной 50 нм, препятствующая полиспермии - проникновению других спермиев.

    Механизм кортикальной реакции включает приток ионов натрия через участок плазмолеммы сперматозоида, встроенный в плазмолемму яйцеклетки после завершения акросомальной реакции. В результате отрицательный мембранный потенциал клетки становится слабоположительным. Приток ионов натрия обусловливает высвобождение ионов кальция из внутриклеточных депо и увеличение его содержания в гиалоплазме яйцеклетки. Вслед за этим начинается экзоцитоз кортикальных гранул. Высвобождающиеся из них протеолитические ферменты разрывают связи между прозрачной зоной и плазмолеммой яйцеклетки, а также между спермиями и прозрачной зоной. Кроме того, выделяется гликопротеин, связывающий воду и привлекающий ее в пространство между плазмолеммой и прозрачной зоной. Вследствие этого формируется перивителлиновое пространство. Наконец,

    выделяется фактор, способствующий затвердению прозрачной зоны и образованию из нее оболочки оплодотворения. Благодаря механизмам предотвращения полиспермии только одно гаплоидное ядро сперматозоида получает возможность слиться с одним гаплоидным ядром яйцеклетки, что приводит к восстановлению характерного для всех клеток диплоидного набора. Проникновение сперматозоида в яйцеклетку через несколько минут значительно усиливает процессы внутриклеточного обмена, что связано с активизацией ферментативных ее систем. Взаимодействие сперматозоидов с яйцеклеткой может быть заблокировано при помощи антител против веществ, входящих в прозрачную зону. На этом основании изыскиваются способы иммунологической контрацепции.

    После сближения женского и мужского пронуклеусов, которое продолжается у млекопитающих около 12 ч, образуется зигота - одноклеточный зародыш (рис. 21.6, 21.7). На стадии зиготы выявляются презумптивные зоны (лат. presumptio - вероятность, предположение) как источники развития соответствующих участков бластулы, из которых в дальнейшем формируются зародышевые листки.

    21.2.2. Дробление и образование бластулы

    Дробление (fissio) - последовательное митотическое деление зиготы на клетки (бластомеры) без роста дочерних клеток до размеров материнской.

    Образующиеся бластомеры остаются объединенными в единый организм зародыша. В зиготе образуется митотическое веретено между отдаляющи-

    Рис. 21.8. Зародыш человека на ранних стадиях развития (по Гертигу и Рокку):

    а - стадия двух бластомеров; б - бластоциста: 1 - эмбриобласт; 2 - трофобласт;

    3 - полость бластоцисты

    Рис. 21.9. Дробление, гаструляция и имплантация зародыша человека (схема): 1 - дробление; 2 - морула; 3 - бластоциста; 4 - полость бластоцисты; 5 - эмбрио-бласт; 6 - трофобласт; 7 - зародышевый узелок: а - эпибласт; б - гипобласт; 8 - оболочка оплодотворения; 9 - амниотический (эктодермальный) пузырек; 10 - внезародышевая мезенхима; 11 - эктодерма; 12 - энтодерма; 13 - цитотрофобласт; 14 - симпластотрофобласт; 15 - зародышевый диск; 16 - лакуны с материнской кровью; 17 - хорион; 18 - амниотическая ножка; 19 - желточный пузырек; 20 - слизистая оболочка матки; 21 - яйцевод

    мися к полюсам центриолями, внесенными сперматозоидом. Пронуклеусы вступают в стадию профазы с формированием объединенного диплоидного набора хромосом яйцеклетки и сперматозоида.

    Пройдя все остальные фазы митотического деления, зигота разделяется на две дочерние клетки - бластомеры (от греч. blastos - зачаток, meros - часть). Вследствие фактического отсутствия G 1 -периода, во время которого происходит рост клеток, образовавшихся в результате деления, клетки гораздо меньше материнской, поэтому и величина зародыша в целом в этот период независимо от числа составляющих его клеток не превышает величину исходной клетки - зиготы. Все это позволило назвать описываемый процесс дроблением (т. е. измельчением), а клетки, образующиеся в процессе дробления, - бластомерами.

    Дробление зиготы человека начинается к концу первых суток и характеризуется как полное неравномерное асинхронное. В течение первых суток оно проис-

    ходит медленно. Первое дробление (деление) зиготы завершается через 30 ч, в результате образуются два бластомера, покрытых оболочкой оплодотворения. За стадией двух бластомеров следует стадия трех бластомеров.

    С первых же дроблений зиготы формируются два вида бластомеров - «темные» и «светлые». «Светлые», более мелкие, бластомеры дробятся быстрее и располагаются одним слоем вокруг крупных «темных», которые оказываются в середине зародыша. Из поверхностных «светлых» бластомеров в дальнейшем возникает трофобласт, связывающий зародыш с материнским организмом и обеспечивающий его питание. Внутренние, «темные», бластомеры формируют эмбриобласт, из которого образуются тело зародыша и внезародышевые органы (амнион, желточный мешок, аллантоис).

    Начиная с 3 сут, дробление идет быстрее, и на 4-е сут зародыш состоит из 7-12 бластомеров. Через 50-60 ч образуется плотное скопление клеток - морула, а на 3-4-е сут начинается формирование бластоцисты - полого пузырька, заполненного жидкостью (см. рис. 21.8; рис. 21.9).

    Бластоциста в течение 3 сут перемещается по маточной трубе к матке и через 4 сут попадает в полость матки. Бластоциста находится в полости матки в свободном виде (свободная бластоциста) в течение 2 сут (5-е и 6-е сут). К этому времени бластоциста увеличивается в размере благодаря росту числа бластомеров - клеток эмбриобласта и трофобла-ста - до 100 и вследствие усиленного всасывания трофобластом секрета маточных желез и активной выработки жидкости клетками трофобласта (см. рис. 21.9). Трофобласт первые 2 нед развития обеспечивает питание зародыша за счет продуктов распада материнских тканей (гистиотроф-ный тип питания),

    Эмбриобласт располагается в виде узелка зародышевых клеток («зародышевый узелок»), который прикрепляется изнутри к трофобласту на одном из полюсов бластоцисты.

    21.2.4. Имплантация

    Имплантация (лат. implantatio - врастание, укоренение) - внедрение зародыша в слизистую оболочку матки.

    Различают две стадии имплантации: адгезию (прилипание), когда зародыш прикрепляется к внутренней поверхности матки, и инвазию (погружение) - внедрение зародыша в ткани слизистой оболочки матки. На 7-е сут в трофобласте и эмбриобласте происходят изменения, связанные с подготовкой к имплантации. Бластоциста сохраняет оболочку оплодотворения. В трофобласте увеличивается количество лизосом с ферментами, обеспечивающими разрушение (лизис) тканей стенки матки и тем самым способствующими внедрению зародыша в толщу ее слизистой оболочки. Появляющиеся в трофобласте микроворсинки постепенно разрушают оболочку оплодотворения. Зародышевый узелок уплощается и превращается

    в зародышевый щиток, в котором начинается подготовка к первой стадии гаструляции.

    Имплантация продолжается около 40 ч (см. рис. 21.9; рис. 21.10). Одновременно с имплантацией начинается гаструляция (образование зародышевых листков). Это первый критический период развития.

    В первой стадии трофобласт прикрепляется к эпителию слизистой оболочки матки, и в нем формируются два слоя - цитотрофобласт и симпластотро-фобласт. Во второй стадии симпластотрофобласт, продуцируя протеолити-ческие ферменты, разрушает слизистую оболочку матки. Формирующиеся при этом ворсинки трофобласта, внедряясь в матку, последовательно разрушают ее эпителий, затем подлежащую соединительную ткань и стенки сосудов, и трофобласт вступает в непосредственный контакт с кровью материнских сосудов. Образуется имплантационная ямка, в которой вокруг зародыша появляются участки кровоизлияний. Питание зародыша осуществляется непосредственно из материнской крови (гематотрофный тип питания). Из крови матери зародыш получает не только все питательные вещества, но и кислород, необходимый для дыхания. Одновременно в слизистой оболочке матки из клеток соединительной ткани, богатых гликогеном, происходит образование децидуальных клеток. После полного погружения зародыша в имплантационную ямку отверстие, образовавшееся в слизистой оболочке матки, заполняется кровью и продуктами разрушения тканей слизистой оболочки матки. В последующем дефект слизистой оболочки исчезает, эпителий восстанавливается путем клеточной регенерации.

    Гематотрофный тип питания, сменяющий гистиотрофный, сопровождается переходом к качественно новому этапу эмбриогенеза - второй фазе гаструляции и закладке внезародышевых органов.

    21.3. ГАСТРУЛЯЦИЯ И ОРГАНОГЕНЕЗ

    Гаструляция (от лат. gaster - желудок) - сложный процесс химических и морфогенетических изменений, сопровождающийся размножением, ростом, направленным перемещением и дифференцировкой клеток, в результате чего образуются зародышевые листки: наружный (эктодерма), средний (мезодерма) и внутренний (энтодерма) - источники развития комплекса осевых органов и эмбриональных зачатков тканей.

    Гаструляция у человека протекает в две стадии. Первая стадия (делами-нация) приходится на 7-е сут, а вторая стадия (иммиграция) - на 14-15-е сут внутриутробного развития.

    При деламинации (от лат. lamina - пластинка), или расщеплении, из материала зародышевого узелка (эмбриобласта) образуются два листка: наружный листок - эпибласт и внутренний - гипобласт, обращенный в полость бла-стоцисты. Клетки эпибласта имеют вид псевдомногослойного призматического эпителия. Клетки гипобласта - мелкие кубические, с пенистой цито-

    Рис. 21.10. Зародыши человека 7,5 и 11 сут развития в процессе имплантации в слизистую оболочку матки (по Гертигу и Рокку):

    а - 7,5 сут развития; б - 11 сут развития. 1 - эктодерма зародыша; 2 - энтодерма зародыша; 3 - амниотический пузырек; 4 - внезародышевая мезенхима; 5 - цито-трофобласт; 6 - симпластотрофобласт; 7 - маточная железа; 8 - лакуны с материнской кровью; 9 - эпителий слизистой оболочки матки; 10 - собственная пластинка слизистой оболочки матки; 11 - первичные ворсинки

    плазмой, формируют тонкий слой под эпибластом. Часть клеток эпибласта в дальнейшем образуют стенку амниотического пузырька, который начинает формироваться на 8-е сут. В области дна амниотического пузырька остается небольшая группа клеток эпибласта - материал, который пойдет на развитие тела зародыша и внезародышевых органов.

    Вслед за деламинацией отмечается выселение клеток из наружного и внутреннего листков в полость бластоцисты, что знаменует формирование внезародышевой мезенхимы. К 11-м сут мезенхима подрастает к трофобласту и формируется хорион - ворсинчатая оболочка зародыша с первичными хориальными ворсинками (см. рис. 21.10).

    Вторая стадия гаструляции происходит путем иммиграции (перемещения) клеток (рис. 21.11). Перемещение клеток происходит в области дна амниотического пузырька. Возникают клеточные потоки по направлению спереди назад, к центру и вглубь в результате размножения клеток (см. рис. 21.10). Это приводит к образованию первичной полоски. В головном конце первичная полоска утолщается, образуя первичный, или головной, узелок (рис. 21.12), откуда берет свое начало головной отросток. Головной отросток растет в краниальном направлении между эпи- и гипобластом и в дальнейшем дает начало развитию хорды зародыша, который определяет ось эмбриона, является основой развития костей осевого скелета. Вокруг хоры в будущем формируется позвоночный столб.

    Клеточный материал, который перемещается из первичной полоски в пространство между эпибластом и гипобластом, располагается в виде мезо-дермальных крыльев парахордально. Часть клеток эпибласта внедряется в гипобласт, участвуя в образовании кишечной энтодермы. В результате зародыш приобретает трехслойное строение в виде плоского диска, состоящего из трех зародышевых листков: эктодермы, мезодермы и энтодермы.

    Факторы, влияющие на механизмы гаструляции. Способы и скорость гастру-ляции определяются рядом факторов: дорсовентральным метаболическим градиентом, обусловливающим асинхронность размножения, дифференцировки и перемещения клеток; поверхностным натяжением клеток и межклеточными контактами, способствующими смещению групп клеток. Важную роль при этом играют индуктивные факторы. Согласно теории организационных центров, предложенной Г. Шпеманом, в определенных участках зародыша возникают индукторы (организующие факторы), которые оказывают индуцирующее влияние на другие участки зародыша, обусловливая их развитие в определенном направлении. Существуют индукторы (организаторы) нескольких порядков, действующих последовательно. Например, доказано, что организатор I порядка индуцирует развитие нервной пластинки из эктодермы. В нервной пластинке возникает организатор II порядка, способствующий превращению участка нервной пластинки в глазной бокал и т. п.

    В настоящее время выяснена химическая природа многих индукторов (белки, нуклеотиды, стероиды и др.). Установлена роль щелевых контактов в межклеточных взаимодействиях. Под действием индукторов, исходящих из одной клетки, индуцируемая клетка, обладающая способностью специфического ответа, изменяет путь развития. Клетка, не подвергающаяся индукционному воздействию, сохраняет свои прежние потенции.

    Дифференцировка зародышевых листков и мезенхимы начинается в конце 2-й - начале 3-й нед. Одна часть клеток преобразуется в зачатки тканей и органов зародыша, другая - во внезародышевые органы (см. главу 5, схему 5.3).

    Рис. 21.11. Строение 2-недельного зародыша человека. Вторая стадия гаструляции (схема):

    а - поперечный срез зародыша; б - зародышевый диск (вид со стороны амниоти-ческого пузырька). 1 - хориальный эпителий; 2 - мезенхима хориона; 3 - лакуны, заполненные материнской кровью; 4 - основание вторичной ворсины; 5 - амниоти-ческая ножка; 6 - амниотический пузырек; 7 - желточный пузырек; 8 - зародышевый щиток в процессе гаструляции; 9 - первичная полоска; 10 - зачаток кишечной энтодермы; 11 - желточный эпителий; 12 - эпителий амниотической оболочки; 13 - первичный узелок; 14 - прехордальный отросток; 15 - внезародышевая мезодерма; 16 - внезародышевая эктодерма; 17 - внезародышевая энтодерма; 18 - зародышевая эктодерма; 19 - зародышевая энтодерма

    Рис. 21.12. Зародыш человека 17 сут («Крым»). Графическая реконструкция: а - эмбриональный диск (вид сверху) с проекцией осевых закладок и дефинитивной сердечно-сосудистой системой; б - сагиттальный (средний) срез через осевые закладки. 1 - проекция билатеральных закладок эндокарда; 2 - проекция билатеральных закладок перикардиального целома; 3 - проекция билатеральных закладок корпоральных кровеносных сосудов; 4 - амниотическая ножка; 5 - кровеносные сосуды в амниотической ножке; 6 - кровяные островки в стенке желточного пузырька; 7 - бухта аллантоиса; 8 - полость амниотического пузырька; 9 - полость желточного мешка; 10 - трофобласт; 11 - хордальный отросток; 12 - головной узелок. Условные обозначения: первичная полоска - штриховка вертикальная; первичный головной узелок обозначен крестами; эктодерма - без штриховки; энтодерма - линии; внезародышевая мезодерма - точки (по Н. П. Барсукову и Ю. Н. Шаповалову)

    Дифференцировка зародышевых листков и мезенхимы, приводящая к появлению тканевых и органных зачатков, происходит неодновременно (гетерохронно), но взаимосвязанно (интегративно), в результате чего происходит формирование тканевых зачатков.

    21.3.1. Дифференцировка эктодермы

    При дифференцировке эктодермы образуются зародышевые части - кожная эктодерма, нейроэктодерма, плакоды, прехордальная пластинка, и вне-зародышевая эктодерма, являющаяся источником образования эпителиальной выстилки амниона. Меньшая часть эктодермы, расположенная над хордой (нейроэктодерма), дает начало дифференцировке нервной трубки и нервного гребня. Кожная эктодерма дает начало многослойному плоскому эпителию кожи (эпидермис) и ее производных, эпителию роговицы и конъюнктивы глаза, эпителию органов полости рта, эмали и кутикулы зубов, эпителию анального отдела прямой кишки, эпителиальной выстилке влагалища.

    Нейруляция - процесс образования нервной трубки - протекает по времени неодинаково в различных частях зародыша. Замыкание нервной трубки начинается в шейном отделе, а затем распространяется кзади и несколько замедленнее в краниальном направлении, где формируются мозговые пузыри. Примерно на 25-е сут нервная трубка полностью замыкается, с внешней средой сообщаются только два незамкнувшихся отверстия на переднем и заднем концах - передний и задний невропоры (рис. 21.13). Задний невропор соответствует нейрокишечному каналу. Через 5-6 сут оба невропора зарастают. Из нервной трубки образуются нейроны и нейроглия головного и спинного мозга, сетчатки глаза и органа обоняния.

    При смыкании боковых стенок нервных валиков и образовании нервной трубки появляется группа нейроэктодермальных клеток, образующихся в области соединения нейральной и остальной (кожной) эктодермы. Эти клетки, сначала располагающиеся в виде продольных рядов по обе стороны между нервной трубкой и эктодермой, образуют нервный гребень. Клетки нервного гребня способны к миграциям. В туловище одни клетки мигрируют в поверхностном слое дермы, другие - в вентральном направлении, образуя нейроны и нейроглию парасимпатических и симпатических узлов, хромаффинную ткань и мозговое вещество надпочечников. Часть клеток дифференцируется в нейроны и нейроглию спинномозговых узлов.

    Из эпибласта выделяются клетки прехордальной пластинки, которая включается в состав головного отдела кишечной трубки. Из материала прехор-дальной пластинки развивается в дальнейшем многослойный эпителий переднего отдела пищеварительной трубки и ее производных. Кроме того, из прехордальной пластинки образуется эпителий трахеи, легких и бронхов, а также эпителиальная выстилка глотки и пищевода, производных жаберных карманов - тимуса и др.

    По мнению А. Н. Бажанова, источником образования выстилки пищевода и дыхательных путей служит энтодерма головной кишки.

    Рис. 21.13. Нейруляция у зародыша человека:

    а - вид со спины; б - поперечные срезы. 1 - передний нейропор; 2 - задний ней-ропор; 3 - эктодерма; 4 - нервная пластинка; 5 - нервный желобок; 6 - мезодерма; 7 - хорда; 8 - энтодерма; 9 - нервная трубка; 10 - нервный гребень; 11 - головной мозг; 12 - спинной мозг; 13 - спинномозговой канал

    Рис. 21.14. Зародыш человека на стадии образования туловищной складки и внезаро-дышевых органов (по П. Петкову):

    1 - симпластотрофобласт; 2 - цитотрофобласт; 3 - внезародышевая мезенхима; 4 - место амниотической ножки; 5 - первичная кишка; 6 - полость амниона; 7 - эктодерма амниона; 8 - внезародышевая мезенхима амниона; 9 - полость желточного пузырька; 10 - энтодерма желточного пузырька; 11 - внезародышевая мезенхима желточного пузырька; 12 - аллантоис. Стрелками обозначено направление образования туловищной складки

    В составе зародышевой эктодермы закладываются плакоды, являющиеся источником развития эпителиальных структур внутреннего уха. Из внезаро-дышевой эктодермы образуется эпителий амниона и пупочного канатика.

    21.3.2. Дифференцировка энтодермы

    Дифференцировка энтодермы приводит к образованию в теле зародыша энтодермы кишечной трубки и формированию внезародышевой энтодермы, формирующей выстилку желточного пузырька и аллантоиса (рис. 21.14).

    Выделение кишечной трубки начинается с момента появления туловищной складки. Последняя, углубляясь, отделяет кишечную энтодерму будущей кишки от внезародышевой энтодермы желточного пузырька. В задней части зародыша в состав образующейся кишки входит и тот участок энтодермы, из которого возникает энтодермальный вырост аллантоиса.

    Из энтодермы кишечной трубки развивается однослойный покровный эпителий желудка, кишечника и их желез. Кроме того, из энто-

    дермы развиваются эпителиальные структуры печени и поджелудочной железы.

    Внезародышевая энтодерма дает начало эпителию желточного мешка и аллантоиса.

    21.3.3. Дифференцировка мезодермы

    Этот процесс начинается на 3-й нед эмбриогенеза. Дорсальные участки мезодермы разделяются на плотные сегменты, лежащие по сторонам от хорды, - сомиты. Процесс сегментации дорсальной мезодермы и образования сомитов начинается в головной части зародыша и быстро распространяется в каудальном направлении.

    У эмбриона на 22-е сут развития имеется 7 пар сегментов, на 25-е - 14, на 30-е - 30 и на 35-е - 43 -44 пары. В отличие от сомитов вентральные отделы мезодермы (спланхнотом) не сегментируются, а расщепляются на два листка - висцеральный и париетальный. Небольшой участок мезодермы, связывающий сомиты со спланхнотомом, разделяется на сегменты - сегментные ножки (нефрогонотом). На заднем конце зародыша сегментации этих отделов не происходит. Здесь взамен сегментных ножек располагается несегментированный нефрогенный зачаток (нефрогенный тяж). Из мезодермы зародыша развивается также парамезонефральный канал.

    Сомиты дифференцируются на три части: миотом, дающий начало поперечнополосатой скелетной мышечной ткани, склеротом, являющийся источником развития костных и хрящевых тканей, а также дерматом, формирующий соединительнотканную основу кожи - дерму.

    Из сегментных ножек (нефрогонотомов) развиваются эпителий почек, гонад и семявыводящих путей, а из парамезонефрального канала - эпителий матки, маточных труб (яйцеводов) и эпителий первичной выстилки влагалища.

    Париетальный и висцеральный листки спланхнотома образуют эпителиальную выстилку серозных оболочек - мезотелий. Из части висцерального листка мезодермы (миоэпикардиальная пластинка) развиваются средняя и наружная оболочки сердца - миокард и эпикард, а также корковое вещество надпочечников.

    Мезенхима в теле зародыша является источником формирования многих структур - клеток крови и кроветворных органов, соединительной ткани, сосудов, гладкой мышечной ткани, микроглии (см. главу 5). Из внезароды-шевой мезодермы развивается мезенхима, дающая начало соединительной ткани внезародышевых органов, - амниона, аллантоиса, хориона, желточного пузырька.

    Соединительная ткань эмбриона и его провизорных органов характеризуется высокой гидрофильностью межклеточного вещества, богатством глико-заминогликанов в аморфном веществе. Соединительная ткань провизорных органов дифференцируется быстрее, чем в органных зачатках, что обусловлено потребностью в установлении связи зародыша с материнским организмом и

    обеспечении их развития (например, плацента). Дифференцировка мезенхимы хориона наступает рано, но происходит не одновременно по всей поверхности. Наиболее активно процесс идет в области развития плаценты. Здесь же появляются и первые волокнистые структуры, которые играют важную роль в формировании и укреплении плаценты в матке. При развитии волокнистых структур стромы ворсин последовательно образуются сначала аргирофильные преколлагеновые волокна, а затем коллагеновые.

    На 2-м мес развития в зародыше человека раньше всего начинается диф-ференцировка скелетогенной и кожной мезенхимы, а также мезенхимы стенки сердца и крупных кровеносных сосудов.

    Артерии мышечного и эластического типа эмбрионов человека, а также артерии стволовых (якорных) ворсин плаценты и их разветвлений содержат десминотрицательные гладкие миоциты, обладающие свойством более быстрого сокращения.

    На 7-й нед развития зародыша человека в кожной мезенхиме и мезенхиме внутренних органов появляются мелкие липидные включения, а позднее (8-9-я нед) происходит формирование жировых клеток. Вслед за развитием соединительной ткани сердечно-сосудистой системы дифференцируется соединительная ткань легких и пищеварительной трубки. Дифференцировка мезенхимы у зародышей человека (длиной 11-12 мм) на 2-м мес развития начинается с увеличения количества гликогена в клетках. В этих же участках возрастает активность фосфатаз, а в дальнейшем в ходе дифференцировки накапливаются гликопротеины, синтезируются РНК и белок.

    Плодный период. Плодный период начинается с 9-й нед и характеризуется значительными морфогенетическими процессами, протекающими в организме как плода, так и матери (табл. 21.1).

    Таблица 21.1. Краткий календарь внутриутробного развития человека (с дополнениями по Р. К. Данилову, Т. Г. Боровой, 2003)

    Продолжение табл. 21.1

    Продолжение табл. 21.1

    Продолжение табл. 21.1

    Продолжение табл. 21.1

    Продолжение табл. 21.1

    Продолжение табл. 21.1

    Продолжение табл. 21.1

    Окончание табл. 21.1

    21.4. ВНЕЗАРОДЫШЕВЫЕ ОРГАНЫ

    Внезародышевые органы, развивающиеся в процессе эмбриогенеза вне тела зародыша, выполняют многообразные функции, обеспечивающие рост и развитие самого зародыша. Некоторые из этих органов, окружающих зародыш, называют также зародышевыми оболочками. К этим органам относятся амнион, желточный мешок, аллантоис, хорион, плацента (рис. 21.15).

    Источниками развития тканей внезародышевых органов являются троф-эктодерма и все три зародышевых листка (схема 21.1). Общие свойства тка-

    Рис. 21.15. Развитие внезародышевых органов у зародыша человека (схема): 1 - амниотический пузырек; 1а - полость амниона; 2 - тело эмбриона; 3 - желточный мешок; 4 - внеэмбриональный целом; 5 - первичные ворсины хориона; 6 - вторичные ворсины хориона; 7 - стебелек аллантоиса; 8 - третичные ворсины хориона; 9 - аллан-тоис; 10 - пупочный канатик; 11 - гладкий хорион; 12 - котиледоны

    Схема 21.1. Классификация тканей внезародышевых органов (по В. Д. Новикову, Г. В. Правоторову, Ю. И. Склянову)

    ней внезародышевых органов и их отличия от дефинитивных сводятся к следующему: 1) развитие тканей является сокращенным и ускоренным; 2) соединительная ткань содержит мало клеточных форм, но много аморфного вещества, богатого гликозаминогликанами; 3) старение тканей внеза-родышевых органов происходит очень быстро - к концу внутриутробного развития.

    21.4.1. Амнион

    Амнион - временный орган, обеспечивающий водную среду для развития зародыша. Он возник в эволюции в связи с выходом позвоночных животных из воды на сушу. В эмбриогенезе человека он появляется на второй стадии гаструляции сначала как небольшой пузырек в составе эпибласта.

    Стенка амниотического пузырька состоит из пласта клеток внезароды-шевой эктодермы и из внезародышевой мезенхимы, формирует его соединительную ткань.

    Амнион быстро увеличивается, и к концу 7-й нед его соединительная ткань входит в контакт с соединительной тканью хориона. При этом эпителий амниона переходит на амниотическую ножку, превращающуюся позднее в пупочный канатик, и в области пупочного кольца смыкается с эпителиальным покровом кожи эмбриона.

    Амниотическая оболочка образует стенку резервуара, заполненного амниотической жидкостью, в которой находится плод (рис. 21.16). Основная функция амниотической оболочки - выработка околоплодных вод, обеспечивающих среду для развивающегося организма и предохраняющих его от механического повреждения. Эпителий амниона, обращенный в его полость, не только выделяет околоплодные воды, но и принимает участие в обратном всасывании их. В амниотической жидкости поддерживаются до конца беременности необходимый состав и концентрация солей. Амнион выполняет также защитную функцию, предупреждая попадание в плод вредоносных агентов.

    Эпителий амниона на ранних стадиях - однослойный плоский, образован крупными полигональными, тесно прилегающими друг к другу клетками, среди которых много митотически делящихся. На 3-м мес эмбриогенеза эпителий преобразуется в призматический. На поверхности эпителия имеются микроворсинки. В цитоплазме всегда содержатся небольшие капли липидов и гранулы гликогена. В апикальных частях клеток имеются различной величины вакуоли, содержимое которых выделяется в полость амниона. Эпителий амниона в области плацентарного диска однослойный призматический, местами многорядный, выполняет преимущественно секреторную функцию, в то время как эпителий вне-плацентарного амниона осуществляет в основном резорбцию околоплодных вод.

    В соединительнотканной строме амниотической оболочки различают базальную мембрану, слой плотной волокнистой соединительной ткани и губчатый слой из рыхлой волокнистой соединительной ткани, связываю-

    Рис. 21.16. Динамика взаимоотношений зародыша, внезародышевых органов и оболочек матки:

    а - зародыш человека 9,5 нед развития (микрофотография): 1 - амнион; 2 - хорион; 3 - формирующаяся плацента; 4 - пуповина

    щий амнион с хорионом. В слое плотной соединительной ткани можно выделить лежащую под базальной мембраной бесклеточную часть и клеточную часть. Последняя состоит из нескольких слоев фибробластов, между которыми находится густая сеть плотно прилежащих друг к другу тонких пучков коллагеновых и ретикулярных волокон, образующих решетку неправильной формы, ориентированную параллельно поверхности оболочки.

    Губчатый слой образован рыхлой слизистой соединительной тканью с редкими пучками коллагеновых волокон, являющихся продолжением тех, которые залегают в слое плотной соединительной ткани, связывая амнион с хорионом. Связь эта очень непрочная, и поэтому обе оболочки легко отделить друг от друга. В основном веществе соединительной ткани много гликозаминогликанов.

    21.4.2. Желточный мешок

    Желточный мешок - наиболее древний в эволюции внезародышевый орган, возникший как орган, депонирующий питательные вещества (желток), необходимые для развития зародыша. У человека это рудиментарное образование (желточный пузырек). Он образован внезародышевой энтодермой и внезародышевой мезодермой (мезенхимой). Появившись на 2-й нед развития у человека, желточный пузырек в питании зародыша принимает

    Рис. 21.16. Продолжение

    б - схема: 1 - мышечная оболочка матки; 2 - decidua basalis; 3 - полость амниона; 4 - полость желточного мешка; 5 - внеэмбриональный целом (полость хориона); 6 - decidua capsularis; 7 - decidua parietalis; 8 - полость матки; 9 - шейки матки; 10 - эмбрион; 11 - третичные ворсинки хориона; 12 - аллантоис; 13 - мезенхима пупочного канатика: а - кровеносные сосуды ворсины хориона; б - лакуны с материнской кровью (по Гамильтону, Бойду и Моссману)

    участие очень недолго, так как с 3-й нед развития устанавливается связь плода с материнским организмом, т. е. гематотрофное питание. Желточный мешок позвоночных является первым органом, в стенке которого развиваются кровяные островки, формирующие первые клетки крови и первые кровеносные сосуды, обеспечивающие у плода перенос кислорода и питательных веществ.

    По мере образования туловищной складки, приподнимающей зародыш над желточным пузырьком, формируется кишечная трубка, при этом желточный пузырек отделяется от тела зародыша. Связь зародыша с желточным пузырьком остается в виде полого канатика, называемого желточным стебельком. В качестве кроветворного органа желточный мешок функционирует до 7-8-й нед, а затем подвергается обратному развитию и остается в составе пупочного канатика в виде узкой трубочки, служащей проводником кровеносных сосудов к плаценте.

    21.4.3. Аллантоис

    Аллантоис представляет собой небольшой пальцевидный отросток в кау-дальном отделе зародыша, врастающий в амниотическую ножку. Он является производным желточного мешка и состоит из внезародышевой энтодермы и висцерального листка мезодермы. У человека аллантоис не достигает значительного развития, но его роль в обеспечении питания и дыхания зародыша все же велика, так как по нему к хориону растут сосуды, располагающиеся в пупочном канатике. Проксимальная часть аллантоиса располагается вдоль желточного стебелька, а дистальная, разрастаясь, врастает в щель между амнионом и хорионом. Это орган газообмена и выделения. По сосудам аллантоиса доставляется кислород, а в аллантоис выделяются продукты обмена веществ зародыша. На 2-м мес эмбриогенеза аллантоис редуцируется и превращается в тяж клеток, который вместе с редуцированным желточным пузырьком входит в состав пупочного канатика.

    21.4.4. Пупочный канатик

    Пупочный канатик, или пуповина, представляет собой упругий тяж, соединяющий зародыш (плод) с плацентой. Он покрыт амниотической оболочкой, окружающей слизистую соединительную ткань с кровеносными сосудами (две пупочные артерии и одна вена) и рудиментами желточного пузырька и аллантоиса.

    Слизистая соединительная ткань, получившая название «вартонова студня», обеспечивает упругость канатика, предохраняет пупочные сосуды от сжатия, обеспечивая тем самым непрерывное снабжение эмбриона питательными веществами, кислородом. Наряду с этим она препятствует проникновению вредоносных агентов из плаценты к эмбриону внесосудистым путем и таким образом выполняет защитную функцию.

    Иммуноцитохимическими методами установлено, что в кровеносных сосудах пупочного канатика, плаценты и эмбриона существуют гетерогенные гладкие мышечные клетки (ГМК). В венах в отличие от артерий обнаружены десминположительные ГМК. Последние обеспечивают медленные тонические сокращения вен.

    21.4.5. Хорион

    Хорион, или ворсинчатая оболочка, появляется впервые у млекопитающих, развивается из трофобласта и внезародышевой мезодермы. Первоначально трофобласт представлен слоем клеток, образующих первичные ворсинки. Они выделяют протеолитические ферменты, с помощью которых разрушается слизистая оболочка матки и осуществляется имплантация. На 2-й нед трофобласт приобретает двухслойное строение в связи с формированием в нем внутреннего клеточного слоя (цитотрофобласт) и симпластического наружного слоя (симпластотрофобласт), который является производным клеточного слоя. Появляющаяся по периферии эмбриобласта внезародыше-вая мезенхима (у человека на 2-3-й нед развития) подрастает к трофобла-сту и образует вместе с ним вторичные эпителиомезенхимальные ворсинки. С этого времени трофобласт превращается в хорион, или ворсинчатую оболочку (см. рис. 21.16).

    В начале 3-й нед в ворсинки хориона врастают кровеносные капилляры и формируются третичные ворсинки. Это совпадает с началом гема-тотрофного питания зародыша. Дальнейшее развитие хориона связано с двумя процессами - разрушением слизистой оболочки матки вследствие протеолитической активности наружного (симпластического) слоя и развитием плаценты.

    21.4.6. Плацента

    Плацента (детское место) человека относится к типу дискоидальных гемохориальных ворсинчатых плацент (см. рис. 21.16; рис. 21.17). Это важный временный орган с многообразными функциями, которые обеспечивают связь плода с материнским организмом. Вместе с тем плацента создает барьер между кровью матери и плода.

    Плацента состоит из двух частей: зародышевой, или плодной (pars fetalis), и материнской (pars materna). Плодная часть представлена ветвистым хорионом и приросшей к хориону изнутри амниотической оболочкой, а материнская - видоизмененной слизистой оболочкой матки, отторгающейся при родах (decidua basalis).

    Развитие плаценты начинается на 3-й нед, когда во вторичные ворсины начинают врастать сосуды и образовываться третичные ворсины, и заканчивается к концу 3-го мес беременности. На 6-8-й нед вокруг сосудов

    Рис. 21.17. Плацента гемохориального типа. Динамика развития ворсин хориона: а - строение плаценты (стрелками указана циркуляция крови в сосудах и в одной из лакун, где удалена ворсинка): 1 - эпителий амниона; 2 - хориальная пластинка; 3 - ворсинка; 4 - фибриноид; 5 - желточный пузырек; 6 - пупочный канатик; 7 - перегородка плаценты; 8 - лакуна; 9 - спиральная артерия; 10 - базальный слой эндометрия; 11 - миометрий; б - строение первичной ворсины трофобласта (1-я нед); в - строение вторичной эпителиально-мезенхимальной ворсины хориона (2-я нед); г - строение третичной ворсины хориона - эпителиально-мезенхимальной с кровеносными сосудами (3-я нед); д - строение ворсины хориона (3-й мес); е - строение ворсин хориона (9-й мес): 1 - межворсинчатое пространство; 2 - микроворсинки; 3 - симпластотрофобласт; 4 - ядра симпластотрофобласта; 5 - цито-трофобласт; 6 - ядро цитотрофобласта; 7 - базальная мембрана; 8 - межклеточное пространство; 9 - фибробласт; 10 - макрофаги (клетки Кащенко-Гофбауэра); 11 - эндотелиоцит; 12 - просвет кровеносного сосуда; 13 - эритроцит; 14 - базальная мембрана капилляра (по Э. М. Швирсту)

    дифференцируются элементы соединительной ткани. В дифференцировке фибробластов и синтезе ими коллагена важную роль играют витамины А и С, без достаточного поступления которых в организм беременной нарушается прочность связи зародыша с материнским организмом и создается угроза самопроизвольного аборта.

    В основном веществе соединительной ткани хориона содержится значительное количество гиалуроновой и хондроитинсерной кислот, с которыми связана регуляция проницаемости плаценты.

    При развитии плаценты происходят разрушение слизистой оболочки матки, обусловленное протеолитической активностью хориона, и смена гистиотрофного питания на гематотрофное. Это означает, что ворсины хориона омываются кровью матери, излившейся из разрушенных сосудов эндометрия в лакуны. Однако кровь матери и плода в нормальных условиях никогда не смешивается.

    Гематохориальный барьер, разделяющий оба кровотока, состоит из эндотелия сосудов плода, окружающей сосуды соединительной ткани, эпителия хориальных ворсин (цитотрофобласт и симпластотрофобласт), а кроме того, из фибриноида, который местами покрывает ворсины снаружи.

    Зародышевая, или плодная, часть плаценты к концу 3-го мес представлена ветвящейся хориальной пластинкой, состоящей из волокнистой (коллаге-новой) соединительной ткани, покрытой цито- и симпластотрофобластом (многоядерная структура, покрывающая редуцирующийся цитотрофо-бласт). Ветвящиеся ворсины хориона (стволовые, якорные) хорошо развиты лишь со стороны, обращенной к миометрию. Здесь они проходят через всю толщу плаценты и своими вершинами погружаются в базальную часть разрушенного эндометрия.

    Хориальный эпителий, или цитотрофобласт, на ранних стадиях развития представлен однослойным эпителием с овальными ядрами. Эти клетки размножаются митотическим путем. Из них развивается симпластотрофобласт.

    В симпластотрофобласте содержится большое количество различных про-теолитических и окислительных ферментов (АТФ-азы, щелочная и кислая

    Рис. 21.18. Срез ворсины хориона 17-суточного зародыша человека («Крым»). Микрофотография:

    1 - симпластотрофобласт; 2 - цитотрофобласт; 3 - мезенхима хориона (по Н. П. Барсукову)

    фосфатазы, 5-нуклеотидазы, ДПН-диафоразы, глюкозо-6-фосфатдегид-рогеназы, альфа-ГФДГ, сукцинатдегидрогеназа - СДГ, цитохромоксидаза - ЦО, моноаминоксидаза - МАО, неспецифические эстеразы, ЛДГ, НАД- и НАДФ-диафоразы и др. - всего около 60), что связано с его ролью в обменных процессах между организмом матери и плода. В цитотрофобласте и в симпласте выявляются пиноцитозные пузырьки, лизосомы и другие орга-неллы. Начиная со 2-го мес, хориальный эпителий истончается и постепенно заменяется симпластотрофобластом. В этот период симпластотрофобласт по толщине превосходит цитотрофобласт. На 9-10-й нед симпласт истончается, а количество ядер в нем увеличивается. На поверхности симпласта, обращенной в лакуны, появляются многочисленные микроворсинки в виде щеточной каемки (см. рис. 21.17; рис. 21.18, 21.19).

    Между симпластотрофобластом и клеточным трофобластом имеются ще-левидные субмикроскопические пространства, доходящие местами до ба-зальной мембраны трофобласта, что создает условия для двустороннего проникновения трофических веществ, гормонов и др.

    Во второй половине беременности и, особенно, в конце нее трофобласт сильно истончается и ворсины покрываются фибриноподобной оксифиль-ной массой, являющейся продуктом свертывания плазмы и распада трофо-бласта («фибриноид Лангханса»).

    С увеличением срока беременности уменьшается количество макрофагов и коллагенпродуцирующих дифференцированных фибробластов, появля-

    Рис. 21.19. Плацентарный барьер на 28-й нед беременности. Электронная микрофотография, увеличение 45 000 (по У. Ю. Яцожинской):

    1 - симпластотрофобласт; 2 - цитотрофобласт; 3 - базальная мембрана трофобласта; 4 - базальная мембрана эндотелия; 5 - эндотелиоцит; 6 - эритроцит в капилляре

    ются фиброциты. Количество коллагеновых волокон, хотя и нарастает, но до конца беременности в большинстве ворсин остается незначительным. Большая часть стромальных клеток (миофибробластов) характеризуется увеличенным содержанием цитоскелетных сократительных белков (вимен-тин, десмин, актин и миозин).

    Структурно-функциональной единицей сформированной плаценты является котиледон, образованный стволовой («якорной») ворсиной и ее

    вторичными и третичными (конечными) разветвлениями. Общее количество котиледонов в плаценте достигает 200.

    Материнская часть плаценты представлена базальной пластинкой и соединительнотканными септами, отделяющими котиледоны друг от друга, а также лакунами, заполненными материнской кровью. В местах контакта стволовых ворсин с отпадающей оболочкой встречаются также трофобла-стические клетки (периферический трофобласт).

    На ранних стадиях беременности ворсины хориона разрушают ближайшие к плоду слои основной отпадающей оболочки матки, и на их месте образуются заполненные материнской кровью лакуны, в которые свободно свисают ворсины хориона.

    Глубокие неразрушенные части отпадающей оболочки вместе с трофо-бластом образуют базальную пластинку.

    Базальный слой эндометрия (lamina basalis) - соединительная ткань слизистой оболочки матки, содержащая децидуальные клетки. Эти крупные, богатые гликогеном клетки соединительной ткани расположены в глубоких слоях слизистой оболочки матки. Они имеют четкие границы, округлые ядра и оксифильную цитоплазму. В течение 2-го мес беременности децидуальные клетки значительно укрупняются. В их цитоплазме, кроме гликогена, выявляются липиды, глюкоза, витамин С, железо, неспецифические эстеразы, дегидрогеназа янтарной и молочной кислот. В базальной пластинке, чаще в месте прикрепления ворсин к материнской части плаценты, встречаются скопления клеток периферического цитотрофобласта. Они напоминают децидуальные клетки, но отличаются более интенсивной базо-филией цитоплазмы. Аморфная субстанция (фибриноид Рора) находится на поверхности базальной пластинки, обращенной к хориальным ворсинам. Фибриноид играет существенную роль в обеспечении иммунологического гомеостаза в системе мать-плод.

    Часть основной отпадающей оболочки, расположенной на границе ветвистого и гладкого хориона, т. е. по краю плацентарного диска, при развитии плаценты не разрушается. Плотно прирастая к хориону, она образует замыкающую пластинку, препятствующую истечению крови из лакун плаценты.

    Кровь в лакунах непрерывно циркулирует. Она поступает из маточных артерий, входящих сюда из мышечной оболочки матки. Эти артерии идут по плацентарным перегородкам и открываются в лакуны. Материнская кровь оттекает от плаценты по венам, берущим начало от лакун крупными отверстиями.

    Формирование плаценты заканчивается в конце 3-го мес беременности. Плацента обеспечивает питание, тканевое дыхание, рост, регуляцию образовавшихся к этому времени зачатков органов плода, а также его защиту.

    Функции плаценты. Основные функции плаценты: 1) дыхательная; 2) транспорт питательных веществ; воды; электролитов и иммуноглобулинов; 3) выделительная; 4) эндокринная; 5) участие в регуляции сокращения миометрия.

    Дыхание плода обеспечивается за счет кислорода, присоединенного к гемоглобину материнской крови, который путем диффузии поступает через плаценту в кровь плода, где он соединяется с фетальным гемоглобином

    (HbF). Связанный с фетальным гемоглобином СО 2 в крови плода также диффундирует через плаценту, поступает в кровь матери, где соединяется с материнским гемоглобином.

    Транспорт всех питательных веществ, необходимых для развития плода (глюкоза, аминокислоты, жирные кислоты, нуклеотиды, витамины, минеральные вещества), происходит из крови матери через плаценту в кровь плода, и, наоборот, из крови плода в кровь матери поступают продукты обмена веществ, выводимые из его организма (выделительная функция). Электролиты и вода проходят через плаценту путем диффузии и с помощью пиноцитоза.

    В транспорте иммуноглобулинов участвуют пиноцитозные везикулы симпластотрофобласта. Поступивший в кровь плода иммуноглобулин пассивно иммунизирует его от возможного действия бактериальных антигенов, которые могут поступать при заболеваниях матери. После рождения материнский иммуноглобулин разрушается и заменяется вновь синтезируемым в организме ребенка при действии на него бактериальных антигенов. Через плаценту в околоплодные воды проникают IgG, IgA.

    Эндокринная функция является одной из наиболее важных, так как плацента обладает способностью синтезировать и секретировать ряд гормонов, обеспечивающих взаимодействие зародыша и материнского организма на протяжении всей беременности. Местом продукции плацентарных гормонов являются цитотрофобласт и особенно симпластотрофобласт, а также децидуальные клетки.

    Одним из первых плацента синтезирует хорионический гонадотропин, концентрация которого быстро нарастает на 2-3-й нед беременности, достигая максимума на 8-10-й нед, причем в крови плода она в 10-20 раз выше, чем в крови матери. Гормон стимулирует образование адренокортикотропного гормона (АКТГ) гипофиза, усиливает секрецию кортикостероидов.

    Большую роль в развитии беременности играет плацентарный лактоген, который обладает активностью пролактина и лютеотропного гормона гипофиза. Он поддерживает стероидогенез в желтом теле яичника в первые 3 мес беременности, а также принимает участие в метаболизме углеводов и белков. Концентрация его в крови матери прогрессивно нарастает на 3-4-м мес беременности и в дальнейшем продолжает увеличиваться, достигая максимума к 9-му мес. Этот гормон совместно с пролактином гипофиза матери и плода играет определенную роль в продукции легочного сурфактанта и фетоплацен-тарной осморегуляции. Высокая концентрация его обнаруживается в околоплодных водах (в 10-100 раз больше, чем в крови матери).

    В хорионе, а также в децидуальной оболочке синтезируются прогестерон и прегнандиол.

    Прогестерон (вырабатываемый сначала желтым телом в яичнике, а с 5-6-й нед в плаценте) подавляет сокращения матки, стимулирует ее рост, оказывает иммунодепрессивное действие, подавляя реакцию отторжения плода. Около 3/4 прогестерона в организме матери метаболизируется и трансформируется в эстрогены, а часть выделяется с мочой.

    Эстрогены (эстрадиол, эстрон, эстриол) вырабатываются в симпласто-трофобласте ворсин плаценты (хориона) в середине беременности, а к концу

    беременности их активность усиливается в 10 раз. Они вызывают гиперплазию и гипертрофию матки.

    Кроме того, в плаценте синтезируются меланоцитостимулирующий и адренокортикотропный гормоны, соматостатин и др.

    В плаценте содержатся полиамины (спермин, спермидин), влияющие на усиление синтеза РНК в гладких мышечных клетках миометрия, а также на разрушающие их оксидазы. Важную роль играют аминооксидазы (гиста-миназа, моноаминоксидаза), разрушающие биогенные амины - гистамин, серотонин, тирамин. Во время беременности их активность возрастает, что способствует разрушению биогенных аминов и падению концентрации последних в плаценте, миометрии и крови матери.

    Во время родов гистамин и серотонин являются наряду с катехоламинами (норадреналин, адреналин) стимуляторами сократительной деятельности гладких мышечных клеток (ГМК) матки, и к концу беременности их концентрация значительно возрастает в связи с резким снижением (в 2 раза) активности аминооксидаз (гистаминаза и др.).

    При слабой родовой деятельности отмечается усиление активности аминоокси-даз, например гистаминазы (в 5 раз).

    Нормальная плацента не является абсолютным барьером для белков. В частности, фетопротеин в конце 3-го мес беременности проникает в небольшом количестве (около 10 %) из плода в кровь матери, но на этот антиген материнский организм не отвечает отторжением, так как во время беременности уменьшается цитотоксич-ность материнских лимфоцитов.

    Плацента препятствует прохождению ряда материнских клеток и цитотоксиче-ских антител к плоду. Главную роль в этом играет фибриноид, покрывающий тро-фобласт при его частичном повреждении. Это предотвращает поступление в межворсинчатое пространство плацентарных и плодовых антигенов, а также ослабляет гуморальную и клеточную «атаку» матери против зародыша.

    В заключение отметим основные особенности ранних стадий развития зародыша человека: 1) асинхронный тип полного дробления и образование «светлых» и «темных» бластомеров; 2) раннее обособление и формирование внезародышевых органов; 3) раннее образование амниотического пузырька и отсутствие амниотических складок; 4) наличие в стадии гаструляции двух механизмов - деламинации и иммиграции, в течение которых происходит также развитие провизорных органов; 5) интерстициальный тип имплантации; 6) сильное развитие амниона, хориона, плаценты и слабое развитие желточного мешка и аллантоиса.

    21.5. СИСТЕМА МАТЬ-ПЛОД

    Система мать-плод возникает в процессе беременности и включает две подсистемы - организм матери и организм плода, а также плаценту, являющуюся связующим звеном между ними.

    Взаимодействие между организмом матери и организмом плода обеспечивается прежде всего нейрогуморальными механизмами. При этом в обеих подсистемах различают следующие механизмы: рецепторные, воспринимающие информацию, регуляторные, осуществляющие ее переработку, и исполнительные.

    Рецепторные механизмы организма матери расположены в матке в виде чувствительных нервных окончаний, которые первыми воспринимают информацию о состоянии развивающегося плода. В эндометрии находятся хемо-, механо- и терморецепторы, а в кровеносных сосудах - барорецепторы. Рецепторные нервные окончания свободного типа особенно многочисленны в стенках маточной вены и в децидуальной оболочке в области прикрепления плаценты. Раздражение рецепторов матки вызывает изменения интенсивности дыхания, кровяного давления в организме матери, что обеспечивает нормальные условия для развивающегося плода.

    Регуляторные механизмы организма матери включают отделы ЦНС (височная доля мозга, гипоталамус, мезэнцефальный отдел ретикулярной формации), а также гипоталамо-эндокринную систему. Важную регуляторную функцию выполняют гормоны: половые, тироксин, кортикостероиды, инсулин и др. Так, во время беременности происходят усиление активности коры надпочечников матери и повышение выработки кортикостероидов, которые участвуют в регуляции метаболизма плода. В плаценте вырабатывается хорионический гонадотропин, стимулирующий образование АКТГ гипофиза, который активизирует деятельность коры надпочечников и усиливает секрецию кортикостероидов.

    Регуляторные нейроэндокринные аппараты матери обеспечивают сохранение беременности, необходимый уровень функционирования сердца, сосудов, кроветворных органов, печени и оптимальный уровень обмена веществ, газов в зависимости от потребностей плода.

    Рецепторные механизмы организма плода воспринимают сигналы об изменениях организма матери или собственного гомеостаза. Они обнаружены в стенках пупочных артерий и вены, в устьях печеночных вен, в коже и кишечнике плода. Раздражение этих рецепторов приводит к изменению частоты сердцебиения плода, скорости кровотока в его сосудах, влияет на содержание сахара в крови и т. д.

    Регуляторные нейрогуморальные механизмы организма плода формируются в процессе развития. Первые двигательные реакции у плода появляются на 2- 3-м мес развития, что свидетельствует о созревании нервных центров. Механизмы, регулирующие газовый гомеостаз, формируются в конце II триместра эмбриогенеза. Начало функционирования центральной эндокринной железы - гипофиза - отмечается на 3-м мес развития. Синтез кортикостероидов в надпочечниках плода начинается со второй половины беременности и увеличивается с его ростом. У плода усилен синтез инсулина, который необходим для обеспечения его роста, связанного с углеводным и энергетическим обменом.

    Действие нейрогуморальных регуляторных систем плода направлено на исполнительные механизмы - органы плода, обеспечивающие изменение интенсивности дыхания, сердечно-сосудистой деятельности, мышечной активности и т. п., и на механизмы, определяющие изменение уровня газообмена, обмена веществ, терморегуляции и других функций.

    В обеспечении связей в системе мать-плод особо важную роль играет плацента, которая способна не только аккумулировать, но и синтезировать вещества, необходимые для развития плода. Плацента выполняет эндокринные функции, вырабатывая ряд гормонов: прогестерон, эстроген, хориониче-ский гонадотропин (ХГ), плацентарный лактоген и др. Через плаценту между матерью и плодом осуществляются гуморальные и нервные связи.

    Существуют также экстраплацентарные гуморальные связи через плодные оболочки и амниотическую жидкость.

    Гуморальный канал связи - самый обширный и информативный. Через него происходит поступление кислорода и углекислого газа, белков, углеводов, витаминов, электролитов, гормонов, антител и др. (рис. 21.20). В норме чужеродные вещества не проникают из организма матери через плаценту. Они могут начать проникать лишь в условиях патологии, когда нарушена барьерная функция плаценты. Важным компонентом гуморальных связей являются иммунологические связи, обеспечивающие поддержание иммунного гомеостаза в системе мать-плод.

    Несмотря на то, что организмы матери и плода генетически чужеродны по составу белков, иммунологического конфликта обычно не происходит. Это обеспечивается рядом механизмов, среди которых существенное значение имеют следующие: 1) синтезируемые симпластотрофобластом белки, тормозящие иммунный ответ материнского организма; 2) хориональный гонадотропин и плацентарный лактоген, находящиеся в высокой концентрации на поверхности симпластотрофобласта; 3) иммуномаскирую-щее действие гликопротеидов перицеллюлярного фибриноида плаценты, заряженного так же, как и лимфоциты омывающей крови, отрицательно; 4) протеолитические свойства трофобласта также способствуют инактивации чужеродных белков.

    В иммунной защите принимают участие и амниотические воды, содержащие антитела, блокирующие антигены А и В, свойственные крови беременной, и не допускают их в кровь плода.

    Организмы матери и плода представляют собой динамическую систему гомологичных органов. Поражение какого-либо органа матери ведет к нарушению развития одноименного органа плода. Так, если беременная женщина страдает диабетом, при котором снижена выработка инсулина, то у плода наблюдаются увеличение массы тела и повышение продукции инсулина в островках поджелудочной железы.

    В эксперименте на животных установлено, что сыворотка крови животного, у которого удалили часть какого-либо органа, стимулирует пролиферацию в одноименном органе. Однако механизмы этого явления изучены недостаточно.

    Нервные связи включают плацентарный и экстраплацентарный каналы: плацентарный - раздражение баро- и хеморецепторов в сосудах плаценты и пуповины, а экстраплацентарный - поступление в ЦНС матери раздражений, связанных с ростом плода и др.

    Наличие нервных связей в системе мать-плод подтверждается данными об иннервации плаценты, высоком содержании в ней ацетилхолина, отста-

    Рис. 21.20. Транспорт веществ через плацентарный барьер

    вании развития плода в денервированном роге матки экспериментальных животных и др.

    В процессе формирования системы мать-плод существует ряд критических периодов, наиболее важных для установления взаимодействия между двумя системами, направленных на создание оптимальных условий для развития плода.

    21.6. КРИТИЧЕСКИЕ ПЕРИОДЫ РАЗВИТИЯ

    В ходе онтогенеза, особенно эмбриогенеза, отмечаются периоды более высокой чувствительности развивающихся половых клеток (в период прогенеза) и зародыша (в период эмбриогенеза). Впервые на это обратил внимание австралийский врач Норман Грегг (1944). Российский эмбриолог П. Г. Светлов (1960) сформулировал теорию критических периодов развития и проверил ее экспериментально. Сущность этой теории

    заключается в утверждении общего положения, что каждый этап развития зародыша в целом и его отдельных органов начинается относительно коротким периодом качественно новой перестройки, сопровождающейся детерминацией, пролиферацией и дифференцировкой клеток. В это время эмбрион наиболее восприимчив к повреждающим воздействиям различной природы (рентгеновское облучение, лекарственные средства и др.). Такими периодами в прогенезе являются спермио- и овогенез (мейоз), а в эмбриогенезе - оплодотворение, имплантация (во время которой происходит гаструляция), дифференцировка зародышевых листков и закладка органов, период плацентации (окончательного созревания и формирования плаценты), становление многих функциональных систем, рождение.

    Среди развивающихся органов и систем человека особое место принадлежит головному мозгу, который на ранних стадиях выступает в роли первичного организатора дифференцировки окружающих тканевых и органных зачатков (в частности, органов чувств), а позднее отличается интенсивным размножением клеток (примерно 20 000 в минуту), что требует оптимальных условий трофики.

    Повреждающими экзогенными факторами в критические периоды могут быть химические вещества, в том числе многие лекарственные, ионизирующее облучение (например, рентгеновское в диагностических дозах), гипоксия, голодание, наркотики, никотин, вирусы и др.

    Химические вещества и лекарственные препараты, проникающие через плацентарный барьер, особенно опасны для зародыша в первые 3 мес беременности, так как они не метаболизируются и накапливаются в повышенных концентрациях в его тканях и органах. Наркотики нарушают развитие головного мозга. Голодание, вирусы вызывают пороки развития и даже внутриутробную гибель (табл. 21.2).

    Итак, в онтогенезе человека выделяют несколько критических периодов развития: в прогенезе, эмбриогенезе и постнатальной жизни. К ним относятся: 1) развитие половых клеток - овогенез и сперматогенез; 2) оплодотворение; 3) имплантация (7-8-е сут эмбриогенеза); 4) развитие осевых зачатков органов и формирование плаценты (3-8-я нед развития); 5) стадия усиленного роста головного мозга (15-20-я нед); 6) формирование основных функциональных систем организма и дифференцировка полового аппарата (20-24-я нед); 7) рождение; 8) период новорожденности (до 1 года); 9) половое созревание (11-16 лет).

    Методы диагностики и меры профилактики аномалий развития человека. С целью выявления аномалий развития человека современная медицина располагает рядом методов (неинвазивных и инвазивных). Так, всем беременным дважды (в 16-24 и 32-36 нед) проводят ультразвуковое исследование, что позволяет обнаружить ряд аномалий развития плода и его органов. На 16-18-й нед беременности с помощью метода определения содержания альфа-фетопротеина в сыворотке крови матери можно выявить пороки развития ЦНС (в случае увеличения его уровня более чем в 2 раза) или хромосомные аномалии, например синдром Дауна - трисомия хромосомы 21 или

    Таблица 21.2. Сроки возникновения некоторых аномалий развития эмбрионов и плодов человека

    другие трисомии (об этом свидетельствует снижение уровня исследуемого вещества более чем в 2 раза).

    Амниоцентез - инвазивный способ исследования, при котором через брюшную стенку матери производят взятие околоплодных вод (обычно на 16-й нед беременности). В дальнейшем производят хромосомный анализ клеток амниотической жидкости и другие исследования.

    Используется также визуальный контроль развития плода с помощью лапароскопа, введенного через брюшную стенку матери в полость матки (фетоскопия).

    Существуют и другие способы диагностики аномалий развития плода. Однако основной задачей медицинской эмбриологии является предупреждение их развития. С этой целью разрабатываются методы генетического консультирования и подбора супружеских пар.

    Методы искусственной инсеминации половыми клетками от заведомо здоровых доноров позволяют избежать наследования ряда неблагоприятных признаков. Развитие генной инженерии дает возможность корригировать локальные повреждения генетического аппарата клетки. Так, существует метод, сущность которого заключается в получении биоптата яичка у

    мужчины с генетически обусловленным заболеванием. Внесение в сперма-тогонии нормальной ДНК, а затем трансплантация сперматогоний в предварительно облученное яичко (для уничтожения генетически дефектных половых клеток), последующее размножение трансплантированных спер-матогоний приводит к тому, что вновь образованные сперматозоиды освобождаются от генетически обусловленного дефекта. Следовательно, такие клетки могут дать нормальное потомство при оплодотворении женской половой клетки.

    Метод криоконсервации спермы позволяет длительно сохранять оплодотворяющую способность сперматозоидов. Это применяется для сохранения половых клеток мужчин, связанных с опасностью облучения, ранения и др.

    Метод искусственного оплодотворения и переноса эмбрионов (экстракорпоральное оплодотворение) применяется для лечения как мужского, так и женского бесплодия. Для получения женских половых клеток используют лапароскопию. Специальной иглой прокалывают оболочку яичника в области расположения пузырчатого фолликула, аспирируют овоцит, который в дальнейшем оплодотворяется спермиями. Последующее культивирование, как правило, до стадии 2-4-8 бластомеров и перенос зародыша в матку или маточную трубу обеспечивает его развитие в условиях материнского организма. При этом возможна трансплантация зародыша в матку «суррогатной» матери.

    Совершенствование методов лечения бесплодия и профилактики аномалий развития человека тесно переплетаются с морально-этическими, юридическими, социальными проблемами, решение которых во многом зависит от сложившихся традиций того или иного народа. Это является предметом специального исследования и обсуждения в литературе. В то же время успехи клинической эмбриологии и репродуктологии не могут существенно повлиять на рост народонаселения в силу высокой стоимости лечения и методических трудностей при работе с половыми клетками. Именно поэтому основу деятельности, направленной на оздоровление и численный рост населения, составляет профилактическая работа врача, базирующаяся на знаниях процессов эмбриогенеза. Для рождения здорового потомства немаловажно вести здоровый образ жизни и отказаться от вредных привычек, а также проводить комплекс тех мероприятий, которые находятся в компетенции медицинских, общественных и образовательных учреждений.

    Таким образом, в результате изучения эмбриогенеза человека и других позвоночных установлены основные механизмы образования половых клеток и их слияния с возникновением одноклеточной стадии развития - зиготы. Последующее развитие зародыша, имплантация, формирование зародышевых листков и эмбриональных зачатков тканей, внезародышевых органов показывают тесную эволюционную связь и преемственность развития представителей различных классов животного мира. Важно знать, что в развитии зародыша существуют критические периоды, когда резко возрастает риск внутриутробной гибели либо развития по патологическому

    пути. Знание основных закономерных процессов эмбриогенеза позволяет решать ряд проблем медицинской эмбриологии (предупреждение аномалий развития плода, лечение бесплодия), осуществлять комплекс мероприятий, предупреждающих гибель плодов и новорожденных.

    Контрольные вопросы

    1. Тканевый состав детской и материнской частей плаценты.

    2. Критические периоды развития человека.

    3. Сходство и различия в эмбриогенезе позвоночных и человека.

    4. Источники развития тканей провизорных органов.

    Гистология, эмбриология, цитология: учебник / Ю. И. Афанасьев, Н. А. Юрина, Е. Ф. Котовский и др.. - 6-е изд., перераб. и доп. - 2012. - 800 с. : ил.

    Провизорные – органы, образующиеся в эмбриогенезе для обеспечения жизненно важных функций (дыхание, питание, выделение, движение и др.), которые фукционируют только у зародыша и не сохраняются во взрослом состоянии.

    Развитие, строение и функции желточного мешка.

    Из гипобласта выселяются клетки, составляющие внезародышевую (или желточную) энтодерму, и, обрастая изнутри мезенхимальную закладку желточного мешка, образуют вместе с ней стенку желточного мешка. Стенка желточного мешка состоит из:

    1) внезародышевой (желточной) энтодермы;

    2) внезародышевой мезенхимы.

    Функции желточного мешка:

    1) кроветворение (образование стволовых клеток крови);

    2) образование половых стволовых клеток (гонобластов);

    3) трофическая (у птиц и рыб).

    Развитие, строение и функции амниона.

    Внезародышевая мезенхима, заполняя полость бластоцисты, оставляет свободными небольшие участки бластоцели, прилежащие к эпибласту и гипобласту. Эти участки составляют мезенхимальные закладки амниотического пузырька и желточного мешка.

    Стенка амниона состоит из:

    1) внезародышевой эктодермы;

    2) внезародышевой мезенхимы (висцерального листка).

    Функции амниона - образование околоплодных вод и защитная функция.

    Развитие, строение и функции аллантоиса .

    Часть зародышевой энтодермы гипобласта в виде пальцевидного выпячивания врастает в мезенхиму амниотической ножки и формирует аллантоис.

    Стенка аллантоиса состоит из:

    1) зародышевой энтодермы;

    2) внезародышевой мезенхимы.

    Функциональная роль аллантоиса:

    1) у птиц полость аллантоиса достигает значительного развития и в ней накапливается мочевина, поэтому его называют мочевым мешком;

    2) у человека нет необходимости накопления мочевины, поэтому полость аллантоиса очень незначительная и к концу 2-го месяца полностью зарастает.

    Провизорные органы: определение, значение в развитии позвоночных. Серозная оболочка, трофобласт, хорион: развитие, строение, функции.

    Провизорные органы - это временные органы, функционируют только в эмбриональном периоде.

    Значение: обеспечивают рост и развитие зародыша.

    Серозная или наружная оболочка образуется из внезародышевой эктодермы и париетального листка спланхнотомов, выполняет защитную и трофическую функции, лежит погранично с белком.основная функция серозной оболочки – дыхательная , которая выполняется путем доставки кислорода из воздушной ямки по сосудам к зародышу. Имеется только у птиц. В будущем у млекопитающих серозная оболочка трансформируется в хорион и плаценту .

    Трофобласт образован из бластомеров, формирует внешний слой эмбриона - полый шар. Трофобласт участвует в имплантации (прикрепление эмбриона к эпителию матки), а также в формировании эктодермы ворсинок хориона (эктодермальная часть плаценты).

    Развитие, строение и функции хориона .

    трофобласт становится трехслойным - состоит из симпластотрофобласта, цитотрофобласта и париентального листка внезародышевой мезенхимы и носит название хориона

    Хорион ,или ворсинчатая оболочка,имеетсятолько у плацентарных млекопитающих и человека. Образуется на 2-й неделе развития человека, когда к трофобласту подрастает внезародышевая мезодерма ,формируя вместе с ним вторичные ворсинки .В начале третьей недели ворсинки хориона врастают кровеносные сосуды, и они получают название третичных ворсинок .Дальнейшее развитие хориона связано собразованием плаценты.

    При развитии хориона выделяют два периода:

    1) формирование гладкого хориона;

    2) формирование ворсинчатого хориона.

    Из ворсинчатого хориона в последующем формируется плацента.

    Функции хориона:

    1) защитная;

    2) трофическая, газообменная, экскреторная и другие, в которых хорин принимает участие, будучи составной частью плаценты и которые выполняет плацента.

    Плацента: источники развития, основные компоненты, типы у млекопитающих, формирование, особенности организации зародышевой и материнской части на протяжении беременности, функции.

    Плацента - это образование, которое осуществляет связь между плодом и организмом матери.

    Источники развития: трофобласт и внезародышевая мезенхима; функциональный слой слизистой матки.

    Плацента состоит из материнской части (базальная часть децидуальной оболочки) и плодной части (ворсинчатый хорион - производное трофобласта и внезародышевой мезодермы).

    Типы плацент у млекопитающих:

    1. Эпителиохориальная - ворсинки хориона проникают в просвет маточных желез, эпителий не разрушается (пример: у свиньи).

    2. Десмохориальная - ворсинки хориона проникают через эпителий матки и контактируют с рыхлой соед.тканью эндометрия (пример: у жвачных).

    3. Эндотелиохориальная - ворсинки хориона проникают через эпителий матки и прорастают в стенку сосудов матери до эндотелия, но в просвет сосуда не проникают (пример: у хищников).

    4. Гемохориальная - ворсинки хориона проходят через эпителий матки, прорастают через стенки сосудов матери и плавают в крови матери, т.е. ворсинки контактируют непосредственно с кровью матери (пр.: человек).

    Формирование происходит следующим образом: вначале трфобласт представляет собой полый пузырек из одного слоя клеток, в последующем клетки трофобласта начинают усиленно размножаться и поэтому трофобласт становится многослойным. Причем клетки наружных слоев сливаются друг с другом и образуют симпласт - этот слой называется симпластическим трофобластом; самый внутренний слой трофобласта сохраняет клеточное строение и называется клеточным трофобластом (цитотрофобласт). Параллельно с этим из эмбриобласта выселяются клетки - внезародышевая мезенхима и она покрывает внутреннюю поверхность цитотрофобласта. Кровь плода в сосудах плода и кровь матери не смешиваются, между ними находится плацентарный барьер, который состоит из следующих слоев:

    1. Эндотелий капилляров плода в III ворсинках.

    2. Базальная мембрана капилляров плода.

    3. Внезародышевая мезенхима.

    4. Цитотрофобласт.

    5. Симпластический трофобласт.

    Функции плаценты:

    1) обмен между организмами матери и плода газами, метаболитами, электролитами.

    2) транспорт материнских антител, осуществляющийся при помощи опосредованного рецепторами эндоцитоза и обеспечивающийся пассивный иммунитет плода. Данная функция очень важна, так как после рождения плод имеет пассивный иммунитет ко многим инфекциям (кори, краснухе, дифтерии, столбняку и др.), которыми либо болела мать, либо против которых была вакцинирована.

    3) эндокринная функция. Плацента - это эндокринный орган. Она синтезирует гормоны и биологически активные вещества, которые играют очень большую роль в нормальном физиологическом протекания беременности и развития плода. К этим веществам относятся прогестерон, хорионический соматомаммотропин, фактор роста фибробластов, трансферрин, пролактин и релаксин. Кортиколиберины определяют срок родов;

    4) детоксикация. Плацента способствует детоксикации некоторых лекарственных препаратов;

    амнион

    желточный мешок

    аллантоис

    хорион

    плацента

    Амнион образует замкнутую полость вокруг зародыша (рис.26).

    Функции амниона :

    Создание водной среды определенного химического состава и давления для свободного развития эмбриона и плода;

    Защита от механических и гравитационных стрессов;

    Предотвращение слипание плода с окружающими тканями.

    Стенка амниона образована амниотическим эпителием (внезародышевой эктодермой, которая развивается из эпибласта) изнутри и внезародышевой мезодермой снаружи. Постепенно полость амниона разрастается. К 7-й неделе развития амниотическая мезодерма входит в контакт с мезодермой хориона (амнио-хориональная оболочка). Кроме того, амниотический эпителий обрастает амниотическую ножку. Амнион функционирует до момента рождения (плодный пузырь). К концу беременности полость амниона заполнена 1-1,5 литрами амниотической жидкости (околоплодные воды).

    Желточный мешок

    Стенка желточного мешка изнутри образована внезародышевой энтодермой. Её формируют интенсивно делящиеся клетки гипобласта, которые перемещаются по внутренней поверхности трофобласта. Снаружи внезародышевая энтодерма обрастает внезародышевой мезодермой.

    У человека желточный мешок функционирует только на ранних стадиях развития (7-8 недель).

    Функции желточного мешка:

    · стенка желточного мешка - место первых очагов кроветворения и образования кровеносных сосудов (на 3-й неделе развития);

    · стенка желточного мешка - место появления первичных половых клеток (гонобластов).

    · после 7-8 недели желточный мешок подвергается регрессии, остаётся в виде тяжа клеток в пупочном канатике, направляющего кровеносные сосуды к плаценте.

    Алланто ис

    Аллантоис развивается на 16-17-е сутки в виде небольшого выроста задней стенки желточного мешка, поэтому имеет те же оболочки, что и желточный мешок: внезародышевая энтодерма изнутри и внезародышевая мезодерма снаружи (рис.26). Аллантоис врастает в амниотическую ножку, в его стенке развиваются пупочные кровеносные сосуды , которые он подводит к хориону. Таким образом, аллантоис выполняет ту же функцию, что и регрессирующий желточный мешок – они играют роль проводников и направляют рост сосудов плода к плаценте. На втором месяце эмбрионального развития аллантоис редуцируется и вместе с остатками желточного мешка образует клеточный тяж в составе пупочного канатика. Кроме того, аллантоис участвует в развитии мочевого пузыря.

    Рис.26. Схема формирования внезародышевых органов в эмбриогенезе человека .

    Хо рион

    В формировании хориона различают три периода: предворсинчатый (7-8-е сутки), период образования ворсинок (до 50-х суток), период котиледонов (с 50 по 90-е сутки).

    Зрелый хорионобразован хориональной пластиной (внезародышевая мезодерма ) и выростами пластины – ветвящимися третичными ворсинками , покрытыми трофобластом . Часть хориона, разрушающая стенку матки и участвующая в образовании плаценты, формирует сложноразветвленные ворсинки и носит название ворсинчатый хорион (рис.25). Остальную поверхность составляет гладкий хорион . Самые крупные ворсинки, отходящие от хориональной пластины, носят название стволовых ворсинок . Стволовые ворсинки обильно ветвятся, самые мелкие веточки носят названия терминальных ворсинок . Кровеносные сосуды в терминальных ворсинках представлены капиллярами плода. Все ворсинки покрыты снаружи трофобластом. Ворсинки, внедряющиеся в базальную пластинку эндометрия, называются якорными ворсинками . Обычно стволовые ворсинки являются якорными.

    Плаце нта

    Плацентация – период эмбриогенеза, на протяжении которого происходит развитие плаценты, один из критических периодов эмбриогенеза, соответствует 3-6 неделям беременности.

    Плацента – единственный орган, состоящий из клеток двух генетически различных организмов: плодной части (хорион с ворсинками) и материнской части.

    Плодная часть плаценты ворсинчатый хорион (хориональная пластина с ворсинками). Ворсинки хориона погружены в лакуны, заполненные кровью матери (рис.27).

    Материнская часть плаценты представлена измененной слизистой оболочки матки, которая называется эндометрием . Эндометрий, кроме самого глубокого базального слоя, отторгается при рождении ребёнка, поэтому эти структуры получили название децидуальной (отпадающей) оболочки. В зависимости от расположения относительно места имплантации различают:

    Decidua parietalis (пристеночная) – эндометрий, выстилающий полость матки за исключением участка имплантации;

    Decidua capsularis (сумочная) – часть эндометрия, которая окружает развивающийся эмбрион, образуя поверх него капсулу, и отделяет зародыш от полости матки (до 16-й недели);

    decidua basalis (основная ), материнская часть плаценты, та часть эндометрия, которая находится между плодом и базальным слоем эндометрия.

    Итак, материнская часть плацента представлена:

    Базальной пластинкой (decidua basalis) эндометрия;

    Лакунами, заполненными материнской кровью.

    Рис.27. Схема строения плаценты

    Кровь матери и ребенка не смешивается. Их разделяет гематоплацентарный барьер . Компоненты гематоплацентарного барьера, разделяющего кровь матери и кровь плода (рис.28):

    эндотелий капилляра плода;

    Базальная мембрана в стенке капилляров плода;

    Соединительная ткань ворсинок (с клетками-макрофагами);

    Базальная мембрана трофобласта;

    Цитоторофобласт;

    Синцитиотрофобласт.

    Рис.28. Гематоплацентарный барьер.

    Терминальная ворсинка в поперечном разрезе .

    ЭП – эритроциты плода ; 1.эндотелий капилляра плода; 2.базальная мембрана в стенке капилляра плода; 3.внезародышевая мезодерма (соединительная ткань ворсинки); 4.базальная мембрана трофобласта;

    5.цитотрофобласт; 6.синцитиотрофобласт; ЭМ – эритроциты матери.

    Ворсинки, обращенные к decidua basalis, распределены неравномерно, группами – котиледонами. Котиледон – структурно-функциональная единица сформированной плаценты. Котиледон образован стволовой ворсинкой и её разветвлениями. Котиледоны частично разделены соединительнотканными септами (плацентарными перегородками), отходящими от базальной пластинки (рис.29).

    Рис.29. Схема строения плаценты человека

    К концу беременности плацента имеет форму диска.

    Связь между циркуляциями крови плода и матери осуществляется через пупочный канатик.

    Функции плаценты :

    трофическая - из организма матери к плоду поступают самые разнообразные питательные вещества, электролиты, витамины, некоторые гормоны (табл.2);



    дыхательная - транспорт кислорода в кровь плода и перенос углекислого газа в кровь матери;

    выделительная - из крови плода в кровь матери поступают продукты метаболизма и выделяются через почки матери;

    защитная - препятствует развитию иммунного конфликта (иммунодепрессивная функция, благодаря синтезу ряда биологически активных веществ), препятствует проникновению микроорганизмов (барьер не абсолютный – табл.3);

    эндокринная – здесь происходит синтез ряда гормонов и других биологически активных веществ (хорионический гонадотропин, прогестерон, фактор роста фибробластов, трансферрин, пролактин, релаксин и другие), имеющих важное значение для нормального течения беременности и развития плода.

    Таблица 2

    Гематоплацентарный барьер не является абсолютным, и проницаем для ряда веществ и возбудителей болезней (таблица 3)

    Читайте также: