Bn возрастающая геометрическая прогрессия. Геометрическая прогрессия. Исчерпывающий гид с примерами (2019)

Это число называется знаменателем геометрической прогрессии, т. е. каждый член отличается от предыдущего в q раз. (Будем считать, что q ≠ 1, иначе все уж слишком тривиально). Нетрудно видеть, что общая формула n -го члена геометрической прогрессии b n = b 1 q n – 1 ; члены с номерами b n и b m отличаются в q n – m раз.

Уже в Древнем Египте знали не только арифметическую, но и геометрическую прогрессию. Вот, например, задача из папируса Райнда: «У семи лиц по семи кошек; каждая кошка съедает по семи мышей, каждая мышь съедает по семи колосьев, из каждого колоса может вырасти по семь мер ячменя. Как велики числа этого ряда и их сумма?»


Рис. 1. Древнеегипетская задача о геометрической прогресии

Эта задача много раз с разными вариациями повторялась и у других народов в другие времена. Например, в написанной в XIII в. «Книге об абаке» Леонардо Пизанского (Фибоначчи) есть задача, в которой фигурируют 7 старух, направляющихся в Рим (очевидно, паломниц), у каждой из которых 7 мулов, на каждом из которых по 7 мешков, в каждом из которых по 7 хлебов, в каждом из которых по 7 ножей, каждый из которых в 7 ножнах. В задаче спрашивается, сколько всего предметов.

Сумма первых n членов геометрической прогрессии S n = b 1 (q n – 1) / (q – 1) . Эту формулу можно доказать, например, так: S n = b 1 + b 1 q + b 1 q 2 + b 1 q 3 + ... + b 1 q n – 1 .

Добавим к S n число b 1 q n и получим:

S n + b 1 q n = b 1 + b 1 q + b 1 q 2 + b 1 q 3 + ... + b 1 q n – 1 + b 1 q n = b 1 + (b 1 + b 1 q + b 1 q 2 + b 1 q 3 + ... + b 1 q n –1) q = b 1 + S n q .

Отсюда S n (q – 1) = b 1 (q n – 1) , и мы получаем необходимую формулу.

Уже на одной из глиняных табличек Древнего Вавилона, относящейся к VI в. до н. э., содержится сумма 1 + 2 + 2 2 + 2 3 + ... + 2 9 = 2 10 – 1. Правда, как и в ряде других случаев мы не знаем, откуда этот факт был известен вавилонянам.

Быстрое возрастание геометрической прогрессии в ряде культур, – в частности, в индийской, – неоднократно используется как наглядный символ необозримости мироздания. В известной легенде о появлении шахмат властелин предоставляет их изобретателю возможность самому выбрать награду, и тот просит такое количество пшеничных зерен, которое получится, если одно положить на первую клетку шахматной доски, два – на вторую, четыре – на третью, восемь – на четвертую и т. д., всякий раз число увеличивается вдвое. Владыка думал, что речь идет, самое большое, о нескольких мешках, но он просчитался. Нетрудно видеть, что за все 64 клетки шахматной доски изобретатель должен был бы получить (2 64 – 1) зерно, что выражается 20-значным числом; даже если засевать всю поверхность Земли, потребовалось бы не менее 8 лет, чтобы собрать необходимое количество зерен. Эту легенду иногда интерпретируют как указание на практически неограниченные возможности, скрытые в шахматной игре.

То, что это число действительно 20-значное, увидеть нетрудно:

2 64 = 2 4 ∙ (2 10) 6 = 16 ∙ 1024 6 ≈ 16 ∙ 1000 6 = 1,6∙10 19 (более точный расчет дает 1,84∙10 19). А вот интересно, сможете ли вы узнать, какой цифрой оканчивается данное число?

Геометрическая прогрессия бывает возрастающей, если знаменатель по модулю больше 1, или убывающей, если он меньше единицы. В последнем случае число q n при достаточно больших n может стать сколь угодно малым. В то время как возрастающая геометрическая прогрессия возрастает неожиданно быстро, убывающая столь же быстро убывает.

Чем больше n , тем слабее число q n отличается от нуля, и тем ближе сумма n членов геометрической прогрессии S n = b 1 (1 – q n ) / (1 – q ) к числу S = b 1 / (1 – q ) . (Так рассуждал, например, Ф. Виет). Число S называется суммой бесконечно убывающей геометрической прогрессии. Тем не менее, долгие века вопрос о том, какой смысл имеет суммирование ВСЕЙ геометрической прогрессии, с ее бесконечным числом членов, не был достаточно ясен математикам.

Убывающую геометрическую прогрессию можно видеть, например, в апориях Зенона «Деление пополам» и «Ахиллес и черепаха». В первом случае наглядно показывается, что вся дорога (предположим, длины 1) является суммой бесконечного числа отрезков 1/2, 1/4, 1/8 и т. д. Так оно, конечно, и есть с точки зрения представлений о конечной сумме бесконечной геометрической прогрессии. И все же – как такое может быть?

Рис. 2. Прогрессия с коэффициентом 1/2

В апории про Ахиллеса ситуация чуть более сложная, т. к. здесь знаменатель прогрессии равен не 1/2, а какому-то другому числу. Пусть, например, Ахиллес бежит со скоростью v , черепаха движется со скоростью u , а первоначальное расстояние между ними равно l . Это расстояние Ахиллес пробежит за время l /v , черепаха за это время сдвинется на расстояние lu /v . Когда Ахиллес пробежит и этот отрезок, дистанция между ним и черепахой станет равной l (u /v ) 2 , и т. д. Получается, что догнать черепаху – значит найти сумму бесконечно убывающей геометрической прогрессии с первым членом l и знаменателем u /v . Эта сумма – отрезок, который в итоге пробежит Ахиллес до места встречи с черепахой – равен l / (1 – u /v ) = lv / (v – u ) . Но, опять-таки, как надо интерпретировать этот результат и почему он вообще имеет какой-то смысл, долгое время было не очень ясно.

Рис. 3. Геометрическая прогрессия с коэффициентом 2/3

Сумму геометрической прогрессии использовал Архимед при определении площади сегмента параболы. Пусть данный сегмент параболы отграничен хордой AB и пусть в точке D параболы касательная параллельна AB . Пусть C – середина AB , E – середина AC , F – середина CB . Проведем прямые, параллельные DC , через точки A , E , F , B ; пусть касательную, проведенную в точке D , эти прямые пересекают в точках K , L , M , N . Проведем также отрезки AD и DB . Пусть прямая EL пересекает прямую AD в точке G , а параболу в точке H ; прямая FM пересекает прямую DB в точке Q , а параболу в точке R . Согласно общей теории конических сечений, DC – диаметр параболы (то есть отрезок, параллельный ее оси); он и касательная в точке D могут служить осями координат x и y , в которых уравнение параболы записывается как y 2 = 2px (x – расстояние от D до какой-либо точки данного диаметра, y – длина параллельного данной касательной отрезка от этой точки диаметра до некоторой точки на самой параболе).

В силу уравнения параболы, DL 2 = 2 ∙ p ∙ LH , DK 2 = 2 ∙ p ∙ KA , а поскольку DK = 2DL , то KA = 4LH . Т. к. KA = 2LG , LH = HG . Площадь сегмента ADB параболы равна площади треугольника ΔADB и площадям сегментов AHD и DRB , вместе взятых. В свою очередь, площадь сегмента AHD аналогичным образом равна площади треугольника AHD и оставшихся сегментов AH и HD , с каждым из которых можно провести ту же операцию – разбить на треугольник (Δ) и два оставшихся сегмента (), и т. д.:

Площадь треугольника ΔAHD равна половине площади треугольника ΔALD (у них общее основание AD , а высоты отличаются в 2 раза), которая, в свою очередь, равна половине площади треугольника ΔAKD , а значит, и половине площади треугольника ΔACD . Таким образом, площадь треугольника ΔAHD равна четверти площади треугольника ΔACD . Аналогично, площадь треугольника ΔDRB равна четверти площади треугольника ΔDFB . Итак, площади треугольников ΔAHD и ΔDRB , вместе взятые, равны четверти площади треугольника ΔADB . Повторение этой операции в применении к сегментам AH , HD , DR и RB выделит и из них треугольники, площадь которых, вместе взятых, будет в 4 раза меньше, чем площадь треугольников ΔAHD и ΔDRB , вместе взятых, а значит, в 16 раз меньше, чем площади треугольника ΔADB . И так далее:

Таким образом, Архимед доказал, что «всякий сегмент, заключенный между прямой и параболой, составляет четыре трети треугольника, имеющего с ним одно и то же основание и равную высоту».

Урок и презентация на тему: "Числовые последовательности. Геометрическая прогрессия"

Дополнительные материалы
Уважаемые пользователи, не забывайте оставлять свои комментарии, отзывы, пожелания! Все материалы проверены антивирусной программой.

Обучающие пособия и тренажеры в интернет-магазине "Интеграл" для 9 класса
Степени и корни Функции и графики

Ребята, сегодня мы познакомимся с еще одним видом прогрессии.
Тема сегодняшнего занятия - геометрическая прогрессия.

Геометрическая прогрессия

Определение. Числовая последовательность, в которой каждый член, начиная со второго, равен произведению предыдущего и некоторого фиксированного числа, называется геометрической прогрессией.
Зададим нашу последовательность рекуррентно: $b_{1}=b$, $b_{n}=b_{n-1}*q$,
где b и q – определенные заданные числа. Число q называется знаменателем прогрессии.

Пример. 1,2,4,8,16… Геометрическая прогрессия, у которой первый член равен единице, а $q=2$.

Пример. 8,8,8,8… Геометрическая прогрессия, у которой первый член равен восьми,
а $q=1$.

Пример. 3,-3,3,-3,3… Геометрическая прогрессия, у которой первый член равен трем,
а $q=-1$.

Геометрическая прогрессия обладает свойствами монотонности.
Если $b_{1}>0$, $q>1$,
то последовательность возрастающая.
Если $b_{1}>0$, $0 Последовательность принято обозначать в виде: $b_{1}, b_{2}, b_{3}, ..., b_{n}, ...$.

Также как и в арифметической прогрессии, если в геометрической прогрессии количество элементов конечно, то прогрессия называется конечной геометрической прогрессией .

$b_{1}, b_{2}, b_{3}, ..., b_{n-2}, b_{n-1}, b_{n}$.
Отметим, если последовательность является геометрической прогрессией, то и последовательность квадратов членов, также является геометрической прогрессией. У второй последовательность первый член равен $b_{1}^2$, а знаменатель равен $q^2$.

Формула n-ого члена геометрической прогрессии

Геометрическую прогрессию можно задавать и в аналитической форме. Давайте посмотрим, как это сделать:
$b_{1}=b_{1}$.
$b_{2}=b_{1}*q$.
$b_{3}=b_{2}*q=b_{1}*q*q=b_{1}*q^2$.
$b_{4}=b_{3}*q=b_{1}*q^3$.
$b_{5}=b_{4}*q=b_{1}*q^4$.
Мы легко замечаем закономерность: $b_{n}=b_{1}*q^{n-1}$.
Наша формула называется "формулой n-ого члена геометрической прогрессии".

Вернемся к нашим примерам.

Пример. 1,2,4,8,16… Геометрическая прогрессия, у которой первый член равен единице,
а $q=2$.
$b_{n}=1*2^{n}=2^{n-1}$.

Пример. 16,8,4,2,1,1/2… Геометрическая прогрессия, у которой первый член равен шестнадцати, а $q=\frac{1}{2}$.
$b_{n}=16*(\frac{1}{2})^{n-1}$.

Пример. 8,8,8,8… Геометрическая прогрессия, у которой первый член равен восьми, а $q=1$.
$b_{n}=8*1^{n-1}=8$.

Пример. 3,-3,3,-3,3… Геометрическая прогрессия, у которой первый член равен трем, а $q=-1$.
$b_{n}=3*(-1)^{n-1}$.

Пример. Дана геометрическая прогрессия $b_{1}, b_{2}, …, b_{n}, … $.
а) Известно,что $b_{1}=6, q=3$. Найти $b_{5}$.
б) Известно,что $b_{1}=6, q=2, b_{n}=768$. Найти n.
в) Известно,что $q=-2, b_{6}=96$. Найти $b_{1}$.
г) Известно,что $b_{1}=-2, b_{12}=4096$. Найти q.

Решение.
а) $b_{5}=b_{1}*q^4=6*3^4=486$.
б) $b_n=b_1*q^{n-1}=6*2^{n-1}=768$.
$2^{n-1}=\frac{768}{6}=128$,так как $2^7=128 => n-1=7; n=8$.
в) $b_{6}=b_{1}*q^5=b_{1}*(-2)^5=-32*b_{1}=96 => b_{1}=-3$.
г) $b_{12}=b_{1}*q^{11}=-2*q^{11}=4096 => q^{11}=-2048 => q=-2$.

Пример. Разность между седьмым и пятым членами геометрической прогрессии равны 192, сумма пятого и шестого члена прогрессии равна 192. Найти десятый член этой прогрессии.

Решение.
Нам известно, что: $b_{7}-b_{5}=192$ и $b_{5}+b_{6}=192$.
Мы так же знаем: $b_{5}=b_{1}*q^4$; $b_{6}=b_{1}*q^5$; $b_{7}=b_{1}*q^6$.
Тогда:
$b_{1}*q^6-b_{1}*q^4=192$.
$b_{1}*q^4+b_{1}*q^5=192$.
Получили систему уравнений:
$\begin{cases}b_{1}*q^4(q^2-1)=192\\b_{1}*q^4(1+q)=192\end{cases}$.
Приравняв, наши уравнения получим:
$b_{1}*q^4(q^2-1)=b_{1}*q^4(1+q)$.
$q^2-1=q+1$.
$q^2-q-2=0$.
Получили два решения q: $q_{1}=2, q_{2}=-1$.
Последовательно подставим во второе уравнение:
$b_{1}*2^4*3=192 => b_{1}=4$.
$b_{1}*(-1)^4*0=192 =>$ нет решений.
Получили что: $b_{1}=4, q=2$.
Найдем десятый член: $b_{10}=b_{1}*q^9=4*2^9=2048$.

Сумма конечной геометрической прогрессии

Пусть у нас есть конечная геометрическая прогрессия. Давайте, также как и для арифметической прогрессии, посчитаем сумму ее членов.

Пусть дана конечная геометрическая прогрессия: $b_{1},b_{2},…,b_{n-1},b_{n}$.
Введем обозначение суммы ее членов: $S_{n}=b_{1}+b_{2}+⋯+b_{n-1}+b_{n}$.
В случае, когда $q=1$. Все члены геометрической прогрессии равны первому члену, тогда очевидно, что $S_{n}=n*b_{1}$.
Рассмотрим теперь случай $q≠1$.
Умножим указанную выше сумму на q.
$S_{n}*q=(b_{1}+b_{2}+⋯+b_{n-1}+b_{n})*q=b_{1}*q+b_{2}*q+⋯+b_{n-1}*q+b_{n}*q=b_{2}+b_{3}+⋯+b_{n}+b_{n}*q$.
Заметим:
$S_{n}=b_{1}+(b_{2}+⋯+b_{n-1}+b_{n})$.
$S_{n}*q=(b_{2}+⋯+b_{n-1}+b_{n})+b_{n}*q$.

$S_{n}*q-S_{n}=(b_{2}+⋯+b_{n-1}+b_{n})+b_{n}*q-b_{1}-(b_{2}+⋯+b_{n-1}+b_{n})=b_{n}*q-b_{1}$.

$S_{n}(q-1)=b_{n}*q-b_{1}$.

$S_{n}=\frac{b_{n}*q-b_{1}}{q-1}=\frac{b_{1}*q^{n-1}*q-b_{1}}{q-1}=\frac{b_{1}(q^{n}-1)}{q-1}$.

$S_{n}=\frac{b_{1}(q^{n}-1)}{q-1}$.

Мы получили формулу суммы конечной геометрической прогрессии.


Пример.
Найти сумму первых семи членов геометрической прогрессии, у которой первый член равен 4, а знаменатель 3.

Решение.
$S_{7}=\frac{4*(3^{7}-1)}{3-1}=2*(3^{7}-1)=4372$.

Пример.
Найти пятый член геометрической прогрессии, о которой известно: $b_{1}=-3$; $b_{n}=-3072$; $S_{n}=-4095$.

Решение.
$b_{n}=(-3)*q^{n-1}=-3072$.
$q^{n-1}=1024$.
$q^{n}=1024q$.

$S_{n}=\frac{-3*(q^{n}-1)}{q-1}=-4095$.
$-4095(q-1)=-3*(q^{n}-1)$.
$-4095(q-1)=-3*(1024q-1)$.
$1365q-1365=1024q-1$.
$341q=1364$.
$q=4$.
$b_5=b_1*q^4=-3*4^4=-3*256=-768$.

Характеристическое свойство геометрической прогрессии

Ребята, дана геометрическая прогрессия. Давайте рассмотрим три последовательных её члена: $b_{n-1},b_{n},b_{n+1}$.
Мы знаем что:
$\frac{b_{n}}{q}=b_{n-1}$.
$b_{n}*q=b_{n+1}$.
Тогда:
$\frac{b_{n}}{q}*b_{n}*q=b_{n}^{2}=b_{n-1}*b_{n+1}$.
$b_{n}^{2}=b_{n-1}*b_{n+1}$.
Если прогрессия конечная, то это равенство выполняется для всех членов, кроме первого и последнего.
Если заранее неизвестно, какой вид у последовательности, но известно что: $b_{n}^{2}=b_{n-1}*b_{n+1}$.
Тогда можно смело говорить, что это геометрическая прогрессия.

Числовая последовательность является геометрической прогрессией, только когда квадрат каждого её члена равен произведению двух соседних с ним членов прогрессии. Не забываем, что для конечной прогрессии это условие не выполняется для первого и последнего члена.


Давайте посмотрим вот на это тождество: $\sqrt{b_{n}^{2}}=\sqrt{b_{n-1}*b_{n+1}}$.
$|b_{n}|=\sqrt{b_{n-1}*b_{n+1}}$.
$\sqrt{a*b}$ называется средним геометрическим чисел a и b.

Модуль любого члена геометрической прогрессии равен среднему геометрическому двух соседних с ним членов.


Пример.
Найти такие х, что бы $х+2; 2x+2; 3x+3$ являлись тремя последовательными членами геометрической прогрессии.

Решение.
Воспользуемся характеристическим свойством:
$(2x+2)^2=(x+2)(3x+3)$.
$4x^2+8x+4=3x^2+3x+6x+6$.
$x^2-x-2=0$.
$x_{1}=2$ и $x_{2}=-1$.
Подставим последовательно в исходные выражение, наши решения:
При $x=2$, получили последовательность: 4;6;9 – геометрическая прогрессия, у которой $q=1,5$.
При $х=-1$, получили последовательность: 1;0;0.
Ответ: $х=2.$

Задачи для самостоятельного решения

1. Найдите восьмой первый член геометрической прогрессии 16;-8;4;-2… .
2. Найдите десятый член геометрической прогрессии 11,22,44… .
3. Известно, что $b_{1}=5, q=3$. Найти $b_{7}$.
4. Известно, что $b_{1}=8, q=-2, b_{n}=512$. Найти n.
5. Найдите сумму первых 11 членов геометрической прогрессии 3;12;48… .
6. Найти такие х, что $3х+4; 2x+4; x+5$ являются тремя последовательными членами геометрической прогрессии.

Инструкция

10, 30, 90, 270...

Требуется найти знаменатель геометрической прогрессии.
Решение:

1 вариант. Возьмем произвольный член прогрессии (например, 90) и разделим его на предыдущий (30): 90/30=3.

Если известна сумма нескольких членов геометрической прогрессии или сумма всех членов убывающей геометрической прогрессии, то для нахождения знаменателя прогрессии воспользуйтесь соответствующими формулами:
Sn = b1*(1-q^n)/(1-q), где Sn – сумма n первых членов геометрической прогрессии и
S = b1/(1-q), где S – сумма бесконечно убывающей геометрической прогрессии (сумма всех членов прогрессии со знаменателем меньшим единицы).
Пример.

Первый член убывающей геометрической прогрессии равен единице, а сумма всех ее членов равна двум.

Требуется определить знаменатель этой прогрессии.
Решение:

Подставьте данные из задачи в формулу. Получится:
2=1/(1-q), откуда – q=1/2.

Прогрессия представляет собой последовательность чисел. В геометрической прогрессии каждый последующий член получается умножением предыдущего на некоторое число q, называемое знаменателем прогрессии.

Инструкция

Если известно два соседних члена геометрической b(n+1) и b(n), чтобы получить знаменатель, надо число с большим разделить на предшествующее ему: q=b(n+1)/b(n). Это следует из определения прогрессии и ее знаменателя. Важным условием является неравенство нулю первого члена и знаменателя прогрессии, иначе считается неопределенной.

Так, между членами прогрессии устанавливаются следующие соотношения: b2=b1 q, b3=b2 q, … , b(n)=b(n-1) q. По формуле b(n)=b1 q^(n-1) может быть вычислен любой член геометрической прогрессии, в которой известен знаменатель q и член b1. Также каждый из прогрессии по модулю равен среднему своих соседних членов: |b(n)|=√, отсюда прогрессия и получила свое .

Аналогом геометрической прогрессии является простейшая показательная функция y=a^x, где x стоит в показателе степени, a – некоторое число. В этом случае знаменатель прогрессии совпадает с первым членом и равен числу a. Под значением функции y можно понимать n-й член прогрессии, если аргумент x принять за натуральное число n (счетчик).

Читайте также: