Клеточный цикл и его фазы. Клеточный цикл и его периоды. Контрольные точки клеточного цикла

Рост тела человека обусловлен увеличением размера и количества клеток, при этом последнее обеспечивается процессом деления, или митозом. Пролиферация клеток происходит под воздействием внеклеточных факторов роста, а сами клетки проходят через повторяющуюся последовательность событий, известную как клеточный цикл.

Различают четыре основные фазы : G1 (пресинтетическая), S (синтетическая), G2 (постсинтетическая) и М (митотическая). Затем следует разделение цитоплазмы и плазматической мембраны, в результате чего возникают две одинаковые дочерние клетки. Фазы Gl, S и G2 входят в состав интерфазы. Репликация хромосом происходит во время синтетической фазы, или S-фазы.
Большинство клеток не подвержено активному делению, их митотическая активность подавляется во время фазы GO, входящей в состав фазы G1.

Продолжительность М-фазы составляет 30-60 мин, в то время как весь клеточный цикл проходит примерно за 20 ч. В зависимости от возраста нормальные (не опухолевые) клетки человека претерпевают до 80 митотических циклов.

Процессы клеточного цикла контролируются последовательно повторяющимися активацией и инактивацией ключевых ферментов, называемых цик дин зависимыми протеинкиназами (ЦЗК), а также их кофакторов - циклинов. При этом под воздействием фосфокиназ и фосфатаз происходят фосфорилирование и дефосфорилирование особых циклин-ЦЗК-комплексов, ответственных за начало тех или иных фаз цикла.

Кроме того, на соответствующих стадиях подобные ЦЗК-белки вызывают уплотнение хромосом, разрыв ядерной оболочки и реорганизацию микротрубочек цитоскелета в целях формирования веретена деления (митотического веретена).

G1-фаза клеточного цикла

G1-фаза - промежуточная стадия между М- и S-фазами, во время которой происходит увеличение количества цитоплазмы. Кроме того, в конце фазы G1 расположена первая контрольная точка, на которой происходят репарация ДНК и проверка условий окружающей среды (достаточно ли они благоприятны для перехода к S-фазе).

В случае если ядерная ДНК повреждена, усиливается активность белка р53, который стимулирует транскрипцию р21. Последний связывается со специфическим циклин-ЦЗК-комплексом, ответственным за перевод клетки в S-фазу, и тормозит её деление на стадии Gl-фазы. Это позволяет репарационным ферментам исправить повреждённые фрагменты ДНК.

При возникновении патологий белка р53 репликация дефективной ДНК продолжается, что позволяет делящимся клеткам накапливать мутации и способствует развитию опухолевых процессов. Именно поэтому белок р53 часто называют «стражем генома».

G0-фаза клеточного цикла

Пролиферация клеток у млекопитающих возможна только при участии секретируемых другими клетками внеклеточных факторов роста , которые оказывают своё воздействие через каскадную сигнальную трансдукцию протоонкогенов. Если во время фазы G1 клетка не получает соответствующих сигналов, то она выходит из клеточного цикла и переходит в состояние G0, в котором может находиться несколько лет.

Блок G0 происходит при помощи белков - супрессоров митоза, один из которых - ретинобластомный белок (Rb-белок), кодируемый нормальными аллелями гена ретинобластомы. Данный белок прикрепляется кособым регуляторным протеинам, блокируя стимуляцию транскрипции генов, необходимых для пролиферации клеток.

Внеклеточные факторы роста разрушают блок путём активации Gl-специфических циклин-ЦЗК-комплексов , которые фосфорилируют Rb-белок и изменяют его конформацию, в результате чего разрывается связь с регуляторными белками. При этом последние активируют транскрипцию кодируемых ими генов, которые запускают процесс пролиферации.

S фаза клеточного цикла

Стандартное количество двойных спиралей ДНК в каждой клетке, соответствующее диплоидному набору одноцепочечных хромосом, принято обозначать как 2С. Набор 2С сохраняется на протяжении фазы G1 и удваивается (4С) во время S-фазы, когда синтезируется новая хромосомная ДНК.

Начиная с конца S-фазы и до М-фазы (включая фазу G2) каждая видимая хромосома содержит две плотно связанные друг с другом молекулы ДНК, называемые сестринскими хроматидами. Таким образом, в клетках человека начиная с конца S-фазы и до середины М-фазы присутствуют 23 пары хромосом (46 видимых единиц), но 4С (92) двойные спирали ядерной ДНК.

В процессе митоза происходит распределение одинаковых наборов хромосом по двум дочерним клеткам таким образом, чтобы в каждой из них содержалось по 23 пары 2С-молекул ДНК. Следует отметить, что фазы G1 и G0 - единственные фазы клеточного цикла, во время которых в клетках 46 хромосомам соответствует 2С-набор молекул ДНК.

G2-фаза клеточного цикла

Вторая контрольная точка , на которой проверяется размер клетки, находится в конце фазы G2, расположенной между S-фазой и митозом. Кроме того, на данной стадии, прежде чем перейти к митозу, происходит проверка полноты репликации и целостности ДНК. Митоз (М-фаза)

1. Профаза . Хромосомы, каждая из которых состоит из двух одинаковых хроматид, начинают уплотняться и становятся видимыми внутри ядра. На противоположных полюсах клетки вокруг двух центросом из волокон тубулина начинает образовываться веретеноподобный аппарат.

2. Прометафаза . Происходит разделение мембраны ядра. Вокруг центромер хромосом формируются кинетохоры. Волокна тубулина проникают внутрь ядра и концентрируются вблизи кинетохор, соединяя их с волокнами, исходящими из центросом.

3. Метафаза . Натяжение волокон заставляет хромосомы выстраиваться посередине в линию между полюсами веретена, формируя тем самым метафазную пластинку.

4. Анафаза . ДНК центромер, разделённая между сестринскими хроматидами, дуплицируется, хроматиды разделяются и расходятся ближе к полюсам.

5. Телофаза . Разделённые сестринские хроматиды (которые с этого момента считают хромосомами) достигают полюсов. Вокруг каждой из групп возникает ядерная мембрана. Уплотнённый хроматин рассеивается и происходит формирование ядрышек.

6. Цитокинез . Клеточная мембрана сокращается и посередине между полюсами образуется борозда дробления, которая со временем разделяет две дочерние клетки.

Цикл центросомы

Во время фазы G1 происходит разделение пары центриолей, сцепленных с каждой центросомой. На протяжении S- и G2-фаз справа от старых центриолей формируется новая дочерняя центриоль. В начале М-фазы центросома разделяется, две дочерние центросомы расходятся к полюсам клетки.

Жизненный цикл клетки , или клеточный цикл , – это промежуток времени, в течение которого существует как единица, т. е. период жизни клетки. Он длится от момента появления клетки в результате деления ее материнской и до конца деления ее самой, когда она «распадается» на две дочерние.

Бывают случаи, когда клетка не делится. Тогда ее жизненный цикл - это период от появления клетки до гибели. Обычно не делятся клетки ряда тканей многоклеточных организмов. Например, нервные клетки и эритроциты.

Принято в жизненном цикле клеток эукариот выделять ряд определенных периодов, или фаз. Они характерны для всех делящихся клеток. Фазы обозначают G 1 , S, G 2 , M. Из фазы G 1 клетка может уходить в фазу G 0 , оставаясь в которой, она не делится и во многих случаях дифференцируется. При этом некоторые клетки могут возвращаться из G 0 в G 1 и пройти по всем этапам клеточного цикла.

Буквы в аббревиатурах фаз – это первые буквы английских слов: gap (промежуток), synthesis (синтез), mitosis (митоз).

Красным флуоресцентным индикатором клетки подсвечиваются в фазу G1. Остальные фазы клеточного цикла - зеленым.

Период G 1 – пресинтетический – начинается сразу как только клетка появилась. В этот момент она меньше по размеру, чем материнская, в ней мало веществ, недостаточно количество органоидов. Поэтому в G 1 происходит рост клетки, синтез РНК, белков, построение органелл. Обычно G 1 – самая длительная фаза жизненного цикла клетки.

S – синтетический период . Самый главный его отличительный признак – удвоение ДНК путем репликации . Каждая хромосома становится состоящей из двух хроматид. В этот период хромосомы по-прежнему деспирализованы. В хромосомах, кроме ДНК, много белков-гистонов. Поэтому в S-фазу гистоны синтезируются в большом количестве.

В постсинтетический период – G 2 – клетка готовится к делению, обычно путем митоза. Клетка продолжает расти, активно идет синтез АТФ, могут удваиваться центриоли.

Далее клетка вступает в фазу клеточного деления – M . Здесь происходит деление клеточного ядра – кариокинез , после чего деление цитоплазмы – цитокинез . Завершение цитокинеза знаменует завершение жизненного цикла данной клетки и начало клеточных циклов двух новых.

Фаза G 0 иногда называют периодом «отдыха» клетки. Клетка «выходит» из обычного цикла. В этот период клетка может приступить к дифференциации и уже никогда не вернуться к обычному циклу. Также в фазу G 0 могут входить стареющие клетки.

Переход в каждую последующую фазу цикла контролируется специальными клеточными механизмами, так называемыми чекпоинтами – контрольными точками . Чтобы наступила следующая фаза, в клетке должно быть все готово для этого, в ДНК не содержаться грубых ошибок и др.

Фазы G 0 , G 1 , S, G 2 вместе формируют интерфазу - I .

Период жизни клетки от момента её рождения в результате деления материнской клетки до следующего деления или смерти называется жизненным (клеточным) циклом клетки.

Клеточный цикл способных к размножению клеток включает две стадии: - ИНТЕРФАЗУ (стадия между делениями, интеркинез); - ПЕРИОД ДЕЛЕНИЯ (митоз). В интерфазе происходит подготовка клетки к делению – синтез различных веществ, но главным является удвоение ДНК. По продолжительности она составляет большую часть жизненного цикла. Интерфаза состоит из 3–х периодов: 1) Предсинтетический – G1 (джи один) – наступает сразу после окончания деления. Клетка растет, накапливает различные вещества (богатые энергией), нуклеотиды, аминокислоты, ферменты. Готовится к синтезу ДНК. Хромосома содержит 1 молекулу ДНК (1 хроматида). 2) Синтетический – S происходит удвоение материала – репликация молекул ДНК. Усиленно синтезируется белки и РНК. Происходит удвоение числа центриолей.

3) Постсинтетический G2 – предмитотический, продолжается синтез РНК. Хромосомы содержат 2 свои копии – хроматиды, каждая из которых несет по 1-ой молекуле ДНК (двунитевидная). Клетка готова к делению хромосома сперализуется.

Амитоз – прямое деление

Митоз – непрямое деление

Мейоз – редукционное деление

АМИТОЗ – встречается редко, особенно у стареющих клеток или при патологических состояниях (репарация тканей), ядро остаётся в интефазном состоянии, хромосомы не сперализуются. Ядро делится путем перетяжки. Цитоплазма может и не делится, тогда образуются двуядерные клетки.

МИТОЗ – универсальный способ деления. В жизненном цикле он составляет лишь малую часть. Цикл эпитемальных клеток кишечника кошки составляет 20 – 22 ч., митоз – 1 час. Митоз состоит из 4-х фаз.

1)ПРОФАЗА – происходит укорочение и утолщение хромосом (спирализация) они хорошо видны. Хромосомы состоят из 2-х хроматид (удвоение в периоде интерфазы). Ядрышко и ядерная оболочка распадаются, цитоплазма и кариоплазма смешиваются. Разделившиеся клеточные центры расходятся по длинной оси клетки к полюсам. Образуется веретено деления (состоящее из упругих белковых нитей).

2)МЕТОФАЗА – хромосомы располагаются в одной плоскости по экватору, образуя метафазную пластинку. Веретено деления состоит из 2-х типов нитей: одни соединяют клеточные центры, вторые – (число их = числу хромосом 46) прикреплены, одним концом к центросоме (клеточному центру), другой к центромере хромосомы. Центромера тоже начинает делиться на 2. Хромосомы (в конце) расщепляются в области центромеры.



3)АНАФАЗА – самая короткая фаза митоза. Нити веретена деления начинают укорачиваться и хроматиды каждой хромосомы удаляются друг от друга по направлению к полюсам. Каждая хромосома состоит только из 1 хроматиды.

4)ТЕЛОФАЗА – хромосомы концентрируются у соответствующих клеточных центров, деспирализуются. Формируются ядрышки, ядерная оболочка, образуется мембрана, отделяющая сестринские клетки друг от друга. Сестринские клетки расходятся.

Биологическое значение митоза состоит в том, что в результате его каждая дочерняя клетка получает точно такой же набор хромосом, а следовательно, и точно такую же генетическую информацию, какими обладала материнская клетка.

7. МЕЙОЗ – ДЕЛЕНИЕ, СОЗРЕВАНИЕ ПОЛОВЫХ КЛЕТОК

Сущность полового размножения заключается в слиянии 2-х ядер половых клеток (гамет) сперматозоидов (муж) и яйцеклетки (жен). В процессе развития половые клетки претерпевают митотическое деление, а в период созревания – мейотическое. Поэтому зрелые половые клетки содержат гаплоидный набор хромосом (п): П +П=2П (зигота). Если бы гаметы имели 2п (диплоидн.) то, потомки имели бы тетраплоидное (2п+2п)=4п число хромосом и т.д. Число хромосом у родителей и потомков остаётся постоянным. Уменьшение числа хромосом вдвое происходит путем мейоза, (гаметогенез). Он состоит из 2-х идущих друг за другом делений:

Редукционного

Эквационного (уравнительного)

без интерфазы между ними.

ПРОФАЗА 1 ОТЛИЧАЕТСЯ ОТ ПРОФАЗЫ МИТОЗА.

1.Лептонема (тонкие нити) в ядре диплоидный набор (2п) длинных тонких хромосом 46 шт.

2.Зигонема – гомологические хромосомы (парные) – 23 пары у человека коньюгируют (молния) «подгонка» гена к гену соединяются по всей длине 2п – 23 шт.

3.Пахинема (толстые нити) гомолог. хромосомы тесно связаны (бивалентны). Каждая хромосома состоит из 2-х хроматид, т.е. бивалент – из 4-х хроматид.

4.Диплонема (двойные нити) коньюгирование хромосомы отталкиваются друг от друга. Происходит перекручивание, а иногда обмен обломившимися частями хромосом – перекрест (кроссинговер) – это резко увеличивает наследственную изменчивость, новые комбинации генов.

5.Диакинез (движение вдаль) – заканчивается профаза хромосомы сперализуются, ядерная оболочка, распадается и наступает вторая фаза – метафаза первого деления.

Метафаза 1 – по экватору клетки лежат биваленты (тетрады), веретено деления сформировано (23 пары).

Анафаза 1 – к каждому полюсу расходятся не по 1-ой хроматиде, а по 2 хромосомы. Связь между гомологичными хромосомами ослабляются. Парные хромосомы отходят друг от друга к разным полюсам. Образуется гаплоидный набор.

Телофаза 1 – у полюсов веретена собирается одинарный, гаплоидный набор хромосом, в которых каждый вид хромосом представлен не парой, а 1-ой хромосомой состоящей из 2-х хроматид цитоплазма не всегда делится.

Мейоз 1- деление приводит к образованию клеток, несущих гаплоидный набор хромосом, но хромосомы состоят из 2-х хроматид, т.е. имеют удвоенное количество ДНК. Поэтому клетки уже готовы ко 2-му делению.

Мейоз 2 деление (эквивалентное). Все стадии: профаза 2, метафаза 2, анафаза 2 и телофаза 2. Проходит как митоз, но делятся гаплоидные клетки.

В результате деления материнские двунитчатые хромосомы, расщепляясь, образуют однонитчатые дочерние хромосомы. В каждой клетке (4) будет гаплоидный набор хромосом.

Т.О. в результате 2-х метотических делений происходит:

Увеличивается наследственная изменчивость благодаря различным комбинациям хромосом в дочерних наборах

Число возможных комбинаций пар хромосом = 2 в степени n (число хромосом в гаплоидном наборе 23 – человек).

Основные назначения мейоза заключается, в создание клеток с гаплоидным набором хромосом – осуществляется благодаря образованию в начале 1 мейотического деления пар гомологичных хромосом и последующему расхождению гомологов в разные дочерние клетки. Образование мужских половых клеток – это сперматогенез, женских - овогенез.

Для того чтобы клетка смогла полноценно разделиться, она должна увеличиться в размерах и создать достаточное количество органоидов. А для того чтобы не растерять наследственную информацию при делении пополам, она должна изготовить копии своих хромосом. И, наконец, для того чтобы распределить наследственную информацию строго поровну между двумя дочерними клеткам, она должна в правильном порядке расположить хромосомы перед их распределением по дочерним клеткам. Все эти важные задачи решаются в процессе клеточного цикла.

Клеточный цикл имеет важное значение, т.к. он демонстрирует важнейшие : способность к размножению, росту и дифференцировке. Обмен тоже идёт, но его не рассматривают при изучении клеточного цикла.

Определение понятия

Клеточный цикл - это период жизни клетки от рождения до образования дочерних клеток.

У животных клеток клеточный цикл, как промежуток времени между двумя делениями (митозами), длится в среднем от 10 до 24 часов.

Клеточный цикл состоит из нескольких периодов (синоним: фазы), которые закономерно сменяют друг друга. В совокупности первые фазы клеточного цикла (G 1 , G 0 , S и G 2) носят название интерфазы , а последняя фаза называется .

Рис. 1. Клеточный цикл.

Периоды (фазы) клеточного цикла

1. Период первого роста G1 (от английского Growth - рост), составляет 30-40% цикла, и период покоя G 0

Синонимы: постмитотический (наступает после митоза) период, пресинтетический (проходит перед синтезом ДНК) период.

Клеточный цикл начинается от рождения клетки в результате митоза. После деления дочерние клетки уменьшены в размерах и органоидов в них меньше, чем в норме. Поэтому "новорожденная" маленькая клетка в первом периоде (фазе) клеточного цкла (G 1) растёт и увеличивается в размерах, а также формирует недостающие органоиды. Идёт активный синтез белков, необходимых для ввсего этого. В результате клетка становится полноценной, можно сказать, "взрослой".

Чем обычно заканчивается для клетки период роста G 1 ?

  1. Вступллением клетки в процесс . За счёт дифференцировки клетка приобретает специальные особенности для выполнения функций, необходимых всему органу и организму. Запускается дифференцировка управляющими веществами (гормонами), воздействующими на соответствующие молекулярные рецепторы клетки. Клетка, завершившая свою дифференцировку, выпадает из круговорота делений и находится в периоде покоя G 0 . Требуется воздействие активирующих веществ (митогенов) для того, чтобы она претерпела дедифференцировку и вновь вернулась в клеточный цикл.
  2. Гибелью (смертью) клетки.
  3. Вступлением в следующий период клеточного цикла -синтетический.

2. Синтетический период S (от английского Synthesis - синтез), составляет 30-50% цикла

Понятие синтеза в названии этого периода относится к синтезу (репликации) ДНК , а не к каким-либо другим процессам синтеза. Достигнув определенного размера в результате прохождения периода первого роста, клетка вступает в синтетический период, или фазу, S, в котором происходит синтез ДНК. За счёт репликации ДНК клетка удваивает свой генетический материал (хромосомы), т.к. в ядре образуется точная копия каждой хромосомы. Каждая хроммосома становится двойной и весь хромосомный набор становится двойным, или диплоидным . В результате клетка теперь готова поделить наследственный материал поровну между двумя дочерними клетками, не потеряв при этом ни одного гена.

3. Период второго роста G 2 (от английского Growth - рост), составляет 10-20% цикла

Синонимы: премитотический (проходит перед митозом) период, постсинтетический (наступает после синтетического) период.

Период G 2 является подготовительным к очередному делению клетки. Во время второго периода роста G 2 клетка производит белки, требующиеся для митоза, в частности, тубулин для веретена деления; создаёт запас энергии в виде АТФ; проверяет, закончена ли репликация ДНК, и готовится к делению.

4. Период митотического деления M (от английского Mitosis - митоз), составляет 5-10% цикла

После деления клетка оказывается в новой фазе G 1 , и клеточный цикл завершается.

Регуляция клеточного цикла

На молекулярном уровне переход от одной фазы цикла к другой регулируют два белка - циклин и циклинзависимая киназа (CDK).

Для регуляции клеточного цикла используется процесс обратимого фосфорилирования/дефосфорилирования регуляторных белков, т.е. присоединение к ним фосфатов с последующим отщеплением. Ключевым веществом, регулирующим вступление клетки в митоз (т.е. её переход от фазы G 2 к фазе M), является специфическая серин/треонин-протеинкиназа , которая носит название фактор созревания - ФС, или MPF, от английского maturation promoting factor. В активной форме этот белковый фермент катализирует фосфорилирование многих белков, принимающих участие в митозе. Это, например, входящий в состав хроматина гистон H 1 , ламин (компонент цитоскелета, находящийся в ядерной мембране), факторы транскрипции, белки митотического веретена, а также ряд ферментов. Фосфорилирование этих белков фактором созревания MPF активирует их и запускает процесс митоза. После завершения митоза регуляторная субъединица ФС, циклин , маркируется убиквитином и подвергается распаду (протеолизу). Теперь наступает очередь протеинфосфатаз , которые дефосфорилируют белки, принимавшие участие в митозе, чем переводят их в неактивное состояние. В итоге клетка возвращается в состояние интерфазы.

ФС (MPF) - это гетеродимерный фермент, включающий в себя регуляторную субъединицу, а именно циклин, и каталитическую субъединицу, а именно циклинзависимую киназу ЦЗК (CDK от англ. cyclin dependent kinase), она же p34cdc2; 34 кДа. Активной формой этого фермента является лишь димер ЦЗК+циклин. Кроме того, активность ЦЗК регулируется путем обратимого фосфорилирования самого фермента. Циклины получили такое название потому, что их концентрация циклически изменяется в соответствии с периодами клеточного цикла, в частности, она снижается перед началом деления клетки.

В клетках позвоночных присутствует ряд различных циклинов и циклинзависимых киназ. Разнообразные сочетания двух субъединиц фермента регулируют запуск митоза, начало процесса транскрипции в G1-фазе, переход критической точки после завершения транскрипции, начало процесса репликации ДНК в S-периоде интерфазы (стартовый переход) и другие ключевые переходы клеточного цикла (на схеме не приведены).
В ооцитах лягушки вступление в митоз (G2/M-переход) регулируется путем изменения концентрации циклина. Циклин непрерывно синтезируется в интерфазе до достижения максимальной концентрации в фазе М, когда запускается весь каскад фосфорилирования белков, катализируемый ФС. К окончанию митоза циклин быстро разрушается протеиназами, также активируемыми ФС. В других клеточных системах активность ФС регулируется за счет различной степени фосфорилирования самого фермента.

Клеточный цикл

Клеточный цикл состоит из митоза (М-фаза) и интерфазы. В интерфазе последовательно различают фазы G 1 , S и G 2 .

СТАДИИ КЛЕТОЧНОГО ЦИКЛА

Интерфаза

G 1 следует за телофазой митоза. В эту фазу клетка синтезирует РНК и белки. Продолжительность фазы – от нескольких часов до нескольких дней.

G 2 клетки могут выйти из цикла и находится в фазе G 0 . В фазе G 0 клетки начинают дифференцироваться.

S . В фазу S в клетке продолжается синтез белка, происходит репликация ДНК, разделяются центриоли. В большинстве клеток фаза S длится 8-12 часов.

G 2 . В фазу G 2 продолжается синтез РНК и белка (например, синтез тубулина для микротрубочек митотического веретена). Дочерние центриоли достигают размеров дефинитивных органелл. Эта фаза длится 2-4 часа.

МИТОЗ

В ходе митоза делятся ядро (кариокинез) и цитоплазма (цитокинез). Фазы митоза: профаза, прометафаза, метафаза, анафаза, телофаза.

Профаза . Каждая хромосома состоит из двух сестринских хроматид, соединенных центромерой, исчезает ядрышко. Центриоли организуют митотическое веретено. Пара центриолей входит в состав митотического центра, от которого радиально отходят микротрубочки. Сначала митотические центры располагаются вблизи ядерной мембраны, а затем расходятся, и образуется биполярное митотическое веретено. В этом процессе участвуют полюсные микротрубочки, взаимодействующие между собой по мере удлинения.

Центриоль входит в состав центросомы (центросома содержит две центриоли и перицентриольный матрикс) и имеет форму цилиндра диаметром 15- нм и длиной 500 нм; стенка цилиндра состоит из 9 триплетов микротрубочек. В центросоме центриоли расположены под прямым углом друг к другу. В ходе фазы S клеточного цикла центриоли дуплицируются. В митозе пары центриолей, каждая из которых состоит из первоначальной и вновь образованной, расходятся к полюсам клетки и участвуют в образовании митотического веретена.

Прометафаза . Ядерная оболочка распадается на мелкие фрагменты. В области центромер появляются кинетохоры, функционирующие как центры организации кинетохорных микротрубочек. Отхождение кинетохор от каждой хромосомы в обе стороны и их взаимодействие с полюсными микротрубочками митотического веретена – причина перемещения хромосом.

Метафаза . Хромосомы располагаются в области экватора веретена. Образуется метафазная пластинка, в которой каждая хромосома удерживается парой кинетохоров и связанными с ними кинетохорными микротрубочками, направленными к противоположным полюсам митотического веретена.

Анафаза – расхождение дочерних хромосом к полюсам митотического веретена со скоростью 1 мкм/мин.

Телофаза . Хроматиды подходят к полюсам, кинетохорные микротрубочки исчезают, а полюсные продолжают удлиняться. Образуется ядерная оболочка, появляется ядрышко.

Цитокинез – разделение цитоплазмы на две обособляющиеся части. Процесс начинается в поздней анафазе или в телофазе. Плазмолемма втягивается между двумя дочерними ядрами в плоскости, перпендикулярной длинной оси веретена. Борозда деления углубляется, и между дочерними клетками остается мостик – остаточное тельце. Дальнейшее разрушение этой структуры приводит к полному разделению дочерних клеток.

Регуляторы клеточного деления

Пролиферация клеток, происходящая путем митоза, жестко регулируется множеством молекулярных сигналов. Скоординированная деятельность этих многочисленных регуляторов клеточного цикла обеспечивает как переход клеток от фазы к фазе клеточного цикла, так и точное выполнение событий каждой фазы. Главная причина появления пролиферативно неконтролируемых клеток – мутации генов, кодирующих структуру регуляторов клеточного цикла. Регуляторы клеточного цикла и митоза подразделяют на внутриклеточные и межклеточные. Внутриклеточные молекулярные сигналы многочисленны, среди них в первую очередь следует назвать собственно регуляторы клеточного цикла (циклины, циклин-зависимые протеинкиназы, их активаторы и ингибиторы) и онкосупрессоры.

МЕЙОЗ

В ходе мейоза образуются гаплоидные гаметы.

Первое деление мейоза

Первое деление мейоза (профаза I, метафаза I, анафаза I и телофаза I) – редукционное.

Профаза I последовательно проходит несколько стадий (лептотена, зиготена, пахитена, диплотена, диакинез).

Лептотена – хроматин конденсируется, каждая хромосома состоит из двух хроматид, соединенных центромерой.

Зиготена – гомологичные парные хромосомы сближаются и вступают в физический контакт (синапсис ) в виде синаптонемального комплекса, обеспечивающего конъюгацию хромосом. На этой стадии две лежащие рядом пары хромосом образуют бивалент.

Пахитена – хромосомы утолщаются вследствие спирализации. Отдельные участки конъюгировавших хромосом перекрещиваются друг с другом и образуют хиазмы. Здесь происходит кроссинговер - обмен участками между отцовскими и материнскими гомологичными хромосомами.

Диплотена – разделение конъюгировавших хромосом в каждой паре в результате продольного расщепления синаптонемального комплекса. Хромосомы расщепляются по всей длине комплекса, за исключением хиазм. В составе бивалента четко различимы 4 хроматиды. Такой бивалент называют тетрадой. В хроматидах появляются участки раскручивания, где синтезируется РНК.

Диакинез. Продолжаются процессы укорочения хромосом и расщепления хромосомных пар. Хиазмы перемещаются к концам хромосом (терминализация). Разрушается ядерная мембрана, исчезает ядрышко. Появляется митотическое веретено.

Метафаза I . В метафазе I тетрады образуют метафазную пластинку. В целом отцовские и материнские хромосомы распределяются случайным образом по ту или другую сторону экватора митотического веретена. Подобный характер распределения хромосом лежит в основе второго закона Менделя, что (наряду с кроссинговером) обеспечивает генетические различия между индивидуумами.

Анафаза I отличается от анафазы митоза тем, что при митозе к полюсам расходятся сестринские хроматиды. В эту фазу мейоза к полюсам отходят целостные хромосомы.

Телофаза I не отличается от телофазы митоза. Формируются ядра, имеющие 23 конъюгированные (удвоенные) хромосомы, происходит цитокинез, образуются дочерние клетки.

Второе деление мейоза.

Второе деление мейоза – эквационное – протекает так же, как митоз (профаза II, метафаза II, анафаза II и телофаза), но значительно быстрее. Дочерние клетки получают гаплоидный набор хромосом (22 аутосомы и одну половую хромосому).

Читайте также: