Степени окисления металлов таблица. Как определить степень окисления атома химического элемента

Степень окисления - условная величина, использующаяся для записи окислительно-восстановительных реакций. Для определения степени окисления используется таблица окисления химических элементов.

Значение

Степень окисления основных химических элементов основана на их электроотрицательности. Значение равно числу смещённых в соединениях электронов.

Степень окисления считается положительной, если электроны смещаются от атома, т.е. элемент отдаёт электроны в соединении и является восстановителем. К таким элементам относятся металлы, их степень окисления всегда положительная.

При смещении электрона к атому значение считается отрицательным, а элемент - окислителем. Атом принимает электроны до завершения внешнего энергетического уровня. Окислителями является большинство неметаллов.

Простые вещества, не вступающие в реакцию, всегда имеют нулевую степень окисления.

Рис. 1. Таблица степеней окисления.

В соединении положительную степень окисления имеет атом неметалла с меньшей электроотрицательностью.

Определение

Определить максимальную и минимальную степень окисления (сколько электронов может отдавать и принимать атом) можно по периодической таблице Менделеева.

Максимальная степень равна номеру группы, в которой находится элемент, или количеству валентных электронов. Минимальное значение определяется по формуле:

№ (группы) – 8.

Рис. 2. Таблица Менделеева.

Углерод находится в четвёртой группе, следовательно, его высшая степень окисления +4, а низшая - -4. Максимальная степень окисления серы +6, минимальная - -2. Большинство неметаллов всегда имеет переменную - положительную и отрицательную - степень окисления. Исключением является фтор. Его степень окисления всегда равна -1.

Следует помнить, что к щелочным и щелочноземельным металлам I и II групп соответственно, это правило не применимо. Эти металлы имеют постоянную положительную степень окисления - литий Li +1 , натрий Na +1 , калий K +1 , бериллий Be +2 , магний Mg +2 , кальций Ca +2 , стронций Sr +2 , барий Ba +2 . Остальные металлы могут проявлять разную степень окисления. Исключением является алюминий. Несмотря на нахождение в III группе, его степень окисления всегда +3.

Рис. 3. Щелочные и щелочноземельные металлы.

Из VIII группы высшую степень окисления +8 могут проявлять только рутений и осмий. Находящиеся в I группе золото и медь проявляют степень окисления +3 и +2 соответственно.

Запись

Чтобы правильно записывать степень окисления, следует помнить о нескольких правилах:

  • инертные газы не вступают в реакции, поэтому их степень окисления всегда равна нулю;
  • в соединениях переменная степень окисления зависит от переменной валентности и взаимодействия с другими элементами;
  • водород в соединениях с металлами проявляет отрицательную степень окисления - Ca +2 H 2 −1 , Na +1 H −1 ;
  • кислород всегда имеет степень окисления -2, кроме фторида кислорода и пероксида - O +2 F 2 −1 , H 2 +1 O 2 −1 .

Что мы узнали?

Степень окисления - условная величина, показывающая, сколько электронов принял или отдал атом элемента в соединении. Величина зависит от количества валентных электронов. Металлы в соединениях всегда имеют положительную степень окисления, т.е. являются восстановителями. Для щелочных и щелочноземельных металлов степень окисления всегда одинаковая. Неметаллы, кроме фтора, могут принимать положительную и отрицательную степень окисления.

Как определить степень окисления? Таблица Менделеева позволяет записывать данную количественную величину для любого химического элемента.

Определение

Для начала попробуем понять, что представляет собой данный термин. Степень окисления по таблице Менделеева представляет собой количество электронов, которые приняты либо отданы элементом в процессе химического взаимодействия. Она может принимать отрицательное и положительное значение.

Связь с таблицей

Как определяется степень окисления? Таблица Менделеева состоит из восьми групп, расположенных вертикально. В каждой из них есть две подгруппы: главная и побочная. Для того чтобы установить показатели для элементов, необходимо использовать определенные правила.

Инструкция

Как рассчитать степени окисления элементов? Таблица позволяет в полной мере справиться с подобной проблемой. Щелочные металлы, которые располагаются в первой группе (главной подгруппе), степень окисления проявляют в соединениях, она соответствует +, равна их высшей валентности. У металлов второй группы (подгруппы А) +2 степень окисления.

Таблица позволяет определить данную величину не только у элементов, проявляющих металлические свойства, но и у неметаллов. Их максимальная величина будет соответствовать высшей валентности. Например, для серы она составит +6, для азота +5. Как вычисляется у них минимальная (низшая) цифра? Таблица отвечает и на этот вопрос. Необходимо вычесть номер группы из восьми. Например, у кислорода она составит -2, у азота -3.

Для простых веществ, которые не вступали в химическое взаимодействие с другими веществами, определяемый показатель считается равным нулю.

Попробуем выявить основные действия, касающиеся расстановки в бинарных соединениях. Как поставить в них степень окисления? Таблица Менделеева помогает решить проблему.

Для примера возьмем оксид кальция СаО. Для кальция, расположенного в главной подгруппе второй группы, величина будет являться постоянной, равной +2. У кислорода, имеющего неметаллические свойства, данный показатель будет являться отрицательной величиной, и он соответствует -2. Для того чтобы проверить правильность определения, суммируем полученные цифры. В итоге мы получим ноль, следовательно, вычисления верны.

Определим подобные показатели еще в одном бинарном соединении CuO. Так как медь располагается в побочной подгруппе (первой группе), следовательно, изучаемый показатель может проявлять разные значения. Поэтому для его определения необходимо сначала выявить показатель для кислорода.

У неметалла, располагающегося в конце бинарной формулы, степень окисления имеет отрицательное значение. Так как этот элемент располагается в шестой группе, при вычитании из восьми шести получаем, что степень окисления у кислорода соответствует -2. Так как в соединении отсутствуют индексы, следовательно, показатель степени окисления у меди будет положительным, равным +2.

Как еще используется химическая таблица? Степени окисления элементов в формулах, состоящих из трех элементов, также вычисляются по определенному алгоритму. Сначала расставляют эти показатели у первого и последнего элемента. Для первого этот показатель будет иметь положительное значение, соответствовать валентности. У крайнего элемента, в качестве которого выступает неметалл, данный показатель имеет отрицательное значение, он определяется в виде разности (от восьми отнимают номер группы). При вычислении степени окисления у центрального элемента используют математическое уравнение. При расчетах учитывают индексы, имеющиеся у каждого элемента. Сумма всех степеней окисления должна быть равна нулю.

Пример определения в серной кислоте

Формула данного соединения имеет вид H 2 SO 4 . У водорода степень окисления составит +1, у кислорода она равна -2. Для определения степени окисления у серы, составим математическое уравнение: + 1 * 2 + Х + 4 * (-2) = 0. Получаем, что степень окисления у серы соответствует +6.

Заключение

При использовании правил можно расставлять коэффициенты в окислительно-восстановительных реакциях. Данный вопрос рассматривается в курсе химии девятого класса школьной программы. Кроме того, информация о степенях окисления позволяет выполнять задания ОГЭ и ЕГЭ.

Валентность является сложным понятием. Этот термин претерпел значительную трансформацию одновременно с развитием теории химической связи. Первоначально валентностью называли способность атома присоединять или замещать определённое число других атомов или атомных групп с образованием химической связи.

Количественной мерой валентности атома элемента считали число атомов водорода или кислорода (данные элементы считали соответственно одно- и двухвалентными), которые элемент присоединяет, образуя гидрид формулы ЭH x или оксид формулы Э n O m .

Так, валентность атома азота в молекуле аммиака NH 3 равна трём, а атома серы в молекуле H 2 S равна двум, поскольку валентность атома водорода равна одному.

В соединениях Na 2 O, BaO, Al 2 O 3 , SiO 2 валентности натрия, бария и кремния соответственно равны 1, 2, 3 и 4.

Понятие о валентности было введено в химию до того, как стало известно строение атома, а именно в 1853 году английским химиком Франклендом. В настоящее время установлено, что валентность элемента тесно связана с числом внешних электронов атомов, поскольку электроны внутренних оболочек атомов не участвуют в образовании химических связей.

В электронной теории ковалентной связи считают, что валентность атома определяется числом его неспаренных электронов в основном или возбуждённом состоянии, участвующих в образовании общих электронных пар с электронами других атомов.

Для некоторых элементов валентность является величиной постоянной. Так, натрий или калий во всех соединениях одновалентны, кальций, магний и цинк - двухвалентны, алюминий - трёхвалентен и т. д. Но большинство химических элементов проявляют переменную валентность, которая зависит от природы элемента - партнёра и условий протекания процесса. Так, железо может образовывать с хлором два соединения - FeCl 2 и FeCl 3 , в которых валентность железа равна соответственно 2 и 3.

Степень окисления - понятие, характеризующее состояние элемента в химическом соединении и его поведение в окислительно-восстановительных реакциях; численно степень окисления равна формальному заряду, который можно приписать элементу, исходя из предположения, что все электроны каждой его связи перешли к более электроотрицательному атому.

Электроотрицательность - мера способности атома к приобретению отрицательного заряда при образовании химической связи или способность атома в молекуле притягивать к себе валентные электроны, участвующие в образовании химической связи. Электроотрицательность не является абсолютной величиной и рассчитывается различными методами. Поэтому приводимые в разных учебниках и справочниках значения электроотрицательности могут отличаться.

В таблице 2 приведена электроотрицательность некоторых химических элементов по шкале Сандерсона, а в таблице 3 - электроотрицательность элементов по шкале Полинга.

Значение электроотрицательности приведено под символом соответствующего элемента. Чем больше численное значение электроотрицательности атома, тем более электроотрицательным является элемент. Наиболее электроотрицательным является атом фтора, наименее электроотрицательным - атом рубидия. В молекуле, образованной атомами двух разных химических элементов, формальный отрицательный заряд будет у атома, численное значение электроотрицательности у которого будет выше. Так, в молекуле диоксида серы SO 2 электроотрицательность атома серы равна 2,5, а значение электроотрицательности атома кислорода больше - 3,5. Следовательно, отрицательный заряд будет на атоме кислорода, а положительный - на атоме серы.

В молекуле аммиака NH 3 значение электроотрицательности атома азота равно 3,0, а водорода - 2,1. Поэтому отрицательный заряд будет у атома азота, а положительный - у атома водорода.

Следует чётко знать общие тенденции изменения электроотрицательности. Поскольку атом любого химического элемента стремится приобрести устойчивую конфигурацию внешнего электронного слоя - октетную оболочку инертного газа, то электроотрицательность элементов в периоде увеличивается, а в группе электроотрицательность в общем случае уменьшается с увеличением атомного номера элемента. Поэтому, например, сера более электроотрицательна по сравнению с фосфором и кремнием, а углерод более электроотрицателен по сравнению с кремнием.

При составлении формул соединений, состоящих из двух неметаллов, более электроотрицательный из них всегда ставят правее: PCl 3 , NO 2 . Из этого правила есть некоторые исторически сложившиеся исключения, например NH 3 , PH 3 и т.д.

Степень окисления обычно обозначают арабской цифрой (со знаком перед цифрой), расположенной над символом элемента, например:

Для определения степени окисления атомов в химических соединениях руководствуются следующими правилами:

  1. Степень окисления элементов в простых веществах равна нулю.
  2. Алгебраическая сумма степеней окисления атомов в молекуле равна нулю.
  3. Кислород в соединениях проявляет главным образом степень окисления, равную –2 (во фториде кислорода OF 2 + 2, в пероксидах металлов типа M 2 O 2 –1).
  4. Водород в соединениях проявляет степень окисления + 1, за исключением гидридов активных металлов, например, щелочных или щёлочноземельных, в которых степень окисления водорода равна – 1.
  5. У одноатомных ионов степень окисления равна заряду иона, например: K + - +1, Ba 2+ - +2, Br – - –1, S 2– - –2 и т. д.
  6. В соединениях с ковалентной полярной связью степень окисления более электроотрицательного атома имеет знак минус, а менее электроотрицательного - знак плюс.
  7. В органических соединениях степень окисления водорода равна +1.

Проиллюстрируем вышеприведённые правила несколькими примерами.

Пример 1. Определить степень окисления элементов в оксидах калия K 2 O, селена SeO 3 и железа Fe 3 O 4 .

Оксид калия K 2 O. Алгебраическая сумма степеней окисления атомов в молекуле равна нулю. Степень окисления кислорода в оксидах равна –2. Обозначим степень окисления калия в его оксиде за n, тогда 2n + (–2) = 0 или 2n = 2, отсюда n = +1, т. е. степень окисления калия равна +1.

Оксид селена SeO 3 . Молекула SeO 3 электронейтральна. Суммарный отрицательный заряд трёх атомов кислорода составляет –2 × 3 = –6. Следовательно, чтобы уравнять этот отрицательный заряд до ноля, степень окисления селена должна быть равна +6.

Молекула Fe 3 O 4 электронейтральна. Суммарный отрицательный заряд четырёх атомов кислорода составляет –2 × 4 = –8. Чтобы уравнять этот отрицательный заряд, суммарный положительный заряд на трёх атомах железа должен быть равен +8. Следовательно, на одном атоме железа должен быть заряд 8/3 = +8/3.

Следует подчеркнуть, что степень окисления элемента в соединении может быть дробным числом. Такие дробные степени окисления не имеют смысла при объяснении связи в химическом соединении, но могут быть использованы для составления уравнений окислительно-восстановительных реакций.

Пример 2. Определить степень окисления элементов в соединениях NaClO 3 , K 2 Cr 2 O 7 .

Молекула NaClO 3 электронейтральна. Степень окисления натрия равна +1, степень окисления кислорода равна –2. Обозначим степень окисления хлора за n, тогда +1 + n + 3 × (–2) = 0, или +1 + n – 6 = 0, или n – 5 = 0, отсюда n = +5. Таким образом, степень окисления хлора равна +5.

Молекула K 2 Cr 2 O 7 электронейтральна. Степень окисления калия равна +1, степень окисления кислорода равна –2. Обозначим степень окисления хрома за n, тогда 2 × 1 + 2n + 7 × (–2) = 0, или +2 + 2n – 14 = 0, или 2n – 12 = 0, 2n = 12, отсюда n = +6. Таким образом, степень окисления хрома равна +6.

Пример 3. Определим степени окисления серы в сульфат-ионе SO 4 2– . Ион SO 4 2– имеет заряд –2. Степень окисления кислорода равна –2. Обозначим степень окисления серы за n, тогда n + 4 × (–2) = –2, или n – 8 = –2, или n = –2 – (–8), отсюда n = +6. Таким образом, степень окисления серы равна +6.

Следует помнить, что степень окисления иногда не равна валентности данного элемента.

Например, степени окисления атома азота в молекуле аммиака NH 3 или в молекуле гидразина N 2 H 4 равны –3 и –2 соответственно, тогда как валентность азота в этих соединениях равна трём.

Максимальная положительная степень окисления для элементов главных подгрупп, как правило, равна номеру группы (исключения: кислород, фтор и некоторые другие элементы).

Максимальная отрицательная степень окисления равна 8 - номер группы.

Тренировочные задания

1. В каком соединении степень окисления фосфора равна +5?

1) HPO 3
2) H 3 PO 3
3) Li 3 P
4) AlP

2. В каком соединении степень окисления фосфора равна –3?

1) HPO 3
2) H 3 PO 3
3) Li 3 PO 4
4) AlP

3. В каком соединении степень окисления азота равна +4?

1) HNO 2
2) N 2 O 4
3) N 2 O
4) HNO 3

4. В каком соединении степень окисления азота равна –2?

1) NH 3
2) N 2 H 4
3) N 2 O 5
4) HNO 2

5. В каком соединении степень окисления серы равна +2?

1) Na 2 SO 3
2) SO 2
3) SCl 2
4) H 2 SO 4

6. В каком соединении степень окисления серы равна +6?

1) Na 2 SO 3
2) SO 3
3) SCl 2
4) H 2 SO 3

7. В веществах, формулы которых CrBr 2 , K 2 Cr 2 O 7 , Na 2 CrO 4 , степень окисления хрома соответственно равна

1) +2, +3, +6
2) +3, +6, +6
3) +2, +6, +5
4) +2, +6, +6

8. Минимальная отрицательная степень окисления химического элемента, как правило, равна

1) номеру периода
3) числу электронов, недостающих до завершения внешнего электронного слоя

9. Максимальная положительная степень окисления химических элементов, расположенных в главных подгруппах, как правило, равна

1) номеру периода
2) порядковому номеру химического элемента
3) номеру группы
4) общему числу электронов в элементе

10. Фосфор проявляет максимальную положительную степень окисления в соединении

1) HPO 3
2) H 3 PO 3
3) Na 3 P
4) Ca 3 P 2

11. Фосфор проявляет минимальную степень окисления в соединении

1) HPO 3
2) H 3 PO 3
3) Na 3 PO 4
4) Ca 3 P 2

12. Атомы азота в нитрите аммония, находящиеся в составе катиона и аниона, проявляют степени окисления соответственно

1) –3, +3
2) –3, +5
3) +3, –3
4) +3, +5

13. Валентность и степень окисления кислорода в перекиси водорода соответственно равны

1) II, –2
2) II, –1
3) I, +4
4) III, –2

14. Валентность и степень окисления серы в пирите FeS2 соответственно равны

1) IV, +5
2) II, –1
3) II, +6
4) III, +4

15. Валентность и степень окисления атома азота в бромиде аммония соответственно равны

1) IV, –3
2) III, +3
3) IV, –2
4) III, +4

16. Атом углерода проявляет отрицательную степень окисления в соединении с

1) кислородом
2) натрием
3) фтором
4) хлором

17. Постоянную степень окисления в своих соединениях проявляет

1) стронций
2) железо
3) сера
4) хлор

18. Степень окисления +3 в своих соединениях могут проявлять

1) хлор и фтор
2) фосфор и хлор
3) углерод и сера
4) кислород и водород

19. Степень окисления +4 в своих соединениях могут проявлять

1) углерод и водород
2) углерод и фосфор
3) углерод и кальций
4) азот и сера

20. Степень окисления, равную номеру группы, в своих соединениях проявляет

1) хлор
2) железо
3) кислород
4) фтор

Степень окисления – это условный заряд атома в молекуле, он получает атом в результате полного принятия электронов, его вычисляют из предположения, что все связи представляют собой ионный характер. Как определить степень окисления?

Определение степени окисления

Существуют заряженные частицы ионы, положительный заряд которых равняется количеству электронов, получаемых от одного атома. Отрицательный заряд иона равняется числу электронов, принимаемых одним атомом химического элемента. К примеру, запись такого элемента как Ca2+ значит, что атомы элементов потеряли одного, двух или же трех элементов. Чтобы найти состав ионных соединений и соединений молекул нам необходимо знать, как определить степень окисления элементов. Степени окислений бывают отрицательными, положительными и нулевыми. Если учитывать числа атомов, то алгебраическая степень окисления в молекуле равна нулю.

Чтобы определить степень окисления элемента нужно руководствоваться определёнными знаниями. Например, в соединениях металлов степень окисления положительная. А высшая степень окисления соответствует номеру группы периодической системы, где и находится элемент. У металлов степени окисления могут быть положительными и отрицательными. Это будет зависеть от того фактора, каким именно атомом соединен металл. Например, если соединен с атомом металла, то тогда степень будет отрицательной, если же соединен с неметаллом, то степень будет положительная.

Отрицательную же высшую степень окисления металла определить можно вычитанием из цифры восемь номер группы, где находится необходимый элемент. Как правило, она бывает равна числу электронов, находящихся на внешнем слое. Число этих электронов тоже соответствует номеру группы.

Как рассчитать степень окисления

В большинстве случаев степень окисления атома конкретного элемента не совпадает с числом связей, которые он образует, то есть она не равна валентности этого элемента. Наглядно это можно увидеть на примере органических соединений.

Напомню, валентность углерода в органических соединениях равняется 4 (т.е образует 4 связи), но степень окисления углерода, например, в метаноле CH 3 OH равна -2, в CO 2 +4, в CH4 -4, в муравьиной кислоте HCOOH +2. Валентность измеряется числом ковалентных химических связей, включая те, которые возникли по донорно-акцепторному механизму.

При определении степени окисления атомов в молекулах, электроотрицательный атом, при смещении в свою сторону одной электронной пары, приобретает заряд -1, если же две электронные пары то -2 будет заряд. На степень окисления не влияет связь между одинаковыми атомами. Например:

  • Связь атомов C-C равняется их нулевой степени окисления.
  • Связь C-H – здесь, углероду как наиболее электроотрицательному атому будет соответствовать заряд -1.
  • Связь C-O заряд углерода, как менее электроотрицательный, будет равняться +1.

Примеры определения степени окисления

  1. В такой молекуле как CH 3Cl три связи C-HC). Таким образом, степень окисления атома углерода в данном соединении будет равна:-3+1=-2.
  2. Найдем степень окисления атомов углерода в молекуле уксусного альдегида Cˉ³H3-C¹O-H. В данном соединении три связи C-H будут давать общий заряд на атоме C, который равен (Cº+3e→Cˉ³)-3. Двойная же связь C=O (здесь кислород будет забирать электроны у атома углерода, т.к кислород более электроотрицательный) дает заряд на атоме C, он равен +2 (Cº-2e→C²), связь же C-H заряд -1, значит общий заряд на атоме C равняется: (2-1=1)+1.
  3. Теперь найдем степень окисления в молекуле этанола: Cˉ³H-Cˉ¹H2-OH. Здесь три связи C-H дадут общий заряд на атоме C, он равен (Cº+3e→Cˉ³)-3. Две связи C-H дадут заряд на атоме C, который будет равен -2, связь же C→O даст заряд +1, значит общий заряд на атоме C: (-2+1=-1)-1.

Теперь Вы знаете, как определить степень окисления элемента. Если Вы имеете хотя бы базовые знания по химии, то для Вас данная задача будет не проблемой.

Темы кодификатора ЕГЭ: Электроотрицательность. Степень окисления и валентность химических элементов.

Когда атомы взаимодействуют и образуют , электроны между ними в большинстве случаев распределяются неравномерно, поскольку свойства атомов различаются. Более электроотрицательный атом сильнее притягивает к себе электронную плотность. Атом, который притянул к себе электронную плотность, приобретает частичный отрицательный заряд δ — , его «партнер» — частичный положительный заряд δ+ . Если разность электроотрицательностей атомов, образующих связь, не превышает 1,7, мы называем связь ковалентной полярной . Если разность электроотрицательностей, образующих химическую связь, превышает 1,7, то такую связь мы называем ионной .

Степень окисления – это вспомогательный условный заряд атома элемента в соединении, вычисленный из предположения, что все соединения состоят из ионов (все полярные связи – ионные).

Что значит «условный заряд»? Мы просто-напросто договариваемся, что немного упростим ситуацию: будем считать любые полярные связи полностью ионными, и будем считать, что электрон полностью уходит или приходит от одного атома к другому, даже если на самом деле это не так. А уходит условно электрон от менее электроотрицательного атома к более электроотрицательному.

Например , в связи H-Cl мы считаем, что водород условно «отдал» электрон, и его заряд стал +1, а хлор «принял» электрон, и его заряд стал -1. На самом деле таких полных зарядов на этих атомах нет.

Наверняка, у вас возник вопрос — зачем же придумывать то, чего нет? Это не коварный замысел химиков, все просто: такая модель очень удобна. Представления о степени окисления элементов полезны при составлении классификации химических веществ, описании их свойств, составлении формул соединений и номенклатуры. Особенно часто степени окисления используются при работе с окислительно-восстановительными реакциями .

Степени окисления бывают высшие , низшие и промежуточные .

Высшая степень окисления равна номеру группы со знаком «плюс».

Низшая определяется, как номер группы минус 8.

И промежуточная степень окисления — это почти любое целое число в интервале от низшей степени окисления до высшей.

Например , для азота характерны: высшая степень окисления +5, низшая 5 — 8 = -3, а промежуточные степени окисления от -3 до +5. Например, в гидразине N 2 H 4 степень окисления азота промежуточная, -2.

Чаще всего степень окисления атомов в сложных веществах обозначается сначала знаком, потом цифрой, например +1, +2, -2 и т.д. Когда речь идет о заряде иона (предположим, что ион реально существует в соединении), то сначала указывают цифру, потом знак. Например : Ca 2+ , CO 3 2- .

Для нахождения степеней окисления используют следующие правила :

  1. Степень окисления атомов в простых веществах равна нулю;
  2. В нейтральных молекулах алгебраическая сумма степеней окисления равна нулю, для ионов эта сумма равна заряду иона;
  3. Степень окисления щелочных металлов (элементы I группы главной подгруппы) в соединениях равна +1, степень окисления щелочноземельных металлов (элементы II группы главной подгруппы) в соединениях равна +2; степень окисления алюминия в соединениях равна +3;
  4. Степень окисления водорода в соединениях с металлами ( — NaH, CaH 2 и др.) равна -1 ; в соединениях с неметаллами () +1 ;
  5. Степень окисления кислорода равна -2 . Исключение составляют пероксиды – соединения, содержащие группу –О-О-, где степень окисления кислорода равна -1 , и некоторые другие соединения (супероксиды, озониды, фториды кислорода OF 2 и др.);
  6. Степень окисления фтора во всех сложных веществах равна -1 .

Выше перечислены ситуации, когда степень окисления мы считаем постоянной . У всех остальных химических элементов степень окисления переменная , и зависит от порядка и типа атомов в соединении.

Примеры :

Задание : определите степени окисления элементов в молекуле дихромата калия: K 2 Cr 2 O 7 .

Решение: степень окисления калия равна +1, степень окисления хрома обозначим, как х , степень окисления кислорода -2. Сумма всех степеней окисления всех атомов в молекуле равна 0. Получаем уравнение: +1*2+2*х-2*7=0. Решаем его, получаем степень окисления хрома +6.

В бинарных соединениях более электроотрицательный элемент характеризуется отрицательной степенью окисления, менее электроотрицательный – положительной.

Обратите внимание, что понятие степени окисления – очень условно! Степень окисления не показывает реальный заряд атома и не имеет реального физического смысла . Это упрощенная модель, которая эффективно работает, когда нам необходимо, например, уравнять коэффициенты в уравнении химической реакции, или для алгоритмизации классификации веществ.

Степень окисления – это не валентность ! Степень окисления и валентность во многих случаях не совпадают. Например, валентность водорода в простом веществе Н 2 равна I, а степень окисления, согласно правилу 1, равна 0.

Это базовые правила, которые помогут Вам определить степень окисления атомов в соединениях в большинстве случаев.

В некоторых ситуациях вы можете столкнуться с трудностями при определении степени окисления атома. Рассмотрим некоторые из этих ситуаций, и разберем способы их разрешения:

  1. В двойных (солеобразных) оксидах степень у атома, как правило, две степени окисления. Например, в железной окалине Fe 3 O 4 у железа две степени окисления: +2 и +3. Какую из них указывать? Обе. Для упрощения можно представить это соединение, как соль: Fe(FeO 2) 2 . При этом кислотный остаток образует атом со степенью окисления +3. Либо двойной оксид можно представить так: FeO*Fe 2 O 3 .
  2. В пероксосоединениях степень окисления атомов кислорода, соединенных ковалентными неполярными связями, как правило, изменяется. Например, в пероксиде водорода Н 2 О 2 , и пероксидах щелочных металлов степень окисления кислорода -1, т.к. одна из связей – ковалентная неполярная (Н-О-О-Н). Другой пример – пероксомоносерная кислота (кислота Каро) H 2 SO 5 (см. рис.) содержит в составе два атома кислорода со степенью окисления -1, остальные атомы со степенью окисления -2, поэтому более понятной будет такая запись: H 2 SO 3 (O 2). Известны также пероксосоединения хрома – например, пероксид хрома (VI) CrO(O 2) 2 или CrO 5 , и многие другие.
  3. Еще один пример соединений с неоднозначной степенью окисления – супероксиды (NaO 2) и солеобразные озониды KO 3 . В этом случае уместнее говорить о молекулярном ионе O 2 с зарядом -1 и и O 3 с зарядом -1. Строение таких частиц описывается некоторыми моделями, которые в российской учебной программе проходят на первых курсах химических ВУЗов: МО ЛКАО, метод наложения валентных схем и др.
  4. В органических соединениях понятие степени окисления не очень удобно использовать, т.к. между атомами углерода существует большое число ковалентных неполярных связей. Тем не менее, если нарисовать структурную формулу молекулы, то степень окисления каждого атома также можно определить по типу и количеству атомов, с которыми данный атом непосредственно связан. Например, у первичных атомов углерода в углеводородах степень окисления равна -3, у вторичных -2, у третичных атомов -1, у четвертичных — 0.

Потренируемся определять степень окисления атомов в органических соединениях. Для этого необходимо нарисовать полную структурную формулу атома, и выделить атом углерода с его ближайшим окружением — атомами, с которыми он непосредственно соединен.

  • Для упрощения расчетов можно использовать таблицу растворимости – там указаны заряды наиболее распространенных ионов. На большинстве российских экзаменов по химии (ЕГЭ, ГИА, ДВИ) использование таблицы растворимости разрешено. Это готовая шпаргалка, которая во многих случаях позволяет значительно сэкономить время.
  • При расчете степени окисления элементов в сложных веществах сначала указываем степени окисления элементов, которые мы точно знаем (элементы с постоянной степенью окисления), а степень окисления элементов с переменной степенью окисления обозначаем, как х. Сумма всех зарядов всех частиц равна нулю в молекуле или равна заряду иона в ионе. Из этих данных легко составить и решить уравнение.

Читайте также: