При вдохе давление плевральной полости. Давление в плевральной полости. Причины эластических свойств легких

Легкие и стенки грудной полости покрыты серозной оболочкой – плеврой, состоящей из висцерального и париетального листков. Между листками плевры находится замкнутое щелевидное пространство, содержащее серозную жидкость – плевральная полость.

Атмосферное давление, действуя на внутренние стенки альвеол через воздухоносные пути, растягивает ткань легких и прижимает висцеральный листок к париетальному, т.е. легкие постоянно находятся в растянутом состоянии. При увеличении объема грудной клетки в результате сокращения инспираторных мышц, париетальный листок последует за грудной клеткой, это приведет к уменьшению давления в плевральной щели, поэтому висцеральный листок, а вместе с ним и легкие, последуют за париетальным листком. Давление в легких станет ниже атмосферного, и воздух будет поступать в легкие – происходит вдох.

Давление в плевральной полости ниже, чем атмосферное, поэтому плевральное давление называют отрицательным , условно принимая атмосферное давление за нулевое. Чем сильнее растягиваются легкие, тем выше становится их эластическая тяга и тем ниже падает давление в плевральной полости. Величина отрицательного давления в плевральной полости равна: к концу спокойного вдоха – 5-7 мм рт.ст.. к концу максимального вдоха – 15-20 мм рт.ст., к концу спокойного выдоха – 2-3 мм рт.ст., к концу максимального выдоха - 1-2 мм рт.ст.

Отрицательное давление в плевральной полости обусловлено так называемой эластической тягой легких – силой, с которой легкие постоянно стремятся уменьшить свой объем.

Эластическая тяга легких обусловлена тремя факторами:

1) наличием в стенках альвеол большого количества эластических волокон;

2) тонусом бронхиальных мышц;

3) поверхностным натяжением пленки жидкости, покрывающей стенки альвеол.

Вещество, покрывающее внутреннюю поверхность альвеол, называется сурфактантом (рис.5).

Рис. 5. Сурфактант. Срез альвеолярной перегородки со скоплением сурфактанта.

Сурфактант - это поверхностно-активное вещество (пленка, которая состоит из фосфолипидов (90-95%), четырех специфических для него протеинов, а также небольшого количества угольного гидрата), образуется специальными клетками альвеоло-пневмоцитами II типа. Период его полураспада 12–16 часов.

Функции сурфактанта:

· при вдохе предохраняет альвеолы от перерастяжения благодаря тому, что молекулы сурфактанта расположены далеко друг от друга, что сопровождается повышением величины поверхностного натяжения;

· при выдохе предохраняет альвеолы от спадения: молекулы сурфактанта расположены близко друг к другу, в результате чего величина поверхностного натяжения снижается;

· создает возможность расправления легких при первом вдохе новорожденного;

· влияет на скорость диффузии газов между альвеолярным воздухом и кровью;

· регулирует интенсивность испарения воды с альвеолярной поверхности;

· обладает бактериостатической активностью;

· оказывает противоотечное (уменьшается выпотевание жидкости из крови в альвеолы) и антиокислительное действие (защищает стенки альвеол от повреждающего действия окислителей и перекисей).

Изучение механизма изменения объема легких с помощью модели Дондерса

Физиологический эксперимент

Изменение объема легких происходит пассивно, вследствие изменения объема грудной полости и колебаний давления в плевральной щели и внутри легких. Механизм изменения объема легких при дыхании может быть продемонстрирован с помощью модели Дондерса (рис.6), которая представляет собой стеклянный резервуар с резиновым дном. Верхнее отверстие резервуара закрыто пробкой, через которую пропущена стеклянная трубка. На конце трубки, помещенной внутри резервуара, укрепляются за трахею легкие. Через наружный конец трубки полость легких сообщается с атмосферным воздухом. При оттягивании резинового дна книзу объем резервуара увеличивается, и давление в резервуаре становится ниже атмосферного, что приводит к увеличению объема легких.

физическая величина, характеризующая состояние содержимого полости плевры. Это величина, на которую давление в плевральной полости ниже атмосферного (отрицательное давление ); при спокойном дыхании оно равно 4 мм рт. ст. в конце выдоха и 8 мм рт. ст. в конце вдоха. Создается силами поверхностного натяжения и эластической тягой легкого

Рис. 12.13. Изменения давления во время вдоха и выдоха

ВДОХ (инспирация) – физиологический акт наполнения легких атмосферным воздухом. Осуществляется благодаря активной деятельности дыхательного центра и дыхательной мускулатуры, увеличивающей объем грудной клетки, в результате чего снижается давление в плевральной полости и в альвеолах, что приводит к поступлению воздуха окружающей среды в трахею, бронхи и респираторные зоны легкого. Происходит без активного участия легких, так как сократительные элементы в них отсутствуют

ВЫДОХ (экспирация) – физиологический акт выведения из легкого части воздуха, принимающего участие в газообмене. Вначале выводится воздух анатомического и физиологического мертвого пространства, мало отличающийся от атмосферного воздуха, затем альвеолярный воздух, обогащенный СО 2 и бедный О 2 в результате газообмена. В условиях покоя процесс пассивный. Осуществляется без затраты мышечной энергии, за счет эластической тяги легкого, грудной клетки, гравитационных сил и расслабления дыхательных мышц

При форсированном дыхании глубина выдоха усиливается с помощью мышц брюшного пресса и внутренних межреберных. Мышцы брюшного пресса сдавливают брюшную полость спереди и усиливают подъем диафрагмы. Внутренние межреберные мышцы смещают ребра вниз и тем самым уменьшают поперечное сечение грудной полости, а следовательно и ее объем

Механизм вдоха и выдоха

Статические показатели внешнего дыхания (легочные объемы)

величины, характеризующие потенциальные возможности дыхания, зависящие от антропометрических данных и особенностей функциональных объемов легкого

ЛЕГОЧНЫЕ ОБЪЕМЫ

ХАРАКТЕРИСТИКА

Объем у взрослого человека, мл

Дыхательный объем (ДО)

объем воздуха, который человек может вдохнуть (выдохнуть) при спокойном дыхании

Резервный объем вдоха (РО Вд )

количество воздуха, которое может быть дополнительно введено при максимальном вдохе

Резервный объем выдоха (РО Выд )

объем воздуха, который человек может вы­дохнуть дополнительно после спокойного выдоха

Остаточный объем (ОО)

объем воздуха, который остается в легких после максимального выдоха

Жизненная емкость легких (ЖЕЛ)

Максимальный объем воздуха, который можно выдохнуть после максимального вдоха. Зависит от общей емкости легких, силы дыхательных мышц, грудной клетки и легких

(ЖЕЛ)=РО вд +ДО+РО выд

У мужчин – 3500-5000

У женщин – 3000-3500

Общая емкость легких (ОЕЛ)

Наибольшее количество воздуха, которое полностью заполняет легкие. Характе­ризует степень анатомического развития органа

(ОЕЛ)= ЖЕЛ + ОО

Функциональная остаточная емкость (ФОЕ)

Количество воздуха, остающееся в легких после спокойного выдоха

(ФОЕ)= РО Выд + ОО

Определение статических показателей дыхания производится методом спирометрии.

Спирометрия – определение статических показа­телей дыхания (объемов – кроме остаточного; емкостей – кроме ФОЕ и ОЕЛ) путем выдыхания воздуха через прибор, регистрирующий его количество (объем). В сов­ременных сухих крыльчатых спирометрах воздух вращает воздушную турбинку, соединенную со стрелкой

Рис. 12.14. Объемы и емкости легких

Дыхание, его основные этапы. Механизм внешнего дыхания. Биомеханика вдоха и выдоха. Эластическая тяга лёгких. Давление в плевральной полости, его происхождение, изменение при дыхании.

Дыхание - совокупность процессов, обеспечивающих потребление организмом кислорода и выделение двуокиси углерода.

Поступление кислорода из атмосферы к клеткам необходимо для биологического окисления органических веществ, в результате которого освобождается энергия, нужная для жизни организма. В процессе биологического окисления образуется двуокись угле­рода, подлежащая удалению из организма. Прекращение дыхания ведет к гибели прежде всего нервных, а затем и других клеток. Кроме того, дыхание участвует в поддержании постоянства реакции жидкостей и тканей внутренней среды организма, а также темпе­ратуры тела.

Дыхание человека включает следующие этапы:

1) внешнее дыхание (вентиляция легких)- это обмен газов между альвеолами лёгких и атмосферным воздухом;

2) обмен газов в легких (между альвеолярным воздухом и кровью капилляров малого круга кровообращения);

3) транспорт газов кровью – процесс переноса О 2 от лёгких к тканям и СО 2 от тканей к лёгким;

4) обмен газов в тканях между кровью капилляров большого круга кровообращения и клетками тканей;

5) внутреннее дыхание (биологическое окисление в митохондриях клеток).

Газообмен между атмосферным воздухом и альвеолярным пространством легких происходит в результате циклических изменений объема легких в течение фаз дыхательного цикла . В фазу вдоха объем легких увеличивается, воздух из внешней среды поступает в дыхательные пути и затем достигает альвеол. Напротив, в фазу выдоха происходит уменьшение объема легких и воздух из альвеол через дыхательные пути выходит во внешнюю среду. Увеличение и уменьшение объема легких обусловлены биомеханическими процессами изменения объема грудной полости при вдохе и выдохе.

Увеличение объема грудной полости при вдохе происходит в результате сокращения инспираторных мышц: диафрагмы и наружных межреберных. Основной дыхательной мышцей является диафрагма, которая находится в нижней трети грудной полости и разделяет грудную и брюшную полости. При сокращении диафрагмальной мышцы диафрагма движется вниз и смещает органы брюшной полости вниз и кпереди, увеличивая объем грудной полости преимущественно по вертикали.

Увеличению объема грудной полости при вдохе способствует сокращение наружных межреберных мышц, которые поднимают грудную клетку вверх, увеличивая объем грудной полости. Этот эффект сокращения наружных межреберных мышц обусловлен особенностями прикрепления мышечных волокон к ребрам - волокна идут сверху вниз и сзади кпереди (рис. 10.2). При подобном направлении мышечных волокон наружных межреберных мышц их сокращение поворачивает каждое ребро вокруг оси, проходящей через точки сочленения головки ребра с телом и поперечным отростком позвонка. В результате этого движения каждая нижележащая реберная дуга поднимается вверх больше, чем опускается вышерасположенная. Одновременное движение вверх всех реберных дуг приводит к тому, что грудина поднимается вверх и кпереди, а объем грудной клетки увеличивается в сагиттальной и фронтальной плоскостях. Сокращение наружных межреберных мышц не только увеличивает объем грудной полости, но и препятствует опусканию грудной клетки вниз. Например, у детей, имеющих неразвитые межреберные мышцы, грудная клетка уменьшается в размере во время сокращения диафрагмы (парадоксальное движение).


При глубоком дыхании в биомеханизме вдоха , как правило, участвует вспомогательная дыхательная мускулатура - грудино-ключично-сосцевидные и передние лестничные мышцы, и их сокращение дополнительно увеличивает объем грудной клетки. В частности, лестничные мышцы поднимают верхние два ребра, а грудино-ключично-сосцевидные - поднимают грудину. Вдох является активным процессом и требует расхода энергии при сокращении инспираторных мышц, которая затрачивается на преодоление эластического сопротивления относительно ригидных тканей грудной клетки, эластического сопротивления легко растяжимой легочной ткани, аэродинамического сопротивления дыхательных путей потоку воздуха, а также на повышение внутриабдоминального давления и возникающего при этом смещения органов брюшной полости книзу.

Выдох в покое у человека осуществляется пассивно под действием эластической тяги легких, которая возвращает объем легких к исходной величине. Тем не менее при глубоком дыхании, а также при кашле и чиханье, выдох может быть активным, и уменьшение объема грудной полости происходит за счет сокращения внутренних межреберных мышц и мышц живота. Мышечные волокна внутренних межреберных мышц идут относительно точек их прикрепления к ребрам снизу вверх и сзади кпереди. При их сокращении ребра поворачиваются вокруг оси, проходящей через точки их сочленения с позвонком, и каждая вышерасположенная реберная дуга опускается вниз больше, чем нижерасположенная поднимается вверх. В результате все реберные дуги вместе с грудиной опускаются вниз, уменьшая объем грудной полости в сагиттальной и фронтальной плоскостях.

При глубоком дыхании человека сокращение мышц живота в фазу выдоха увеличивает давление в брюшной полости, что способствует смещению купола диафрагмы вверх и уменьшает объем грудной полости в вертикальном направлении.

Сокращение дыхательных мышц грудной клетки и диафрагмы при вдохе вызывает увеличение объема легких , а при их расслаблении во время выдоха легкие спадаются до исходного объема. Объем легких как при вдохе, так и при выдохе изменяется пассивно, поскольку благодаря своей высокой эластичности и растяжимости легкие следуют за изменениями объема грудной полости, вызванными сокращением дыхательных мышц. Это положение иллюстрирует следующая модель пассивного увеличения объема легких (рис. 10.3). В этой модели легкие могут быть рассмотрены в качестве эластичного баллона, помещенного внутрь емкости, выполненной из ригидных стенок и гибкой диафрагмы. Пространство между эластичным баллоном и стенками емкости является герметичным. Эта модель позволяет изменять давление внутри емкости при движении вниз гибкой диафрагмы. При увеличении объема емкости, вызванном движением вниз гибкой диафрагмы, давление внутри емкости, т. е. вне баллона, становится ниже атмосферного в соответствии с законом идеального газа. Баллон раздувается, поскольку давление внутри него (атмосферное) становится выше, чем давление в емкости вокруг баллона.

В приложении к легким человека, которые полностью заполняют объем грудной полости , их поверхность и внутренняя поверхность грудной полости покрыты плевральной мембраной. Плевральная мембрана поверхности легких (висцеральная плевра) физически не соприкасается с плевральной мембраной, покрывающей грудную стенку (париетальная плевра), так как между этими мембранами имеется плевральное пространство (синоним - внутриплевральное пространство ), заполненное тонким слоем жидкости - плевральной жидкости. Эта жидкость увлажняет поверхность долей легких и способствует их скольжению относительно друг друга во время раздувания легких, а также облегчает трение между париетальным и висцеральным листками плевры. Жидкость несжимаема и ее объем не увеличивается при уменьшении давления в плевральной полости . Поэтому высокоэластичные легкие в точности повторяют изменение объема грудной полости во время вдоха. Бронхи, кровеносные сосуды, нервы и лимфатические сосуды формируют корень легкого, с помощью которого легкие фиксированы в области средостения. Механические свойства этих тканей обусловливают основную степень усилия, которое должны развивать дыхательные мышцы при сокращении, чтобы вызывать увеличение объема легких . В обычных условиях эластическая тяга легких создает незначительную величину отрицательного давления в тонком слое жидкости внутриплеврального пространства относительно атмосферного давления. Отрицательное внутриплевральное давление варьирует в соответствии с фазами дыхательного цикла от -5 (выдох) до -10 см водн. ст. (вдох) ниже атмосферного давления (рис. 10.4). Отрицательное внутриплевральное давление способно вызвать уменьшение (коллапс) объема грудной полости, которому ткани грудной клетки противодействуют своей чрезвычайно ригидной структурой. Диафрагма по сравнению с грудной клеткой, является более эластичной, и ее купол поднимается вверх под влиянием градиента давления, существующего между плевральной и брюшной полостями.

В состоянии, когда легкие не расширяются и не спадаются (пауза соответственно после вдоха или выдоха), в дыхательных путях отсутствует поток воздуха и давление в альвеолах равно атмосферному. В этом случае градиент между атмосферным и внутриплевральным давлением будет точно уравновешивать давление, развиваемое эластической тягой легких (см. рис. 10.4). В этих условиях величина внутриплеврального давления равна разности между давлением в дыхательных путях и давлением, развиваемым эластической тягой легких. Поэтому чем больше растянуты легкие, тем сильнее будет эластическая тяга легких и более отрицательным относительно атмосферного является величина внутриплеврального давления. Так происходит во время вдоха, когда диафрагма опускается вниз и эластическая тяга легких противодействует раздуванию легких, а величина внутриплеврального давления становится более отрицательной. При вдохе это отрицательное давление способствует продвижению воздуха по дыхательным путям в сторону альвеол, преодолевая сопротивление дыхательных путей. В результате воздух поступает из внешней среды в альвеолы.

Рис. 10.4. Давление в альвеолах и внутриплевральное давление в фазу вдоха и выдоха дыхательного цикла . В отсутствии потока воздуха в дыхательных путях давление в них равно атмосферному (А), а эластическая тяга легких создает в альвеолах давление Е. В этих условиях величина внутри-плеврального давления равна разнице А - Е. При вдохе сокращение диафрагмы увеличивает величину отрицательного давления в плевральной полости до -10 см водн. ст., которое способствует преодолению сопротивления потоку воздуха в дыхательных путях, и воздух движется из внешней среды в альвеолы. Величина внутриплеврального давления обусловлена разницей между давлениями А - R - Е. При выдохе диафрагма расслабляется и внутриплевральное давление становится менее отрицательным относительно атмосферного давления (-5 см водн. ст.). Альвеолы вследствие своей эластичности уменьшают свой диаметр, в них повышается давление Е. Градиент давлений между альвеолами и внешней средой сопособствует выведению воздуха из альвеол по дыхательным путям во внешнюю среду. Величина внутриплеврального давленния обусловлена суммой A+R за вычетом давления внутри альвеол, т. е. А + R - Е. А - атмосферное давление, Е -давление в альвеолах, возникающее вследствие эластической тяги легких, R -давление, обеспечивающее преодоление сопротивления потоку воздуха в дыхательных путях, Р - внутриплевральное давление.

При выдохе диафрагма расслабляется и величина внутриплеврального давления становится менее отрицательной. В этих условиях альвеолы в связи с высокой эластичностью их стенок начинают уменьшаться в размере и выталкивают воздух из легких через дыхательные пути. Сопротивление дыхательных путей потоку воздуха поддерживает положительное давление в альвеолах и препятствует их быстрому спадению. Таким образом, в спокойном состоянии при выдохе поток воздуха в дыхательных путях обусловлен только эластической тягой легких.

Давление в плевральной полости (щели)

Легкие и стенки грудной полости покрыты серозной оболочкой - плеврой. Между листками висцеральной и париетальной плевры имеется узкая (5-10 мкм) щель, содер­жащая серозную жидкость, по составу сходную с лимфой. Легкие постоянно находятся в растянутом состоянии.

Если в плевральную щель ввести иглу, соединенную с манометром, можно устано­вить, что давление в ней ниже атмосферного. Отрицательное давление в плевральной щели обусловлено эластической тягой легких, т. е. постоянным стремлением легких уменьшить свой объем. В конце спокойного выдо­ха, когда почти все дыхательные мышцы расслаб­лены, давление в плевральной щели (Ppi) прибли­зительно -3 мм рт. ст. Давление в альвеолах (Ра) в это время равно атмосферному. Разность Ра- -Ppi=3мм рт. ст. носит название транспульмо-нального давления (р|). Таким образом, давление в плевральной щели ниже, чем давление в альве­олах, на величину, создаваемую эластической тя­гой легких.

При вдохе вследствие сокращения инспира-торных мышц объем грудной полости увели­чивается. Давление в плевральной щели стано­вится более отрицательным. К концу спокойного вдоха оно снижается до -6 мм рт. ст. Вследствие увеличения транспульмонального давления лег­кие расправляются, их объем увеличивается за счет атмосферного воздуха.

Когда инспираторные мышцы расслабляются, упругие силы растянутых легких и стенок брюш­ной полости уменьшают транспульмональное дав­ление, объем легких уменьшается - наступает выдох.

Механизм изменения объема легких при дыхании может быть продемонстрирован с помощью модели Дондерса (рис. 148).

При глубоком вдохе давление в плевральной щели может снизиться до -20 мм рт. ст. Во время активного выдоха это давление может стать положительным, тем не менее оставаясь ниже давления в альвеолах на величину эластической тяги легких.

В плевральной щели в обычных условиях не бывает газов. Если ввести некоторое количество воздуха в плевральную щель, он постепенно рассосется. Всасывание газов из плевральной щели происходит вследствие того, что в крови мелких вен малого круга кровообращения напряжение растворенных газов ниже, чем в атмосфере. Накоплению в плевральной щели жидкости препятствует онкотическое давление: в плевральной жидкости содержание белков значительно ниже, чем в плазме крови. Имеет значение также относительно низкое гидростатическое давление в сосудах малого круга крово­обращения.

Упругие свойства легких. Эластическая тяга легких обусловлена тремя факторами:

1) поверхностным натяжением пленки жидкости, покрывающей внутреннюю поверхность альвеол; 2) упругостью ткани стенок альвеол вследствие наличия в них эластических волокон; 3) тонусом бронхиальных мышц. Устранение сил поверхностного натяжения (заполнение легких солевым раствором) снижает эластическую тягу легких на ^з.

Если бы внутренняя поверхность альвеол была покрыта водным раствором, поверх­ностное натяжение должно было бы быть в 5-8 раз больше. В таких условиях наблюда­лось бы полное спадение одних альвеол (ателектаз) при перерастяжении других. Этого не происходит потому, что внутренняя поверхность альвеол выстлана веществом, имеющим низкое поверхностное натяжение, так называемым сурфактантом. Выстилка имеет тол­щину 20-100 нм. Она состоит из липидов и белков. Сурфактант образуется специальны­ми клетками альвеол - пневмоцитами II типа. Пленка сурфактанта обладает замеча­тельным свойством: уменьшение размеров альвеол сопровождается снижением поверх­ностного натяжения; это важно для стабилизации состояния альвеол. Образование сур­фактанта усиливается парасимпатическими влияниями; после перерезки блуждающих нервов оно замедляется.

Эластическая тяга лёгких - сила, с которой лёгкие стремятся к спадению вследствие:

1) сил поверхностного натяжения альвеол;

2) наличия эластичных волокон в лёгочной ткани;

3) тонуса мелких бронхов.

Плевра, pleura, являющаяся серозной оболочкой легкого, подразделяется на висцеральную (легочную) плевру и париетальную (пристеночную). Каждое легкое покрыто плеврой (легочной), которая по поверхности корня переходит в париетальную плевру, выстилающую прилежащие к легкомустенки грудной полости и ограничивающую с боков средостение.

Плевральная полость (cаvitas pleurаlis) расположена между париетальной и висцеральной плеврами в виде узкой щели, она содержит незначительное количество серозной жидкости, увлажняющей листки плевры, способствующей уменьшению трения листков висцеральной и париетальной плевры друг о друга при дыхательных движениях легких.

Давление в плевральной полости ниже атмосферного, что определяется как отрицательное давление. Оно обусловлено эластической тягой лёгких, т.е. постоянным стремлением лёгких уменьшить свой объём. Давление в плевральной полости ниже альвеолярного на величину, создаваемую эластической тягой лёгких: Рпл = Ральв – Рэ.т.л.. эластическая тяга лёгких обусловлена тремя факторами:

Поверхностным натяжением плёнки жидкости, покрывающей внутреннюю поверхность альвеол – сурфактантом.

2) Упругостью ткани стенок альвеол, которые имеют в стенке эластические волокна.

3) Тонусом бронхиальных мышц

Скопление воздуха или газов в полости плевры.

Самопроизвольный пневмоторакс возникает при разрыве легочных альвеол (при туберкулезе, эмфиземе легких); травматический - при повреждении грудной клетки.

Напряженный пневмоторакс возникает при поступлении воздуха в плевральную полость и невозможности его самостоятельного удаления. Это приводит к нарастанию давления, сдавлению структур средостения, нарушению венозного притока, к шоку и возможной смерти.

Какие есть легочные объемы и емкости, какие вы знаете методы их определения?

В процессе легочной вентиляции непрерывно обновляется газовый состав альвеолярного воздуха. Величина легочной вентиляции определяется глубиной дыхания, или дыхательным объемом, и частотой дыхательных движений. Во время дыхательных движений легкие человека заполняются вдыхаемым воздухом, объем которого является частью общего объема легких. Для количественного описания легочной вентиляции общую емкость легких разделили на несколько компонентов или объемов. При этом легочной емкостью называется сумма двух и более объемов.



Легочные объемы подразделяют на статические и динамические. Статические легочные объемы измеряют при завершенных дыхательных движениях без лимитирования их скорости. Динамические легочные объемы измеряют при проведении дыхательных движений с ограничением времени на их выполнение.

Легочные объемы. Объем воздуха в легких и дыхательных путях зависит от следующих показателей: 1) антропометрических индивидуальных характеристик человека и дыхательной системы; 2) свойств легочной ткани; 3) поверхностного натяжения альвеол; 4) силы, развиваемой дыхательными мышцами.

Легочные емкости. Жизненная емкость легких (ЖЕЛ) включает в себя дыхательный объем, резервный объем вдоха, резервный объем выдоха. У мужчин среднего возраста ЖЕЛ варьирует в пределах 3,5-5,0 л и более. Для женщин типичны более низкие величины (3,0-4,0 л). В Зависимости от методики измерения ЖЕЛ различают ЖЕЛ вдоха, когда после полного выдоха производится максимально глубокий вдох и ЖЕЛ выдоха, когда после полного вдоха производится максимальный выдох..

Методы измерения легочных объемов

1. Спирометрия - измерение легочных объемов. Позволяет определить ЖЕЛ, ДО, РОвд, РОвыд.

2. Спирография - регистрация легочных объемов. Позволяет документально зарегистрировать ЖЕЛ, ДО, РОвд, РОвыд, а также частоту дыхания.

Определение остаточного объема

С помощью спирографа с замкнутым контуром с использованием гелия /по степени разведения гелия/.

Общая плетизмография тела /бодиплетизмография/.

Что такое легочная и альвеолярная вентиляция? Какие есть методы определения МОД?

Что такое мертвое пространство, каково его значение?

Когда происходит максимальная вентиляция легких? Что такое резерв дыхаиия, как его рассчитать?

Как называется стректурно-функциональная единица легких?

Какой состав имеет атмосферный, выдыхаемый и альвеолярный воздух? Определение и сопоставление.

Какие закономерности обеспсчивают диффузию газов из одной среды в другую?

Как происходит газообмен в легких? Что такое парциальное давление газов в альвеолярном воздухе и напряжение газов в крови?

Как осуществляется транспорт кислорода кровью? Что такое кислородная емкость крови, чему она равна в норме?

Как осуществляется транспорт углекислоты кровью? Какое значение в этом процессе играет карбоангидраза?

Где находится дыхательный центр? Из каких структур он состоит?

Что включает в себя функциональная система, обеспечивающая постоянство газового состава крови?

Что такое искусственная вентиляция легких?

В каких случаях применяют искусственную вентиляцию легких?

Какие методы применяют для искусственной вентиляции легких?

Что такое искусственное дыхание?

Какие методы применяют при искусственном дыхании?

Какова обшая характеристика жидких сред организма? Что такое внутриклеточные и внеклеточные жидкости?

Что входит в систему крови?

Какие функции выполняет кровь?

Какие органы выполняют функцию депо крови, какое значение имеет депо крови?

Какой состав имеет кровь?

Что такое плазма и каков ее состав?

Легкие являются эластической структурой , которая при отсутствии силы, поддерживающей ее в растянутом состоянии, спадается как воздушный шар и выдавливает весь содержащийся в ней воздух через трахею. При этом не существует никаких соединяющих легкие и стенки грудной клетки структур, кроме тех, которые прикрепляют их ворота к средостению. Таким образом, легкие «плавают» в грудной полости, окруженные тонким слоем плевральной жидкости, которая облегчает их движение в полости.

Постоянное всасывание излишка жидкости в лимфатические каналы создает слабое присасывание висцеральной поверхности плеврального листка легких к париетальному листку плевры стенки грудной полости, поэтому легкие как бы прилипают к грудной стенке и при ее расширении и сужении могут свободно скользить по ее внутренней поверхности.

Плевральное давление - это давление жидкости в узкой щели между легочным и париетальным листками плевры. Ранее было сказано, что в норме существует слабое присасывание листков плевры друг к другу, т.е. давление является слабо отрицательным. В начале вдоха нормальное плевральное давление составляет около -5 см вод. ст., при таком давлении легкие остаются открытыми в покое. При нормальном вдохе расширение грудной клетки тянет за собой и легкие, и развивается несколько большее отрицательное давление - около -7,5 см вод. ст.

На рисунке показаны эти соотношения между внутриплевральным давлением и изменениями легочного объема. На нижней кривой видно, что при вдохе отрицательное давление внутри плевральной полости увеличивается от -5 до -7,5 см вод. ст., а на верхней кривой видно увеличение объема легких на 0,5 л. Во время выдоха события развиваются в обратном направлении.

Давление воздуха внутри альвеол называют альвеолярным давлением . При открытой гортани и отсутствии движения воздуха к легким или от них давление во всех частях дыхательных путей вплоть до альвеол одинаково и равняется атмосферному давлению, которое считается нулевым уровнем давления в дыхательных путях, т.е. равным 0 см вод. ст.

Во время вдоха воздух начинает входить в альвеолы только после того, как давление в альвеолах становится несколько ниже атмосферного давления (ниже нуля). На второй кривой (альвеолярное давление) на рисунке видно, что во время нормального вдоха альвеолярное давление снижается примерно до -1 см вод. ст. Этого небольшого отрицательного давления достаточно для того, чтобы в легкие во время спокойного вдоха за 2 сек вошло 0,5 л воздуха.

Во время выдоха происходит сдвиг давления в другую сторону: альвеолярное давление повышается примерно до +1 см вод. ст., при этом за 2-3 сек выдоха из легких выходит 0,5 л воздуха.

Транспульмональное давление . Обратите внимание на разницу между альвеолярным и внутриплевральным давлением на рисунке. Эту разницу называют транспульмоналъным давлением. Она представляет собой разницу между давлением внутри альвеол и давлением на внешней поверхности легких. Транспульмональное давление является мерой эластических сил в легких, стремящихся к уменьшению объема легких в любой фазе дыхания. Это давление называют давлением коллапса.

Читайте также: