Наземно воздушная среда обитания растения. Общая характеристика почвы как среды жизни

Особенностью наземно-воздушной среды является то, что организмы, обитающие здесь, окружены воздухом, который представляет собой смесь газов, а не их соединения. Воздух как экологический фактор характеризуется постоянством состава - азота в нем содержится 78,08%, кислорода - около 20,9%, аргона - около 1%, углекислого газа - 0,03%. За счет диоксида углерода и воды синтезируется органическое вещество и выделяется кислород. При дыхании происходит реакция, обратная фотосинтезу - потребление кислорода. Кислород появился на Земле примерно 2 млрд. лет назад, когда происходило формообразование поверхности нашей планеты при активной вулканической деятельности. Постепенное увеличение содержания кислорода происходило в течение последних 20 млн. лет. Главную роль в этом играло развитие растительного мира суши и океана. Без воздуха не могут существовать ни растения, ни животные, ни аэробные микроорганизмы. Большинство животных в этой среде передвигаются по твердому субстрату - почве. Воздух как газообразная среда жизни характеризуется низкими показателями влажности, плотности и давления, а также высоким содержанием кислорода. Действующие в наземно-воздушной среде экологические факторы отличаются рядом специфических особенностей: свет здесь по сравнению с другими средами интенсивнее, температура претерпевает более сильные колебания, влажность значительно изменяется в зависимости от географического положения, сезона и времени суток.

Приспособления к воздушной среде.

Наиболее специфичны среди обитателей воздушной среды, конечно летающие формы. Уже особенности внешности организма позволяют заметить его приспособления к полету. Прежде всего, об этом говорит форма его тела.

Форма тела:

  • · обтекаемость тела (птица),
  • · наличие плоскостей для опоры на воздух (крылья, парашют),
  • · облегченная конструкция (полые кости),
  • · наличие крыльев и иных приспособлений для полета (летательные перепонки, например),
  • · облегчение конечностей (укорочение, уменьшение массы мышц).

У бегающих животных тоже появляются отличительные особенности, по которым легко узнать хорошего бегуна, а если он передвигается прыжками, то прыгуна:

  • · мощные, но легкие конечности (лошадь),
  • · уменьшение пальцев на ногах (лошадь, антилопа),
  • · очень мощные задние конечности и укороченные передние (заяц, кенгуру),
  • · защитные роговые копыта на пальцах (копытные, мозоленогие).

Лазающие организмы имеют самые различные приспособления. Они могут быть общими для растений и животных, а могут и различаться. Для лазанья может быть использована и своеобразная форма тела:

  • · тонкое длинное тело, петли которого могут служить опорой при лазании (змея, лиана),
  • · длинные гибкие хватательные или цепляющиеся конечности, а возможно, и такой же хвост (обезьяны);
  • · выросты тела - усики, крючки, корешки (горох, ежевика, плющ);
  • · острые коготки на конечностях или длинные когти, загнутые крючком или сильные хватательные пальцы (белка, ленивец, обезьяна);
  • · мощные мышцы конечностей, позволяющие подтягивать тело и перебрасывать его с ветки на ветку (орангутанг, гиббон).

Некоторые организмы приобрели своеобразную универсальность приспособлений сразу к двум. У лазающих форм возможно и сочетание признаков лазанья и полета. Многие из них могут, забравшись на высокое дерево совершать длинные прыжки-полеты. Это сходные приспособления у жителей одной среды обитания. Часто встречаются животные способные к быстрому бегу и полету, одновременно несущие оба набора этих адаптаций.

Встречаются сочетания приспособительных признаков у организма к жизни в различных средах. Такие параллельные наборы адаптаций несут все земноводные животные. Приспособления к полету имеют и некоторые плавающие чисто водные организмы. Вспомним летучих рыб или даже кальмаров. Для решения одной экологической задачи могут быть использованы разные адаптации. Так, средством термоизоляции у медведей, песцов служит густой мех, покровительственная окраска. Благодаря покровительственной окраске организм становится трудно различимым и, следовательно, защищенным от хищников. Яйца птиц, откладываемые на песок или на землю, имеют серый и бурый цвет с пятнышками, сходный с цветом окружающей почвы. В тех случаях, когда яйца недоступны для хищников, они обычно лишены окраски. Гусеницы бабочек часто зеленые, под цвет листьев, или темные, под цвет коры или земли. Животные пустынь, как правило, имеют желто-бурую или песочно-желтую окраску. Однотонная покровительственная окраска свойственна как насекомым (саранча) и мелким ящерицам, так и крупным копытным (антилопы) и хищникам (лев). Расчленяющая покровительственная окраска в виде чередования на теле светлых и темных полос и пятен. Зебры и тигр плохо видны уже на расстоянии 50 - 40 м из-за совпадения полос на теле с чередованием света и тени в окружающей местности. Расчленяющая окраска нарушает представления о контурах тела, отпугивающая (предостерегающая) окраска - также обеспечивает защиту организмов от врагов. Яркая окраска обычно характерна для ядовитых животных и предупреждает хищников о несъедобности объекта их нападения. Эффективность предостерегающей окраски послужила причиной очень интересного явления-подражания - мимикрии. Образования в виде твердого хитинового покрова у членистоногих (жуки, крабы), раковин у моллюсков, чешуи у крокодилов, панциря у броненосцев и черепах хорошо предохраняют их от многих врагов. Этому же служат иглы ежа и дикобраза. Совершенствование аппарата движения, нервной системы, органов чувств, развитие средств нападения у хищных. Поразительно чувствительны органы химического чувства насекомых. Самцов непарного шелкопряда привлекает запах ароматической железы самки с расстояния 3 км. У некоторых бабочек чувствительность рецепторов вкуса в 1000 раз превосходит чувствительность рецепторов человеческого языка. Ночные хищники, например совы, прекрасно видят в темноте. У некоторых змей хорошо развита способность к термолокации. Они различают на расстоянии объекты, если разница их температур составляет всего 0,2 °С.

НОВЫЙ ВЗГЛЯД Адаптации организмов к обитанию в наземно-воздушной средеЖивые организмы в наземно-воздушной среде окружены воздухом. Воздух имеет низкую плотность и, как следствие, малую подъемную силу, незначительную опорность и низкую сопротивляемость при движении организмов. Наземные организмы живут в условиях сравнительно низкого и постоянного атмосферного давления, также обусловленного низкой плотностью воздуха.

Воздух обладает низкой теплоемкостью, поэтому он быстро нагревается и столь же быстро охлаждается. Скорость этого процесса находится в обратной зависимости от количества содержащихся в нем водяных паров.

Легкие воздушные массы имеют большую подвижность, как в горизонтальном, так и в вертикальном направлении. Это способствует поддержанию на постоянном уровне газового состава воздуха. Содержание кислорода в воздухе значительно выше, чем в воде, поэтому кислород на суше не является лимитирующим фактором.

Свет в условиях наземного обитания из-за высокой прозрачности атмосферы не выступает в качестве лимитирующего фактора, в отличие от водной среды.

Наземно-воздушная среда имеет разные режимы влажности: от полного и постоянного насыщения воздуха водяными парами в некоторых районах тропиков до практически полного их отсутствия в сухом воздухе пустынь. Велика также изменчивость влажности воздуха в течение суток и сезонов года.

Влага на суше выступает в качестве лимитирующего фактора.

Из-за наличия гравитации и отсутствия выталкивающей силы у наземных обитателей суши хорошо развиты опорные системы, поддерживающие их тело. У растений - это разнообразные механические ткани, особенно мощно развитые у деревьев. Животные в ходе эволюционного процесса выработали как наружный (членистоногие), так и внутренний (хордовые) скелет. Некоторые группы животных имеют гидроскелет (круглые и кольчатые черви). Проблемы у наземных организмов с поддержанием тела в пространстве и преодолением сил гравитации ограничили их предельную массу и размеры. Самые крупные животные суши уступают по размерам и массе гигантам водной среды (масса слона достигает 5 т, а синего кита - 150 т).

Низкая сопротивляемость воздуха способствовала прогрессивной эволюции систем передвижения наземных животных. Так, наиболее высокую скорость движения по суше приобрели млекопитающие, а птицы освоили воздушную среду, развив способность к полету.

Большая подвижность воздуха в вертикальном и горизонтальном направлениях используется некоторыми наземными организмами на разных стадиях их развития для расселения с помощью воздушных потоков (молодые пауки, насекомые, споры, семена, плоды растений, цисты протистов). По аналогии с водными планктонными организмами в качестве приспособлений к пассивному парению в воздушной среде насекомые выработали сходные адаптации - мелкие размеры тела, разнообразные выросты, увеличивающие относительную поверхность тела или некоторых его частей. Семена и плоды, распространяемые ветром, имеют различные крыловидные и парагаютовидные придатки, увеличивающие их способность к планированию.

Приспособления наземных организмов к сохранению влаги также разнообразны. У насекомых тело надежно защищено от высыхания многослойной хитинизированной кутикулой, в наружном слое которой содержатся жиры и воскоподобные вещества. Сходные водосберегающие приспособления развиты и у пресмыкающихся. Выработанная у наземных животных способность к внутреннему оплодотворению сделала их независимыми от наличия водной среды.

Почва представляет собой сложную систему, состоящую из твердых частиц, окруженных воздухом и водой.

В зависимости от типа - глинистая, песчаная, глинисто-песчаная и др. - почва в большей или меньшей степени пронизана полостями, заполненными смесью газов и водными растворами. В почве, по сравнению с приземным слоем воздуха, сглажены температурные колебания, а на глубине 1 м неощутимы и сезонные изменения температуры.

Самый верхний горизонт почвы содержит большее или меньшее количество перегноя, от которого зависит продуктивность растений. Расположенный под ним средний слой содержит вымытые из верхнего слоя и преобразованные вещества. Нижний слой представлен материнской породой.

Вода в почве присутствует в пустотах, мельчайших пространствах. Состав почвенного воздуха резко меняется с глубиной: содержание кислорода уменьшается, а углекислого газа - возрастает. При затоплении почвы водой или интенсивном гниении органических остатков возникают бескислородные зоны. Таким образом, условия существования в почве различны на разных ее горизонтах.

В ходе эволюции эта среда была освоена позже, чем водная. Ее особенность заключается в том, что она газообразная, поэтому характеризуется низкими влажностью, плотностью и давлением, высоким содержанием кислорода.

В ходе эволюции у живых организмов выработались необходимые анатомо-морфологические, физиологические, поведенческие и другие адаптации.

Животные в наземно-воздушной среде передвигаются по почве или по воздуху (птицы, насекомые), а растения укореняются в почве. В связи с этим, у животных появились легкие и трахеи, а у растений – устьичный аппарат, т.е.

органы, которыми сухопутные обитатели планеты усваивают кислород прямо из воздуха. Сильное развитие получили скелетные органы, обеспечивающие автономность передвижения по суше и поддерживающие тела со всеми его органами в условиях незначительной плотности среды, в тысячи раз меньшей по сравнению с водой.

Экологические факторы в наземно-воздушной среде отличаются от других сред обитания высокой интенсивностью света, значительными колебаниями температуры и влажности воздуха, корреляцией всех факторов с географическим положением, сменой сезонов года и времени суток.

Воздействия их на организмы неразрывно связано с движением воздуха и положения относительно морей и океанов и сильно отличаются от воздействия в водной среде (табл.

Таблица 5

Условия обитания организмов воздушной и водной среды

(по Д. Ф. Мордухай-Болтовскому, 1974)

воздушной среды водной среды
Влажность Очень важное (часто в дефиците) Не имеет (всегда в избытке)
Плотность Незначительное(за исключением почвы) Большое по сравнению с ее ролью для обитателей воздушной среды
Давление Почти не имеет Большое (может достигать 1000 атмосфер)
Температура Существенное (колеблется в очень больших пределах – от -80 до +1ОО°С и более) Меньшее по сравнению со значением для обитателей воздушной среды (колеблется гораздо меньше, обычно от -2 до +40°С)
Кислород Несущественное(большей частью в избытке) Существенное (часто в дефиците)
Взвешенные вещества Неважное; не используются в пищу (главным образом минеральные) Важное (источник пищи, особенно органические вещества)
Растворенные вещества в окружающей среде В некоторой степени (имеют значение только в почвенных растворах) Важное (в определенном количестве необходимы)

У животных и растений суши выработались свои, не менее оригинальные адаптации на неблагоприятные факторы среды: сложное строение тела и его покровов, периодичность и ритмика жизненных циклов, механизмы терморегуляции и пр.

Выработалась целенаправленная подвижность животных в поисках пищи, появились переносимые ветром споры, семена и пыльца растений, а также растения и животные, жизнь которых всецело связана с воздушной средой. Сформировалась исключительно тесная функциональная, ресурсная и механическая взаимосвязь с почвой.

Многие из адаптаций были рассмотрены нами выше, в качестве примеров при характеристике абиотических факторов среды.

Поэтому сейчас повторяться нет смысла, т.б., что к ним мы вернемся еще на практических занятиях

Почва как среда обитания

Земля — единственная из планет имеет почву (эдасфера, педосфера)– особенную, верхнюю оболочку суши.

Эта оболочка сформировалась в исторически обозримое время – она ровесница сухопутной жизни на планете. Впервые на вопрос о происхождении почвы ответил М.В. Ломоносов ("О слоях земли"): "…почва произошла от согнития животных и растительных тел … долготою времени…".

А великий русский ученый Вас. Вас. Докучаев (1899: 16) впервые назвал почву самостоятельным природным телом и доказал, что почва есть "…такое же самостоятельное естественноисторическое тело, как любое растение, любое животное, любой минерал … оно есть результат, функция совокупной, взаимной деятельности климата данной местности, ее растительных и животных организмов, рельефа и возраста страны…, наконец, подпочвы, т.е.

грунтовых материнских горных пород. … Все эти агенты-почвообразователи, в сущности, совершенно равнозначные величины и принимают равноправное участие в образовании нормальной почвы…".

И уже современный известный ученый почвовед Н.А.

Качинский ("Почва, ее свойства и жизнь", 1975) дает следующее определение почвы: "Под почвой надо понимать все поверхностные слои горных пород, переработанные и измененные совместным воздействием климата (свет, тепло, воздух, вода), растительных и животных организмов".

Основными структурными элементами почвы являются: минеральная основа, органическое вещество, воздух и вода.

Минеральная основа (скелет) (50-60% всей почвы) – это неорганическое вещество, образовавшееся в результате подстилающей горной (материнской, почвообразующей) породы в результате ее выветривания.

Размеры скелетных частиц: от валунов и камней до мельчайших песчинок и илистых частиц. Физико-химические свойства почв обусловлены в основном составом почвообразующих пород.

От соотношения в почве глины и песка, размеров фрагментов, зависят проницаемость и пористость почвы, обеспечивающие циркуляцию, как воды, так и воздуха.

В умеренном климате идеально, если почва образована равными количествами глины и песка, т.е. представляет суглинок.

В этом случае почвам не грозит ни переувлажнение, не пересыхание. И то и другое одинаково губительно как для растений, так для и животных.

Органическое вещество – до 10% почвы, образуется из отмершей биомассы (растительная масса – опад листьев, ветвей и корней, валежные стволы, ветошь травы, организмы погибших животных), измельченной и переработанной в почвенный гумус микроорганизмами и определенными группами животных и растений.

Более простые элементы, образовавшиеся в результате разложения органики, вновь усваиваются растениями и вовлекаются в биологический круговорот.

Воздух (15-25%) в почве содержится в полостях – порах, между органическими и минеральными частицами. При отсутствии (тяжелые глинистые почвы) или заполнении пор водой (во время подтоплений, таяния мерзлоты) в почве ухудшается аэрация и складываются анаэробные условия.

В таких условиях тормозятся физиологические процессы организмов, потребляющих кислород – аэробов, разложение органики идет медленно. Постепенно накапливаясь, они образуют торф. Большие запасы торфа характерны для болот, заболоченных лесов, тундровых сообществ. Торфонакопление особенно выражено в северных регионах, где холодность и переувлажнение почв взаимообусловливают и дополняют друг друга.

Вода (25-30%) в почве представлена 4 типами: гравитационной, гигроскопической (связанной), капиллярной и парообразной.

Гравитационная – подвижная вода, занимают широкие промежутки между частицами почвы, просачивается вниз под собственной тяжестью до уровня грунтовых вод.

Легко усваивается растениями.

Гигроскопическая, или связанная – адсорбируется вокруг коллоидных частиц (глина, кварц) почвы и удерживается в виде тонкой пленки за счет водородных связей. Освобождается от них при высокой температуре (102-105°С). Растениям она недоступна, не испаряется. В глинистых почвах такой воды до 15%, в песчаных – 5%.

Капиллярная – удерживается вокруг почвенных частиц силой поверхностного натяжения.

По узким порам и каналам – капиллярам, поднимается от уровня грунтовых вод или расходится от полостей с гравитационной водой. Лучше удерживается глинистыми почвами, легко испаряется.

Растения легко поглощают ее.

Парообразная – занимает все свободные от воды поры. Испаряется в первую очередь.

Осуществляется постоянный обмен поверхностных почвенных и грунтовых вод, как звено общего круговорот воды в природе, меняющий скорость и направление в зависимости от сезона года и погодных условий.

Похожая информация:

Поиск на сайте:

Газовый состав атмосферы также является важным климатическим фактором.

Примерно 3 -3,5 млрд. лет назад атмосфера содержала азот, аммиак, водород, метан и водяной пар, а свободный кислород в ней отсутствовал. Состав атмосферы в значительной степени определялся вулканическими газами.

Именно в наземной обстановке, набазе высокой эффек-тивности окислительных процессов в организме, возникла гомойотермия животных. Кислород, из-за постоянно высокого его содер-жания в воздухе, не является фактором, лимитирующим жизнь в наземной среде. Лишь местами, в специфических условиях, со-здается временный его дефицит, например в скоплениях разлагаю-щихся растительных остатков, запасах зерна, муки и т. п.

Например, при отсутствии ветра в центре больших городов концентрация его возрастает в десятки раз. Закономерны суточ-ные изменения содержания углекислоты в приземных слоях, свя-занные с ритмом фотосинтеза растений, и сезонные, обусловлен-ные изменениями интенсивности дыхания живых организмов, преи-мущественно микроскопического населения почв. Повышенное насыщение воздуха углекислым газом возникает в зонах вулкани-ческой активности, возле термальных источников и других подземных выходов этого газа.

Низкая плотность воздуха определяет его малую подъемную силу и незначительную опорность.

Обитатели воздушной среды должны обладать собственной опорной системой, поддерживающей тело: растения - разнообразными механическими тканями, животные – твердым или, значительно реже, гидростатическим, скелетом.

Ветер

бури

Давление

Малая плотность воздуха обусловливает сравнительно низкое давление на суше. В норме оно равно 760 мм рт.,ст. С увеличением высоты над уровнем моря давление уменьшается. На высоте 5800 м оно равняется лишь половине нормального. Низкое дав-ление может ограничивать распространение видов в горах. Для большинства позвоночных верхняя граница жизни около 6000 м. Снижение давления влечет за собой уменьшение обеспеченности кислородом и обезвоживание животных за счет увеличения часто-ты дыхания.

Примерно таковы же пределы продвижения в горы высших растений. Несколько более выносливы членистоногие (ногохвостки, клещи, пауки), которые могут встречаться на ледниках, выше границы растительности.

В целом все наземные организмы гораздо более стенобатны, чем водные.

Наземно-воздушная среда обитания

В ходе эволюции эта среда была освоена позже, чем водная. Экологические факторы в наземно-воздушной среде отличаются от других сред обитания высокой интенсивностью света, значительными колебаниями температуры и влажности воздуха, корреляцией всех факторов с географическим положением, сменой сезонов года и времени суток.

Среда газообразная, поэтому характеризуется низкими влажностью, плотностью и давлением, высоким содержанием кислорода.

Характеристика абиотических факторов среды света, температуры, влажности – см предыдущую лекцию.

Газовый состав атмосферы также является важным климатическим фактором. Примерно 3 -3,5 млрд. лет назад атмосфера содержала азот, аммиак, водород, метан и водяной пар, а свободный кислород в ней отсутствовал. Состав атмосферы в значительной степени определялся вулканическими газами.

В настоящее время атмосфера состоит в основном из азота, кислорода и относительно меньшего количества аргона и углекислого газа.

Все остальные имеющиеся в атмосфере газы содержатся лишь в следовых количествах. Особое значение для биоты имеет относительное содержание кислорода и углекислого газа.

Именно в наземной обстановке, набазе высокой эффек-тивности окислительных процессов в организме, возникла гомойотермия животных. Кислород, из-за постоянно высокого его содер-жания в воздухе, не является фактором, лимитирующим жизнь в наземной среде.

Лишь местами, в специфических условиях, со-здается временный его дефицит, например в скоплениях разлагаю-щихся растительных остатков, запасах зерна, муки и т. п.

Содержание углекислого газа может изменяться в отдельных участках приземного слоя воздуха в довольно значительных пре-делах. Например, при отсутствии ветра в центре больших городов концентрация его возрастает в десятки раз. Закономерны суточ-ные изменения содержания углекислоты в приземных слоях, свя-занные с ритмом фотосинтеза растений, и сезонные, обусловлен-ные изменениями интенсивности дыхания живых организмов, преи-мущественно микроскопического населения почв.

Повышенное насыщение воздуха углекислым газом возникает в зонах вулкани-ческой активности, возле термальных источников и других подземных выходов этого газа. Низкое содержание углекислого газа тормозит процесс фото-синтеза.

В условиях закрытого грунта можно повысить скорость фотосинтеза, увеличив концентрацию углекислого газа; этим поль-зуются в практике тепличного и оранжерейного хозяйства.

Азот воздуха для большинства обитателей наземной среды представляет инертный газ, но ряд микроорганизмов (клубеньковые бактерии, азотобактер, клостридии, сине-зеленые водоросли и др.) обладает способностью связывать его и вовлекать в биоло-гический круговорот.

Местные примеси, поступающие в воздух, также могут существенно влиять на живые организмы.

Это особенно относится к ядо-витым газообразным веществам - метану, оксиду серы (IV), ок-сиду углерода (II), оксиду азота (IV), сероводороду, соединениям хлора, а также к частицам пыли, сажи и т. п., засоряющим воз-дух в промышленных районах. Основной современный источник химического и физического загрязнения атмосферы антропоген-ный: работа различных промышленных предприятий и транспорта, эрозия почв и т.

п. Оксид серы (SО2), например, ядовит для рас-тений даже в концентрациях от одной пятидесятитысячной до од-ной миллионной от объема воздуха.. Некоторые виды растений особо чувствительны к S02 и служат чутким индикатором его накопления в воздухе (на-пример, лишайники.

Низкая плотность воздуха определяет его малую подъемную силу и незначительную опорность. Обитатели воздушной среды должны обладать собственной опорной системой, поддерживающей тело: растения - разнообразными механическими тканями, животные – твердым или, значительно реже, гидростатическим, скелетом.

Кроме того, все обитатели воздушной среды тесно связаны с поверхностью земли, которая служит им для прикрепления и опоры. Жизнь во взвешенном, состоянии в воздухе невозможна. Правда, множество микроорганизмов и животных, споры, семена и пыльца растений регулярно присутствуют в воздухе и разносят-ся воздушными течениями(анемохория), многие животные способны к активно-му полету, однако у всех этих видов основная функция их жиз-ненного цикла - размножение - осуществляется на поверхности земли.

Для большинства из них пребывание в воздухе связано только с расселением или поиском добычи.

Ветер оказывает лимитирующее воздействие на активность и даже распространение организмов. Ветер способен даже изменять внешний вид растений, особенно в тех местообитаниях, например в альпийских зонах, где лимитирующее воздействие оказывают другие факторы. В открытых горных местообитаниях ветер лимитирует рост растений, приводит к искривлению растений с наветренной стороны.

Кроме того, ветер усиливает эвапотранспирацию в условиях низкой влажности. Большое значение имеют бури , хотя их действие сугубо локально. Ураганы, да и обычные ветры, способны переносить животных и растения на большие расстояния и тем самым изменять состав сообществ.

Давление , по-видимому, не является лимитирующим фактором непосредственного действия, однако оно имеет прямое отношение к погоде и климату, которые оказывают непосредственное лимитирующее воздействие.

Малая плотность воздуха обусловливает сравнительно низкое давление на суше. В норме оно равно 760 мм рт.,ст. С увеличением высоты над уровнем моря давление уменьшается. На высоте 5800 м оно равняется лишь половине нормального.

Низкое дав-ление может ограничивать распространение видов в горах.

Для большинства позвоночных верхняя граница жизни около 6000 м. Снижение давления влечет за собой уменьшение обеспеченности кислородом и обезвоживание животных за счет увеличения часто-ты дыхания. Примерно таковы же пределы продвижения в горы высших растений. Несколько более выносливы членистоногие (ногохвостки, клещи, пауки), которые могут встречаться на ледниках, выше границы растительности.

Санкт-Петербургская государственная академия

Ветеринарно медицины.

Кафедра общей биологии, экологии и гистологии.

Реферат по экологии на тему:

Наземно-воздушая среда, её факторы

и адаптации организмов к ним»

Выполнил: Студент 1-го курса

Ой группы Пяточенко Н. Л.

Проверил: доцент кафедры

Вахмистрова С. Ф.

Санкт-Петербург

Введение

Условия жизни (условия существования) – это совокупность необходимых для организма элементов, с которыми он находится в неразрывной связи и без которых существовать не может.

Приспособления организма к среде носят название адаптации. Способность к адаптациям – одно их основных свойств жизни вообще, обеспечивающее возможность ее существования, выживания и размножения. Адаптация проявляется на разных уровнях – от биохимии клеток и поведения отдельных организмов до строения и функционирования сообществ и экосистем. Адаптации возникают и изменяются в ходе эволюции вида.

Отдельные свойства или элементы среды, воздействующие на организмы, называются экологическими факторами. Факторы среды разнообразны. Они имеют разную природу и специфику действия. Экологические факторы подразделяются на две большие группы: абиотические и биотические.

Абиотические факторы – это комплекс условий неорганической среды, влияющих на живые организмы прямо или косвенно: температура, свет, радиоактивное излучение, давление, влажность воздуха, солевой состав воды и т.д.

Биотические факторы – это все формы воздействия живых организмов друг на друга. Каждый организм постоянно испытывает на себе прямое или косвенное влияние других, вступая в связь с представителями своего и других видов.

В отдельных случаях антропогенные факторы выделяют в самостоятельную группу наряду с биотическими и абиотическими факторами, подчеркивая чрезвычайное действие антропогенного фактора.

Антропогенные факторы – это все формы деятельности человеческого общества, которые приводят к изменению природы как среды обитания других видов или непосредственно сказываются на их жизни. Значение антропогенного воздействия на весь живой мир Земли продолжает стремительно возрастать.

Изменения факторов среды во времени могут быть:

1)регулярно-постоянными, меняющими силу воздействия в связи со временем суток, сезоном года или ритмом приливов и отливов в океане;

2)нерегулярными, без четкой периодичности, например, изменение погодных условий в разные годы, бури, ливни, сели и т.д.;

3)направленными на протяжении определенных или длительных отрезков времени, например, похолодание или потепление климата, зарастание водоема и т.д.

Экологические факторы среды могут оказывать на живые организмы различные воздействия:

1) как раздражители, вызывая приспособительные изменения физиологических и биохимических функций;

2) как ограничители, обуславливающие невозможность существования в данных

условиях;

3) как модификаторы, вызывающие анатомические и морфологические изменения организмов;

4) как сигналы, свидетельствующие об изменении других факторов.

Несмотря на большое разнообразие экологических факторов, в характере их взаимодействия с организмами и в ответных реакциях живых существ можно выделить ряд общих закономерностей.

Интенсивность экологического фактора, наиболее благоприятная для жизнедеятельности организма, оптимум, а дающая наихудший эффект – пессимум, т.е. условия, при которых жизнедеятельность организма максимально угнетается, но он еще может существовать. Так, при выращивании растений в различных температурных режимах точка, при которой наблюдается максимальный рост, и будет оптимумом. В большинстве случаев это некий диапазон температур, составляющий несколько градусов, потому здесь лучше говорить о зоне оптимума. Весь интервал температур (от минимальной до максимальной), при которых еще возможен рост, называют диапазоном устойчивости (выносливости), или толерантности. Точка, ограничивающая его (т.е. минимальная и максимальная) пригодные для жизни температуры – это предел устойчивости. Между зоной оптимума и пределом устойчивости по мере приближения к последнему растение испытывает все нарастающий стресс, т.е. речь идет о стрессовых зонах, или зонах угнетения, в рамках диапазона устойчивости

Зависимость действия экологического фактора от его интенсивности (по В.А. Радкевичу, 1977)

По мере удаления вверх и вниз но шкале не только усиливается стресс, а в конечном итоге, по достижении пределов устойчивости организма, происходит его гибель. Подобные эксперименты можно проводить и для проверки влияния других факторов. Результаты графически будут соответствовать кривой подобного типа

Наземно-воздушная среда жизни, ее характеристика и формы адаптации к ней.

Жизнь на суше потребовала таких приспособлений, которые оказались возможными только у высокоорганизованных живых организмов. Наземно-воздушная среда более сложная для жизни, она отличается высоким содержанием кислорода, малым количеством водяных паров, низкой плотностью и т.д. Это сильно изменило условия дыхания, водообмена и передвижения живых существ.

Низкая плотность воздуха определяет его малую подъемную силу и незначительную опорность. Организмы воздушной среды должны иметь собственную опорную систему, поддерживающую тело: растения – разнообразные механические ткани, животные – твердый или гидростатический скелет. Кроме этого, все обитатели воздушной среды тесно связаны с поверхностью земли, которая служит им для прикрепления и опоры.

Малая плотность воздуха обеспечивает низкую сопротивляемость передвижения. Поэтому многие наземные животные приобрели способность к полету. К активному полету приспособилось 75% всех наземных, преимущественно насекомые и птицы.

Благодаря подвижности воздуха, существующим в нижних слоях атмосферы вертикальным и горизонтальным потокам воздушных масс возможен пассивный полет организмов. В связи с этим у многих видов развита анемохория – расселение с помощью воздушных потоков. Анемохория характерна для спор, семян и плодов растений, цист простейших, мелких насекомых, пауков и т.д. Пассивно переносимые потоками воздуха организмы получили в совокупности название аэропланктона.

Наземные организмы существуют в условиях сравнительно низкого давления, обусловленного малой плотностью воздуха. В норме оно равно 760 мм ртутного столба. С увеличением высоты над уровнем моря давление уменьшается. Низкое давление может ограничивать распространенность видов в горах. Для позвоночных животных верхняя граница жизни – около 60 мм. Снижение давления влечет за собой уменьшение обеспеченности кислородом и обезвоживание животных за счет увеличения частоты дыхания. Примерно такие же пределы продвижения в горах имеют высшие растения. Несколько более выносливы членистоногие, которые могут встречаться на ледниках, выше границы растительности.

Газовый состав воздуха. Кроме физических свойств воздушной среды, для существования наземных организмов очень важны ее химические свойства. Газовый состав воздуха в приземном слое атмосферы довольно однороден в отношении содержания главных компонентов (азот – 78,1%, кислород – 21,0%, аргон 0,9%, углекислый газ – 0,003% от объема).

Высокое содержание кислорода способствовало повышению обмена веществ у наземных организмов по сравнению с первичноводными. Именно в наземной обстановке, на базе высокой эффективности окислительных процессов в организме, возникла гомойтермия животных. Кислород из-за постоянного его высокого содержания в воздухе не является лимитирующим фактором жизни в наземной среде.

Содержание углекислого газа может изменяться в отдельных участках приземного слоя воздуха в довольно значительных пределах. Повышенное насыщение воздуха СО? возникает в зонах вулканической активности, возле термальных источников и других подземных выходов этого газа. В высоких концентрациях углекислый газ токсичен. В природе такие концентрации встречаются редко. Низкое содержание С02 тормозит процесс фотосинтеза. В условиях закрытого грунта можно повысить скорость фотосинтеза, увеличив концентрацию углекислого газа. Этим пользуются в практике тепличного и оранжерейного хозяйства.

Азот воздуха для большинства обитателей наземной среды является инертным газом, но отдельные микроорганизмы (клубеньковые бактерии, азотбактерии, сине-зеленые водоросли и др.) обладают способностью связывать его и вовлекать в биологический круговорот веществ.

Дефицит влаги – одна из существенных особенностей наземно-воздушной среды жизни. Вся эволюция наземных организмов шла под знаком приспособления к добыванию и сохранению влаги. Режимы влажности среды на суше очень разнообразны – от полного и постоянного насыщения воздуха водяными парами в некоторых районах тропиков до практически полного их отсутствия в сухом воздухе пустынь. Также значительна суточная и сезонная изменчивость содержания водяных паров в атмосфере. Водообеспеченность наземных организмов зависит также от режима выпадения осадков, наличия водоемов, запасов почвенной влаги, близости фунтовых вод и т.д.

Это привело к развитию у наземных организмов адаптации к различным режимам водообеспечения.

Температурный режим. Следующей отличительной чертой воздушно-наземной среды являются значительные температурные колебания. В большинстве районов суши суточные и годовые амплитуды температур составляют десятки градусов. Устойчивость к температурным изменениям среды у наземных обитателей очень различна, в зависимости от того, в каком конкретном местообитания проходит их жизнь. Однако в целом наземные организмы значительно более эвритермны по сравнению с водными организмами.

Условия жизни в наземно-воздушной среде осложняются, кроме того, существованием погодных изменений. Погода – непрерывно меняющиеся состояния атмосферы у заемной поверхности, до высоты примерно в 20 км (граница тропосферы). Изменчивость погоды проявляется в постоянном варьировании сочетания таких факторов среды, как температура, влажность воздуха, облачность, осадки, сила и направление ветра и т.д. Многолетний режим погоды характеризует климат местности. В понятие «Климат» входят не только средние значения метеорологических явлений, но также их годовой и суточный ход, отклонение от него и их повторяемость. Климат определяется географическими условиями района. Основные климатические факторы – температура и влажность – измеряются количеством осадков и насыщенностью воздуха водяными парами.

Для большинства наземных организмов, особенно мелких, не столько важен климат района, сколько условия их непосредственного обитания. Очень часто местные элементы среды (рельеф, экспозиция, растительность и т.д.) так изменяют в конкретном участке режим температур, влажности, света, движения воздуха, что он значительно отличается от климатических условий местности. Такие модификации климата, складывающиеся в приземном слое воздуха, называются микроклиматом. В каждой зоне микроклимат очень разнообразен. Можно выделить микроклиматы очень небольших участков.

Световой режим наземно-воздушной среды также обладает некоторыми особенностями. Интенсивность и количество света здесь наиболее велики и практически не лимитируют жизнь зеленых растений, как в воде или почве. На суше возможно существование чрезвычайно светолюбивых видов. Для подавляющего большинства наземных животных с дневной и даже ночной активностью зрение представляет собой один из основных способов ориентации. У наземных животных зрение имеет важное значение для поисков добычи, многие виды обладают даже цветным зрением. В связи с этим у жертв возникают такие приспособительные особенности, как защитная реакция, маскирующая и предупреждающая окраска, мимикрия и т.д.

У водных обитателей такие адаптации развиты значительно меньше. Возникновение ярко окрашенных цветков высших растений также связано с особенностями аппарата опылителей и в конечном счете – со световым режимом среды.

Рельеф местности и свойства грунта – также условия жизни наземных организмов и, в первую очередь, растений. Свойства земной поверхности, оказывающие экологическое воздействие на ее обитателей, объединяются «эдафическими факторами среды» (от греческого «эдафос» – «почва»).

По отношению к разным свойствам почв можно выделить целый ряд экологических групп растений. Так, по реакции на кислотность почвы различают:

1) ацидофильные виды – растут на кислых почвах с рН не менее 6,7 (растения сфагновых болот);

2) нейтрофильные склонны расти на почвах с рН 6,7–7,0 (большинство культурных растений);

3) базифильные растут при рН более 7,0 (мордовник, лесная ветренница);

4) индиферентные могут произрастать на почвах с разным значением рН (ландыш).

Отличаются растения и по отношению к влажности почвы. Определенные виды приурочены к разным субстратам, например, петрофиты растут на каменистых почвах, пасмофиты заселяют сыпучие пески.

Рельеф местности и характер грунта влияют на специфику передвижения животных: например, копытных, страусов, дроф, живущих на открытых пространствах, твердом грунте, для усиления отталкивания при беге. У ящериц, обитающих в сыпучих песках, пальцы окаймлены бахромой из роговых чешуек, увеличивающих опоры. Для наземных обитателей, роющих норы, плотный грунт неблагоприятен. Характер почвы в определенных случаях влияет на распределение наземных животных, роющих норы или зарывающихся в грунт, или откладывающих яйца в почву и т.д.

О составе воздуха.

Газовый состав воздуха, которым мы дышим, выглядит так: 78% составляет азот, 21 % - кислород и 1% приходится на другие газы. Но в атмосфере крупных промышленных городов это соотношение часто нарушено. Значительную долю составляют вредные примеси, обусловленные выбросами предприятий и автотранспорта. Автотранспорт привносит в атмосферу многие примеси: углеводороды неизвестного состава, бенз(а)пирен, углекислый газ, соединения серы и азота, свинец, угарный газ.

Атмосфера состоит из смеси ряда газов - воздуха, в котором взвешены коллоидные примеси - пыль, капельки, кристаллы и пр. С высотой состав атмосферного воздуха меняется мало. Однако начиная с высоты около 100 км, наряду с молекулярным кислородом и азотом появляется и атомарный в результате диссоциации молекул, и начинается гравитационное разделение газов. Выше 300 км в атмосфере преобладает атомарный кислород, выше 1000 км - гелий и затем атомарный водород. Давление и плотность атмосферы убывают с высотой; около половины всей массы атмосферы сосредоточено в нижних 5 км, 9/10 - в нижних 20 км и 99,5% - в нижних 80 км. На высотах около 750 км плотность воздуха падает до 10-10 г/м3 (тогда как у земной поверхности она порядка 103 г/м3), но и такая малая плотность еще достаточна для возникновения полярных сияний. Резкой верхней границы атмосфера не имеет; плотность составляющих ее газов

В состав атмосферного воздуха, которым дышит каждый из нас, входят несколько газов, основными из которых являются: азот(78.09%), кислород(20.95%), водород(0.01%) двуокись углерода (углекислый газ)(0.03%) и инертные газы(0.93%). Кроме того, в воздухе всегда находится некоторое кол-во водяных паров, кол-во которых всегда изменяется с переменой температуры: чем выше температура, тем содержание пара больше и наоборот. Вследствие колебания кол-ва водяных паров в воздухе процентное содержание в нем газов также непостоянно. Все газы, входящие в состав воздуха, бесцветны и не имеют запаха. Вес воздуха изменяется в зависимости не только от температуры, но и от содержания в нем водяных паров. При одинаковой температуре вес сухого воздуха больше, чем влажного, т.к. водяные пары значительно легче паров воздуха.

В таблице приведен газовый состав атмосферы в объемном массовом отношении, а также время жизни основных компонентов:

Компонент % объемные % массовые
N2 78,09 75,50
O2 20,95 23,15
Ar 0,933 1,292
CO2 0,03 0,046
Ne 1,8 10-3 1,4 10-3
He 4,6 10-4 6,4 10-5
CH4 1,52 10-4 8,4 10-5
Kr 1,14 10-4 3 10-4
H2 5 10-5 8 10-5
N2O 5 10-5 8 10-5
Xe 8,6 10-6 4 10-5
O3 3 10-7 - 3 10-6 5 10-7 - 5 10-6
Rn 6 10-18 4,5 10-17

Свойства газов, входящих в состав атмосферного воздуха под давлением меняются.

К примеру: кислород под давлением более 2-х атмосфер оказывает ядовитое действие на организм.

Азот под давлением свыше 5 атмосфер оказывает наркотическое действие (азотное опьянение). Быстрый подъем из глубины вызывает кессонную болезнь из-за бурного выделения пузырьков азота из крови, как бы вспенивая ее.

Повышение углекислого газа более 3% в дыхательной смеси вызывает смерть.

Каждый компонент, входящий в состав воздуха, с повышением давления до определенных границ становится ядом, способным отравить организм.

Исследования газового состава атмосферы. Атмосферная химия

Для истории бурного развития сравнительно молодой отрасли науки, именуемой атмосферной химией, более всего подходит термин “спурт” (бросок), применяемый в высокоскоростных видах спорта. Выстрелом же из стартового пистолета, пожалуй, послужили две статьи, опубликованные в начале 1970-х годов. Речь в них шла о возможном разрушении стратосферного озона оксидами азота - NO и NO2. Первая принадлежала будущему нобелевскому лауреату, а тогда сотруднику Стокгольмского университета П. Крутцену, который посчитал вероятным источником оксидов азота в стратосфере распадающуюся под действием солнечного света закись азота N2O естественного происхождения. Автор второй статьи, химик из Калифорнийского университета в Беркли Г.Джонстон предположил, что оксиды азота появляются в стратосфере в результате человеческой деятельности, а именно - при выбросах продуктов сгорания реактивных двигателей высотных самолетов.

Конечно, вышеупомянутые гипотезы возникли не на пустом месте. Соотношение по крайней мере основных компонент в атмосферном воздухе - молекул азота, кислорода, водяного пара и др. - было известно намного раньше. Уже во второй половине XIX в. в Европе производились измерения концентрации озона в приземном воздухе. В 1930-е годы английский ученый С.Чепмен открыл механизм формирования озона в чисто кислородной атмосфере, указав набор взаимодействий атомов и молекул кислорода, а также озона в отсутствие каких-либо других составляющих воздуха. Однако в конце 50-х годов измерения с помощью метеорологических ракет показали, что озона в стратосфере гораздо меньше, чем его должно быть согласно циклу реакций Чепмена. Хотя этот механизм и по сей день остается основополагающим, стало ясно, что существуют какие-то иные процессы, также активно участвующие в формировании атмосферного озона.

Нелишне упомянуть, что знания в области атмосферной химии к началу 70-х годов в основном были получены благодаря усилиям отдельных ученых, чьи исследования не были объединены какой-либо общественно значимой концепцией и носили чаще всего чисто академический характер. Иное дело - работа Джонстона: согласно его расчетам, 500 самолетов, летая по 7 ч в день, могли сократить количество стратосферного озона не меньше чем на 10%! И если бы эти оценки были справедливы, то проблема сразу становилась социально-экономической, так как в этом случае все программы развития сверхзвуковой транспортной авиации и сопутствующей инфраструктуры должны были подвергнуться существенной корректировке, а может быть, и закрытию. К тому же тогда впервые реально встал вопрос о том, что антропогенная деятельность может стать причиной не локального, но глобального катаклизма. Естественно, в сложившейся ситуации теория нуждалась в очень жесткой и в то же время оперативной проверке.

Напомним, что суть вышеупомянутой гипотезы состояла в том, что оксид азота вступает в реакцию с озоном NO + O3 ® ® NO2 + O2, затем образовавшийся в этой реакции диоксид азота реагирует с атомом кислорода NO2 + O ® NO + O2, тем самым восстанавливая присутствие NO в атмосфере, в то время как молекула озона утрачивается безвозвратно. При этом такая пара реакций, составляющая азотный каталитический цикл разрушения озона, повторяется до тех пор, пока какие-либо химические или физические процессы не приведут к удалению оксидов азота из атмосферы. Так, например, NO2 окисляется до азотной кислоты HNO3, хорошо растворимой в воде, и потому удаляется из атмосферы облаками и осадками. Азотный каталитический цикл весьма эффективен: одна молекула NO за время своего пребывания в атмосфере успевает уничтожить десятки тысяч молекул озона.

Но, как известно, беда не приходит одна. Вскоре специалисты из университетов США - Мичигана (Р.Столярски и Р.Цицероне) и Гарварда (С.Вофси и М. Макэлрой) - обнаружили, что у озона может быть еще более беспощадный враг - соединения хлора. Хлорный каталитический цикл разрушения озона (реакции Cl + O3 ® ClO + O2 и ClO + O ® Cl + O2), по их оценкам, был в несколько раз эффективнее азотного. Сдержанный оптимизм вызывало лишь то, что количество хлора естественного происхождения в атмосфере сравнительно невелико, а значит, суммарный эффект его воздействия на озон может оказаться не слишком сильным. Однако ситуация кардинально изменилась, когда в 1974 г. сотрудники Калифорнийского университета в Ирвине Ш. Роуленд и М. Молина установили, что источником хлора в стратосфере являются хлорфторуглеводородные соединения (ХФУ), массово используемые в холодильных установках, аэрозольных упаковках и т.д. Будучи негорючими, нетоксичными и химически пассивными, эти вещества медленно переносятся восходящими воздушными потоками от земной поверхности в стратосферу, где их молекулы разрушаются солнечным светом, в результате чего выделяются свободные атомы хлора. Промышленное производство ХФУ, начавшееся в 30-е годы, и их выбросы в атмосферу постоянно наращивались во все последующие годы, особенно в 70-е и 80-е. Таким образом, в течение очень короткого промежутка времени теоретики обозначили две проблемы атмосферной химии, обусловленные интенсивным антропогенным загрязнением.

Однако чтобы проверить состоятельность выдвинутых гипотез, необходимо было выполнить немало задач.

Во-первых, расширить лабораторные исследования, в ходе которых можно было бы определить или уточнить скорости протекания фотохимических реакций между различными компонентами атмосферного воздуха. Надо сказать, что существовавшие в то время весьма скудные данные об этих скоростях к тому же имели изрядную (до нескольких сот процентов) погрешность. Кроме того, условия, в которых производились измерения, как правило, мало соответствовали реалиям атмосферы, что серьезно усугубляло ошибку, поскольку интенсивность большинства реакций зависела от температуры, а иногда от давления или плотности атмосферного воздуха.

Во-вторых, усиленно изучать радиационно-оптические свойства ряда малых газов атмосферы в лабораторных условиях. Молекулы значительного числа составляющих атмосферного воздуха разрушаются ультрафиолетовым излучением Солнца (в реакциях фотолиза), среди них не только упомянутые выше ХФУ, но также молекулярный кислород, озон, оксиды азота и многие другие. Поэтому оценки параметров каждой реакции фотолиза были столь же необходимы и важны для правильного воспроизведения атмосферных химических процессов, как и скорости реакций между различными молекулами.

В-третьих, нужно было создавать математические модели, способные возможно более полно описывать взаимные химические превращения компонент атмосферного воздуха. Как уже упоминалось, продуктивность разрушения озона в каталитических циклах определяется тем, сколь долго пребывает в атмосфере катализатор (NO, Cl или какой-либо другой). Понятно, что такой катализатор, вообще-то говоря, мог вступить в реакцию с любой из десятков составляющих атмосферного воздуха, быстро разрушаясь при этом, и тогда ущерб стратосферному озону оказался бы значительно меньше, чем предполагалось. С другой стороны, когда в атмосфере ежесекундно происходит множество химических превращений, вполне вероятно выявление других механизмов, прямо или косвенно влияющих на образование и разрушение озона. Наконец, такие модели в состоянии выделить и оценить значимость отдельных реакций или их групп в формировании других газов, входящих в состав атмосферного воздуха, а также позволить вычислить концентрации газов, которые недоступны измерениям.

И наконец, предстояло организовать широкую сеть для измерений содержания в воздухе различных газов, в том числе соединений азота, хлора и др., используя с этой целью наземные станции, запуски метеозондов и метеоракет, полеты самолетов. Безусловно, создание базы данных было наиболее дорогостоящей задачей, которую и не решить в короткое время. Однако только измерения могли дать исходную точку для теоретических изысканий, будучи одновременно пробным камнем истинности высказанных гипотез.

С начала 70-х по крайней мере раз в три года выходят специальные, постоянно пополняемые сборники, содержащие сведения обо всех значимых атмосферных реакциях, включая реакции фотолиза. Причем погрешность в определении параметров реакций между газовыми компонентами воздуха сегодня составляет, как правило, 10-20%.

На вторую половину этого десятилетия приходится бурное развитие моделей, описывающих химические преобразования в атмосфере. Наибольшее их число было создано в США, но появились они и в Европе, и в СССР. Сперва это были боксовые (нульмерные), а потом и одномерные модели. Первые воспроизводили с разной степенью достоверности содержание основных атмосферных газов в заданном объеме - боксе (отсюда и их название) - в результате химических взаимодействий между ними. Поскольку постулировалось сохранение общей массы воздушной смеси, удаление какой-либо ее доли из бокса, например, ветром, не рассматривалось. Боксовые модели были удобны для выяснения роли отдельных реакций или их групп в процессах химических образований и разрушений газов атмосферы, для оценки чувствительности газового состава атмосферы к неточностям определения скоростей реакций. С их помощью исследователи могли, задав в боксе атмосферные параметры (в частности, температуру и плотность воздуха), соответствующие высоте полетов авиации, оценить в грубом приближении, как изменятся концентрации атмосферных примесей в результате выбросов продуктов сгорания двигателями самолетов. В то же время боксовые модели были непригодны для изучения проблемы хлорфторуглеводородов (ХФУ), так как не могли описать процесс их перемещения от земной поверхности в стратосферу. Вот здесь пригодились одномерные модели, которые совмещали в себе учет подробного описания химических взаимодействий в атмосфере и переноса примесей в вертикальном направлении. И хотя вертикальный перенос задавался и здесь достаточно грубо, использование одномерных моделей было заметным шагом вперед, поскольку они давали возможность как-то описать реальные явления.

Оглядываясь назад, можно сказать, что наши современные знания во многом базируются на проведенной в те годы с помощью одномерных и боксовых моделей черновой работе. Она позволила определить механизмы формирования газового состава атмосферы, оценить интенсивность химических источников и стоки отдельных газов. Важная особенность этого этапа развития атмосферной химии в том, что рождавшиеся новые идеи апробировались на моделях и широко обсуждались среди специалистов. Полученные результаты часто сравнивались с оценками других научных групп, поскольку натурных измерений было явно недостаточно, да и точность их была весьма низкой. Кроме того, для подтверждения правильности моделирования тех или иных химических взаимодействий было необходимо проводить комплексные измерения, когда одновременно определялись бы концентрации всех участвующих реагентов, что в то время, да и сейчас, было практически невозможно. (До сих пор проведено лишь несколько измерений комплекса газов с “Шаттла” в течение 2-5 сут.) Поэтому модельные исследования шли впереди экспериментальных, и теория не столько объясняла проведенные натурные наблюдения, сколько способствовала их оптимальному планированию. Например, такое соединение, как хлорный нитрат ClONO2, сначала появилось в модельных исследованиях и только потом было обнаружено в атмосфере. Даже сравнивать имевшиеся измерения с модельными оценками было трудно, поскольку одномерная модель не могла учесть горизонтальных движений воздуха, из-за чего атмосфера предполагалась горизонтально однородной, а полученные модельные результаты соответствовали некоторому среднеглобальному ее состоянию. Однако в реальности состав воздуха над индустриальными регионами Европы или США сильно отличается от его состава над Австралией или над акваторией Тихого океана. Поэтому результаты любого натурного наблюдения в значительной мере зависят от места и времени проведения измерений и, конечно, не соответствуют в точности среднеглобальному значению.

Чтобы устранить этот пробел в моделировании, в 80-е годы исследователи создают двумерные модели, в которых наряду с вертикальным переносом учитывался и перенос воздуха вдоль меридиана (вдоль круга широты атмосфера по-прежнему считалась однородной). Создание таких моделей на первых порах было сопряжено со значительными трудностями.

Во-первых, резко возрастало количество внешних модельных параметров: в каждом узле сетки необходимо было задать скорости вертикального и межширотного переноса, температуру и плотность воздуха и т.д. Многие параметры (в первую очередь, вышеупомянутые скорости) не были надежно определены в экспериментах и поэтому подбирались из качественных соображений.

Во-вторых, состояние вычислительной техники того времени заметно сдерживало полноценное развитие двумерных моделей. В отличие от экономичных одномерных и тем более боксовых двумерные модели требовали существенно больших затрат памяти и времени ЭВМ. И в результате их создатели были вынуждены значительно упрощать схемы учета химических превращений в атмосфере. Тем не менее комплекс атмосферных исследований, как модельных, так и натурных с использованием спутников, позволил нарисовать относительно стройную, хотя и далеко не полную картину состава атмосферы, а также установить основные причинно-следственные связи, вызывающие изменения содержания отдельных компонент воздуха. В частности, многочисленные исследования показали, что полеты самолетов в тропосфере не наносят сколь-нибудь существенного вреда тропосферному озону, однако их подъем в стратосферу, похоже, может иметь отрицательные последствия для озоносферы. Мнение большинства специалистов о роли ХФУ было почти единодушным: гипотеза Роуленда и Молина подтверждается, и эти вещества действительно способствуют разрушению стратосферного озона, а регулярный рост их промышленного производства - мина замедленного действия, так как распад ХФУ происходит не сразу, а спустя десятки и сотни лет, поэтому последствия загрязнения будут сказываться в атмосфере очень долго. Более того, долго сохраняясь, хлорфторуглеводороды могут достигнуть любой, самой удаленной точки атмосферы, и, следовательно, это - угроза глобального масштаба. Настало время согласованных политических решений.

В 1985 г. при участии 44 стран в Вене была разработана и принята конвенция по охране озонного слоя, стимулировавшая его всестороннее изучение. Однако вопрос, что же делать с ХФУ, все еще оставался открытым. Пустить дело на самотек по принципу “само рассосется” было нельзя, но и запретить производство этих веществ в одночасье невозможно без огромного ущерба для экономики. Казалось бы, есть простое решение: нужно заменить ХФУ другими веществами, способными выполнять те же функции (например, в холодильных агрегатах) и в то же время безвредными или хотя бы менее опасными для озона. Но воплотить в жизнь простые решения часто бывает очень непросто. Мало того что создание таких веществ и налаживание их производства требовали огромных капиталовложений и времени, необходимы были критерии оценки воздействия любого из них на атмосферу и климат.

Теоретики снова оказались в центре внимания. Д. Уэбблс из Ливерморской национальной лаборатории предложил использовать для этой цели озоноразрушающий потенциал, который показывал, насколько молекула вещества-заменителя сильнее (или слабее), чем молекула CFCl3(фреона-11), воздействует на атмосферный озон. На тот момент также хорошо было известно, что температура приземного слоя воздуха существенно зависит от концентрации некоторых газовых примесей (их назвали парниковыми), в первую очередь углекислого газа CO2, водяного пара H2O, озона и др. К этой категории отнесли и ХФУ, и многие их потенциальные заменители. Измерения показали, что в ходе индустриальной революции среднегодовая глобальная температура приземного слоя воздуха росла и продолжает расти, и это свидетельствует о значительных и не всегда желательных изменениях климата Земли. Для того чтобы поставить эту ситуацию под контроль, вместе с озоноразрушающим потенциалом вещества стали также рассматривать его потенциал глобального потепления. Этот индекс указывал, насколько сильнее или слабее изучаемое соединение воздействует на температуру воздуха, чем такое же количество углекислого газа. Проведенные расчеты показали, что ХФУ и альтернативные вещества обладали весьма высокими потенциалами глобального потепления, но из-за того, что их концентрации в атмосфере были гораздо меньше концентрации CO2, H2O или O3, их суммарный вклад в глобальное потепление оставался пренебрежимо малым. До поры до времени…

Таблицы рассчитанных значений озоноразрушающих потенциалов и потенциалов глобального потепления хлорфторуглеводородов и их возможных заменителей легли в основу международных решений о сокращении и последующем запрещении производства и использования многих ХФУ (Монреальский протокол 1987 г. и более поздние дополнения к нему). Возможно, собравшиеся в Монреале эксперты не были бы столь единодушными (в конце концов статьи Протокола основывались на не подтвержденных натурными экспериментами “измышлениях” теоретиков), но за подписание этого документа высказалось еще одно заинтересованное “лицо” - сама атмосфера.

Сообщение об обнаружении английскими учеными в конце 1985 г. “озонной дыры” над Антарктидой стало, не без участия журналистов, сенсацией года, а реакцию мировой общественности на это сообщение легче всего охарактеризовать одним коротким словом - шок. Одно дело, когда угроза разрушения озонного слоя существует лишь в отдаленной перспективе, другое - когда все мы поставлены перед свершившимся фактом. К этому не были готовы ни обыватели, ни политики, ни специалисты-теоретики.

Очень быстро выяснилось, что ни одна из существовавших тогда моделей не могла воспроизвести столь значительного сокращения содержания озона. Значит, какие-то важные природные явления либо не учитывались, либо недооценивались. Вскоре проведенные в рамках программы изучения антарктического феномена натурные исследования установили, что важную роль в формировании “озонной дыры”, наряду с обычными (газофазными) атмосферными реакциями, играют особенности переноса атмосферного воздуха в стратосфере Антарктики (ее почти полная изоляция зимой от остальной атмосферы), а также в ту пору мало изученные гетерогенные реакции (реакции на поверхности атмосферных аэрозолей - частиц пыли, сажи, льдинок, капель воды и т.д.). Только учет вышеупомянутых факторов позволил добиться удовлетворительного согласования модельных результатов с данными наблюдений. А уроки, преподанные антарктической “озонной дырой”, серьезно сказались на дальнейшем развитии атмосферной химии.

Во-первых, был дан резкий толчок к детальному изучению гетерогенных процессов, протекающих по законам, отличным от тех, которые определяют процессы газофазные. Во-вторых, пришло ясное осознание того, что в сложной системе, каковой является атмосфера, поведение ее элементов зависит от целого комплекса внутренних связей. Другими словами, содержание газов в атмосфере определяется не только интенсивностью протекания химических процессов, но и температурой воздуха, переносом воздушных масс, особенностями загрязнения аэрозолями различных частей атмосферы и пр. В свою очередь радиационные нагрев и выхолаживание, формирующие поле температуры стратосферного воздуха, зависят от концентрации и распределения в пространстве парниковых газов, а следовательно, и от атмосферных динамических процессов. Наконец, неоднородный радиационный нагрев разных поясов земного шара и частей атмосферы порождает движения атмосферного воздуха и контролирует их интенсивность. Таким образом, неучет каких-либо обратных связей в моделях может быть чреват большими ошибками в полученных результатах (хотя, заметим попутно, и чрезмерное усложнение модели без насущной необходимости столь же нецелесообразно, как стрельба из пушек по известным представителям пернатых).

Если взаимосвязь температуры воздуха и его газового состава учитывалась в двумерных моделях еще в 80-е годы, то привлечение трехмерных моделей общей циркуляции атмосферы для описания распределения атмосферных примесей стало возможным благодаря компьютерному буму только в 90-е. Первые такие модели общей циркуляции использовались для описания пространственного распределения химически пассивных веществ - трассеров. Позже из-за недостаточной оперативной памяти компьютеров химические процессы задавались только одним параметром - временем пребывания примеси в атмосфере, и лишь относительно недавно блоки химических превращений стали полноправными частями трехмерных моделей. И хотя до сих пор сохраняются трудности подробного представления атмосферных химических процессов в трехмерных моделях, сегодня они уже не кажутся непреодолимыми, и лучшие трехмерные модели включают в себя сотни химических реакций, наряду с реальным климатическим переносом воздуха в глобальной атмосфере.

В то же время широкое применение современных моделей вовсе не ставит под сомнение полезность более простых, о которых говорилось выше. Хорошо известно, чем сложнее модель, тем труднее отделить “сигнал” от “модельного шума”, анализировать полученные результаты, выделить главные причинно-следственные механизмы, оценить влияние на конечный результат тех или иных явлений (а значит, и целесообразности их учета в модели). И здесь более простые модели служат идеальным испытательным полигоном, они позволяют получить предварительные оценки, в дальнейшем используемые в трехмерных моделях, изучить новые природные явления до их включения в более сложные и т.д.

Бурный научно-технический прогресс породил еще несколько направлений исследований, так или иначе связанных с атмосферной химией.

Спутниковый мониторинг атмосферы. Когда было налажено регулярное пополнение базы данных со спутников, для большинства важнейших компонент атмосферы, охватывающих почти весь земной шар, возникла необходимость в совершенствовании методов их обработки. Здесь и фильтрование данных (разделение сигнала и ошибок измерений), и восстановление вертикальных профилей концентрации примесей по их суммарным содержаниям в столбе атмосферы, и интерполяция данных в тех областях, где прямые измерения по техническим причинам невозможны. К тому же спутниковый мониторинг дополняется проведением самолетных экспедиций, которые планируются для решения различных проблем, например, в тропической зоне Тихого океана, Северной Атлантике и даже в летней стратосфере Арктики.

Важная часть современных исследований - ассимиляция (усвоение) этих баз данных в моделях различной сложности. При этом параметры подбираются из условия наибольшей близости измеренных и модельных значений содержания примесей в точках (регионах). Таким образом производится проверка качества моделей, а также экстраполяция измеренных величин за пределы регионов и периодов проведения измерений.

Оценка концентраций короткоживущих атмосферных примесей. Атмосферные радикалы, играющие ключевую роль в атмосферной химии, такие как гидроксил OH, пергидроксил HO2, оксид азота NO, атомарный кислород в возбужденном состоянии O (1D) и др., имеют наибольшую химическую реактивность и, следовательно, очень маленькое (несколько секунд или минут) “время жизни” в атмосфере. Поэтому измерение таких радикалов чрезвычайно затруднено, а реконструкция их содержания в воздухе часто осуществляется по модельным соотношениям химических источников и стоков этих радикалов. Долгое время интенсивности источников и стоков вычислялись по модельным данным. С появлением соответствующих измерений стало возможным восстанавливать на их основе концентрации радикалов, при этом совершенствуя модели и расширяя сведения о газовом составе атмосферы.

Реконструкция газового состава атмосферы в доиндустриальный период и более ранние эпохи Земли. Благодаря измерениям в антарктических и гренландских ледовых кернах, возраст которых колеблется от сотен до сотен тысяч лет, стали известны концентрации углекислого газа, закиси азота, метана, окиси углерода, а также температура тех времен. Модельная реконструкция состояния атмосферы в те эпохи и его сопоставление с нынешним позволяют проследить эволюцию земной атмосферы и оценить степень воздействия человека на природную среду.

Оценка интенсивности источников важнейших компонент воздуха. Систематические измерения в приземном воздухе содержания газов, таких, как метан, оксид углерода, оксиды азота, стали основой для решения обратной задачи: оценки размера выбросов в атмосферу газов, имеющих наземные источники, по их известным концентрациям. К сожалению, лишь инвентаризация виновников вселенского переполоха - ХФУ - является относительно простой задачей, так как почти все эти вещества не имеют естественных источников и общее их количество, поступившее в атмосферу, ограничивается объемом их производства. Остальные газы имеют разнородные и сравнимые по мощности источники. Например, источник метана - переувлажненные территории, болота, нефтяные скважины, угольные шахты; это соединение выделяется колониями термитов и даже является продуктом жизнедеятельности крупного рогатого скота. Оксид углерода попадает в атмосферу в составе выхлопных газов, в результате сжигания топлива, а также при окислении метана и многих органических соединений. Трудно осуществить прямые измерения выбросов этих газов, но разработаны методики, позволяющие давать оценки глобальных источников газов-загрязнителей, погрешность которых в последние годы значительно сократилась, хотя и остается большой.

Прогнозирование изменений состава атмосферы и климата Земли Рассматривая тенденции - тренды содержания атмосферных газов, оценки их источников, темпы роста населения Земли, скорости увеличения производства всех видов энергии и т.д., - специальными группами экспертов создаются и постоянно корректируются сценарии вероятного загрязнения атмосферы в ближайшие 10, 30, 100 лет. Исходя из них, с помощью моделей прогнозируются возможные изменения газового состава, температуры и циркуляции атмосферы. Таким образом удается заблаговременно обнаружить неблагоприятные тенденции в состоянии атмосферы и можно попытаться их устранить. Антарктический шок 1985 г. не должен повториться.

Явление парникового эффекта атмосферы

В последние годы стало отчётливо понятно, что аналогия между обычным парником и парниковым эффектом атмосферы не вполне корректна. Ещё в конце прошлого века известный американский физик Вуд, заменив в лабораторной модели парника обычное стекло на кварцевое и не обнаружив при этом никаких изменений в функционировании парника, показал, что дело не в задержке теплового излучения почвы стеклом, пропускающим солнечную радиацию, роль стекла в данном случае состоит лишь в “отсечении” турбулентного теплообмена между поверхностью почвы и атмосферой.

Парниковый (оранжерейный) эффект атмосферы – это её свойство пропускать солнечную радиацию, но задерживать земное излучение способствуя аккумуляции тепла землёй. Земная атмосфера сравнительно хорошо пропускает коротковолновую солнечную радиацию, которая почти полностью поглощается земной поверхностью. Нагреваясь за счёт поглощения солнечной радиации, земная поверхность становится источником земного, в основном длинноволнового, излучения, часть которого уходит в космическое пространство.

Влияние увеличивающейся концентрации СО2

Учёные – исследователи продолжают спорить о составе так называемых парниковых газов. Наибольший интерес в этой связи вызывает влияние увеличивающейся концентрации углекислого газа (СО2) на парниковый эффект атмосферы. Высказывается мнение, что известная схема: “рост концентрации углекислого газа усиливает парниковый эффект, что ведёт к потеплению глобального климата” – предельно упрощена и очень далека от действительности, так как наиболее важным “парниковым газом” является вовсе не СО2, а водяной пар. При этом оговорки, что концентрация водяного пара в атмосфере определяется лишь параметрами самой климатической системы, сегодня уже не выдерживает критики, так как антропогенное воздействие на глобальный круговорот воды убедительно доказано.

В качестве научных гипотез укажем на следующие последствия грядущего парникового эффекта. Во-первых, согласно наиболее распространенным оценкам, к концу XXI века содержание атмосферного СО2 удвоится, что неизбежно приведёт к повышению средней глобальной приземной температуры на 3 – 5 о С. При этом потепление ожидается более засушливым летом в умеренных широтах Северного полушария.

Во-вторых, предполагается, что подобный рост средней глобальной приземной температуры приведёт к повышению уровня Мирового океана на 20 – 165 сантиметров за счёт термического расширения воды. Что касается ледникового щита Антарктиды, то его разрушение не является неизбежным, так как для таяния необходимо более высокие температуры. В любом случае, процесс таяния антарктических льдов займёт весьма продолжительное время.

В-третьих, концентрация атмосферного СО2 может оказать весьма благоприятное воздействие на урожаи сельскохозяйственных культур. Результаты проведённых экспериментов позволяют предполагать, что в условиях прогрессирующего роста содержания СО2 в воздухе природная и культурная растительность достигнут оптимального состояния; возрастёт листовая поверхность растений, повысится удельный вес сухого вещество листьев, увеличатся средний размер плодов и число семян, ускорится созревание зерновых, а их урожайность повысится.

В-четвёртых, в высоких широтах естественные леса, особенно бореальные могут оказаться весьма чувствительными к измениям температуры. Потепление может привести к резкому сокращению площадей бореальных лесов, а также к перемещению их границу на север леса тропиков и субтропиков окажутся, вероятно, более чувствительными к изменению режима осадков, а не температуры.

Световая энергия солнца, проникает сквозь атмосферу, поглощается поверхностью земли и нагревает её. При этом световая энергия переходит в тепловую, которая выделяется в виде инфракрасного или теплового излучения. Вот это инфракрасное излучение, отражённое от поверхности земли, и поглощается углекислым газом, при этом он нагревается сам и нагревает атмосферу. Значит, чем больше в атмосфере углекислого газа, тем сильнее он улавливает климат на планете. То же самое происходит и в парниках, поэтому это явление называется парниковым эффектом.

Если так называемые парниковые газы будут поступать с теперешней скоростью, то в следующем столетии средняя температура Земли повысится на 4 – 5 о С, что может привести к глобальному потеплению планеты.

Заключение

Изменить свое отношение к природе совсем не означает, что следует отказаться от технического прогресса. Его остановка не решит проблему, а может лишь отсрочить ее решение. Надо настойчиво и терпеливо добиваться снижения выбросов за счет введения новых экологических технологий экономии сырья, потребляемой энергии и увеличения количества высаживаемых насаждений проведения воспитательных мероприятий экологического мировоззрения у населения.

Так, например, в США одно из предприятий по производству синтетического каучука расположено рядом с жилыми кварталами, и это не вызывает протеста жителей, потому что работают экологически чистые технологические схемы, которые в прошлом, при старых технологиях, не отличались чистотой.

Значит, нужен строгий отбор технологий, отвечающих самым жестким критериям, современные перспективные технологии позволят добиться высокого уровня экологичности производства во всех отраслях промышленности и транспорта, а так же увеличения количества высаживаемых зеленых насаждений в промышленных зонах и городах.

В последние годы ведущие позиции в развитии атмосферной химии занял эксперимент, а место теории такое же, как в классических, респектабельных науках. Но по-прежнему существуют области, где приоритетными остаются именно теоретические изыскания: например, только модельные эксперименты в состоянии обеспечить прогнозирование изменений состава атмосферы или оценить эффективность ограничительных мер, реализуемых в рамках Монреальского протокола. Стартовав с решения пусть важной, но частной задачи, сегодня химия атмосферы в сотрудничестве со смежными дисциплинами охватывает весь сложный комплекс проблем изучения и охраны окружающей среды. Пожалуй, можно сказать, что первые годы становления атмосферной химии прошли под девизом: “Не опоздать!” Стартовый рывок закончился, бег продолжается.

  • II. Распределите характеристики соответственно органоидам клетки (поставьте буквы, соответствующие характеристикам органоида, напротив названия органоида). (26 баллов)
  • II. УЧЕБНО-МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ ДЛЯ СТУДЕНТОВ ДНЕВНОЙ ФОРМЫ ОБУЧЕНИЯ ВСЕХ НЕФИЛОСОФСКИХ СПЕЦИАЛЬНОСТЕЙ 1 страница

  • Наземно-воздушная среда обитания является значительно более сложной по своим экологическим условиям, чем водная среда. Для жизни на суше, как растениям, так и животным, потребовалось выработать целый комплекс принципиально новых адаптационных приспособлений.

    Плотность воздуха в 800 раз меньше чем плотность воды, поэтому жизнь во взвешенном состоянии в воздухе практически невозможна. Только бактерии, споры грибов и пыльца растений регулярно присутствуют в воздухе, и способны переносится на значительные расстояния воздушными течениями, однако у всех главная функция жизненного цикла – размножение осуществляется на поверхности земли, где имеются питательные вещества. Обитатели суши вынуждены обладать развитой опорной системой,

    поддерживающей тело. У растений это разнообразные механические ткани, животные обладают сложным костным скелетом. Малая плотность воздуха определяет низкую сопротивляемость передвижению. Поэтому многие наземные животные смогли использовать в ходе своей эволюции экологические выгоды данной особенности воздушной среды и приобрели способность к кратковременному или длительному полёту. Возможностью перемещаться в воздухе обладают не только птицы и насекомые, но даже отдельные млекопитающие и рептилии. В целом, активно летать или планировать за счёт воздушных течений могут не менее 60 % видов наземных животных.

    Жизнь многих растений во многом зависит от движения воздушных потоков, так как именно ветром разносится их пыльца и происходит опыление. Такой способ опыления называется анемофилией . Анемофилия свойственна для всех голосеменных растений, а среди покрытосеменных, ветроопыляемые составляют не менее 10 % от общего количества видов. Для многих видов свойственна анемохория – расселение с помощью воздушных потоков. При этом перемещаются не половые клетки, а зародыши организмов и молодые особи – семена и мелкие плоды растений, личинки насекомых, мелкие пауки и др. Анемохорные семена и плоды растений обладают либо очень маленькими размерами (например семена орхидей), либо различными крыловидными и парашютовидными придатками, благодаря которым возрастает способность к планированию. Пассивно переносимые ветром организмы получили собирательное название аэропланктона по аналогии с планктонными обитателями водной среды.

    Малая плотность воздуха обуславливает очень низкое давление на суше, по сравнению с водной средой. На уровне моря оно составляет 760 мм рт. ст. По мере возрастания высоты, давление уменьшается и на высоте примерно 6000 м составляет только половину от той величины, которая обычно наблюдается у поверхности Земли. Для большинства позвоночных животных и растений это верхняя граница распространения. Низкое давление в горах приводит к уменьшению обеспеченности кислородом и обезвоживанию животных за счёт увеличения частоты дыхания. В целом, подавляющее большинство наземных организмов в гораздо большей степени чувствительны к изменению давления, чем водные обитатели, так как обычно колебания давления в наземной среде не превышают десятые доли атмосферы. Даже крупные птицы, способные подниматься на высоты более 2 км попадают в условия, в которых давление не более чем на 30 % отличается от приземного.

    Кроме физических свойств воздушной среды, для жизни наземных организмов весьма важны также её химические особенности. Газовый состав воздуха в приземном слое атмосферы повсеместно однороден, за счёт постоянного перемешивания воздушных масс конвекционными и ветровыми потоками. На современном этапе эволюции атмосферы Земли, в составе воздуха преобладает азот (78 %) и кислород (21 %), далее следуют инертный газ аргон (0.9 %) и углекислый газ (0.035 %). Более высокое содержание кислорода в наземно-воздушной среде обитания, по сравнению с водной средой, способствует возрастанию у наземных животных уровня обмена веществ. Именно в наземной среде возникли физиологические механизмы, на основе высокой энергетической эффективности окислительных процессов в организме, обеспечивающие млекопитающим и птицам возможность поддерживать на постоянном уровне температуру своего тела и двигательную активность, что дало им возможность обитать те только в тёплых, но и в холодных регионах Земли. В настоящее время кислород, по причине своего высокого содержания в атмосфере, не принадлежит к числу факторов ограничивающих жизнь в наземной среде. Однако в почве при определённых условиях может возникнуть его дефицит.

    Концентрация углекислого газа может изменяться в приземном слое в достаточно значительных пределах. Например, при отсутствии ветра в крупных городах и промышленных центрах содержание этого газа может в десятки раз превышать концентрацию в естественных ненарушенных биоценозах, за счёт его интенсивно выделения при сжигании органического топлива. Повышенные концентрации углекислого газа могут возникать также в зонах вулканической активности. Высокие концентрации СО 2 (более 1 %) токсичны для животных и растений, однако низкое содержание этого газа (менее 0.03 %) тормозит процесс фотосинтеза. Основным природным источником СО 2 является дыхание почвенных организмов. Углекислый газ поступает из почвы в атмосферу, причём особенно интенсивно его выделяют умеренно влажные, хорошо прогреваемые почвы со значительным количеством органического материала. Например, почвы букового широколиственного леса выделяют от 15 до 22 кг/га углекислоты в час, песные песчаные почвы – не более 2 кг/га. Наблюдаются суточные изменения в содержании углекислого газа и кислорода в приземных слоях воздуха, обусловленные ритмом дыхания животных и фотосинтеза растений.

    Азот, представляющий собой основной компонент воздушной смеси, для большинства обитателей наземно-воздушной среды является недоступным к непосредственному усвоению в силу своих инертных свойств. Только некоторые прокариотические организмы, среди которых клубеньковые бактерии и сине-зеленые водоросли обладают способностью поглощать азот из воздуха и вовлекать его в биологический круговорот веществ.

    Важнейшим экологическим фактором в наземных местообитаниях является солнечный свет. Всем живым организмам для своего существования необходима энергия, поступающая из вне. Основным её источником является солнечный свет, на долю которого приходится 99.9 % в общем балансе энергии на поверхности Земли, а 0.1 % – это энергия глубинных слоёв нашей планеты, роль которой достаточна высока только в отдельных районах интенсивной вулканической деятельности, например в Исландии или на Камчатке в Долине гейзеров. Если принять солнечную энергию достигающую поверхности атмосферы Земли за 100 %, то около 34 % отражается обратно в Космическое пространство, 19 % поглощается при прохождении через атмосферу, и только 47 % достигает наземно-воздушных и водных экосистем в виде прямой и рассеянной лучистой энергии. Прямая солнечная радиация – это электромагнитное излучение с длинами волн от 0.1 до 30.000 нм. Доля рассеянной радиации в виде отражённых от облаков и поверхности Земли лучей возрастает с уменьшением высоты стояния Солнца над горизонтом и при возрастании содержания в атмосфере частиц пыли. Характер воздействия солнечных лучей на живые организмы зависит от их спектрального состава.

    Ультрафиолетовые коротковолновые лучи с длинами волн менее 290 нм губительны для всего живого, т.к. обладают способностью ионизировать, расщеплять цитоплазму живых клеток. Эти опасные лучи на 80 – 90 % поглощаются озоновым слоем, расположенным на высотах от 20 до 25 км. Озоновый слой, представляющий собой совокупность молекул О 3 , образуется в результате ионизации молекул кислорода и является, таким образом, продуктом фотосинтетической деятельности растений в глобальном масштабе. Это своеобразный ""зонтик"" прикрывающий наземные сообщества от губительного ультрафиолета. Предполагается, что он возник около 400 млн. лет назад, за счёт выделения кислорода при фотосинтезе океанических водорослей, что дало возможность развиваться жизни на суше. Длинноволновые ультрафиолетовые лучи с длиной волн от 290 до 380 нм также обладают высокой химической активностью. Длительное и интенсивное их воздействие наносит вред организмам, но малые дозы многим из них необходимы. Лучи с длинами волн около 300 нм вызывают образование витамина D у животных, с длинами от 380 до 400 нм – приводят к появлению загара как защитной реакции кожи. В область видимых солнечных лучей, т.е. воспринимаемых человеческим глазом, входят лучи с длинами волн от 320 до 760 нм. В пределах видимой части спектра находится зона фотосинтетически активных лучей – от 380 до 710 нм. Именно в данном диапазоне световых волн осуществляется процесс фотосинтеза.

    Свет и его энергия, во многом определяющая температуру среды конкретного местообитания, влияют на газообмен и испарение воды листьями растений, стимулирует работу ферментов синтеза белков и нуклеиновых кислот. Растениям свет необходим для образования пигмента хлорофилла, формирования структуры хлоропластов, т.е. структур ответственных за фотосинтез. Под влиянием света происходит деление и рост клеток растений, их цветение и плодоношение. Наконец, от интенсивности света в конкретном местообитании зависит распространение и численность определённых видов растений, а, следовательно, и структура биоценоза. При низкой освещённости, например под пологом широколиственного или елового леса, или в утренние и вечерние часы, свет становится важным лимитирующим фактором, способным ограничивать фотосинтез. В ясный летний день на открытом местообитании или в верхней части кроны деревьев в умеренных и низких широтах освещённость может достигать 100.000 люкс, тогда как для успеха протекания фотосинтеза достаточно и 10.000 люкс. При очень большой освещённости начинается процесс обесцвечивания и разрушения хлорофилла, что существенно замедляет выработку первичного органического вещества в процессе фотосинтеза.

    Как известно, в результате фотосинтеза поглощается углекислый газ и выделяется кислород. Однако в процессе дыхания растения днём, и в особенности ночью, кислород поглощается, а CO 2 , наоборот, выделяется. Если постепенно увеличивать интенсивность света, то соответственно будет возрастать и скорость фотосинтеза. Со временем наступит такой момент, когда фотосинтез и дыхание растения будут точно уравновешивать друг друга и выработка чистого биологического вещества, т.е. не потреблённого самим растением в процессе окисления и дыхания для своих нужд, прекратиться. Данное состояние, при котором суммарный газообмен CO 2 и O 2 равен 0 называется точкой компенсации .

    Вода – это одно из абсолютно необходимых веществ для успешного течения процесса фотосинтеза и её недостаток отрицательно сказывается на течении множества клеточных процессов. Даже недостаток влаги в почве в течение нескольких дней может привести к серьёзным потёрям в урожае, т.к. в листьях растений начинает накапливаться вещество препятствующее росту тканей – абсцизовая кислота.

    Оптимальной для фотосинтеза большинства растений умеренного пояса является температура воздуха около 25 ºС. При более высоких температурах скорость фотосинтеза замедляется в связи с ростом затрат на дыхание, потерей влаги в процессе испарения для охлаждения растения и уменьшением потребления CO 2 в связи со снижением газообмена.

    У растений возникают различные морфологические и физиологические адаптации к световому режиму наземно-воздушной среды обитания. По требованиям к уровню освещения все растения принято делить на следующие экологические группы.

    Светолюбивые или гелиофиты – растения открытых, постоянно хорошо освещаемых местообитаний. Листья гелиофитов обычно мелкие или с рассечённой листовой пластинкой, с толстой наружной стенкой клеток эпидермиса, нередко с восковым налётом для частичного отражения избыточной световой энергии или с густым опушением позволяющим эффективно рассеивать тепло, с большим количеством микроскопических отверстий – устьиц, с помощью которых происходит газо- и влагообмен со средой, с хорошо развиты механическими тканями и тканями способными запасать воду. Листья некоторых растений из данной группы обладают фотометричностью, т.е. способны менять своё положение в зависимости от высоты Солнца. В полдень листья располагаются ребром к светилу, а утром и вечером – параллейно к его лучам, что предохраняет их от перегрева и позволяет использовать свет и солнечную энергию в необходимой мере. Гелиофиты входят в состав сообществ практически всех природных зон, но наибольшее их количество встречается в экваториальной и тропической зоне. Это растения дождевых тропических лесов верхнего яруса, растения саванн Западной Африки, степей Ставрополья и Казахстана. Например, к ним принадлежат кукуруза, просо, сорго, пшеница, гвоздичные, молочайные.

    Тенелюбивые или сциофиты – растения нижних ярусов леса, глубоких оврагов. Они способны обитать в условиях значительного затенения, которое для них является нормой. Листья сциофитов располагаются горизонтально, обычно они имеют тёмно-зелёный цвет и более крупные размеры, по сравнению с гелиофитами. Клетки эпидермиса крупные, но с более тонкими наружными стенками. Хлоропласты крупные, но число их в клетках невелико. Число устьиц на единицу площади меньше чем у гелиофитов. К тенелюбивым растениям умеренной климатического пояса принадлежат мхи, плауны, травы из семейства имбирные, кислица обыкновенная, майник двулистный и др. Также к ним относятся многие растения нижнего яруса тропической зоны. Мхи как растения самого низкого лесного яруса, могут жить при освещённости до 0.2 % от общей на поверхности лесного биоценоза, плауны – до 0.5 %, а цветковые могут нормально развиваться только при освещенности не менее 1 % от общей. У сциофитов с меньшей интенсивностью протекают процессы дыхания и влагообмена. Интенсивность фотосинтеза быстро достигает максимума, но при значительном освещении начинает снижаться. Компенсационная точка располагается в условиях пониженной освещённости.

    Теневыносливые растения могут переносить значительное затенение, но хорошо растут и на свету, адаптированы к значительной сезонной динамике освещённости. К этой группе принадлежат луговые растения, лесные травы и кустарники, растущие в затенённых участках. На интенсивно освещаемых участках они растут быстрее, но вполне нормально развиваются и при умеренном освещении.

    Отношение к световому режиму меняется у растений на протяжении их индивидуального развития – онтогенеза. Проростки и молодые растения многих луговых трав и деревьев являются более теневыносливыми, чем взрослые особи.

    В жизни животных видимая часть светового спектра также играет довольно важную роль. Свет для животных – это необходимое условие зрительной ориентации в пространстве. Примитивные глазки многих беспозвоночных представляют собой просто отдельные светочувствительные клетки, позволяющие воспринимать некоторые колебания освещённости, чередование света и тени. Пауки могут различать контуры движущихся предметов на расстоянии не более 2 см. Гремучие змеи способны видеть инфракрасную часть спектра и в состоянии охотиться в полной темноте, ориентируясь на тепловые лучи жертвы. У пчёл видимая часть спектра сдвинута в более коротковолновую область. Они воспринимают как цветные значительную часть ультрафиолетовых лучей, но не различают красных. Способность к восприятию цветовой гаммы зависит от того, при каком спектральном составе активен данный вид. Большинство млекопитающих ведущих сумеречный или ночной образ жизни плохо различают цвета и видят мир в чёрно-белых тонах (представители семейств собачьи и кошачьи, хомяки и др.). Жизнь в сумерках приводит к увеличению размеров глаз. Огромные глаза, способные улавливать ничтожные доли света, свойственны ведущим ночной образ жизни лемурам, долгопятам, совам. Наиболее совершенными органами зрения обладают головоногие моллюски и высшие позвоночные. Они могут адекватно воспринимать форму и размеры предметов, их цвет, определять расстояние до объектов. Самое совершенное объёмное бинокулярное зрение характерно для человека, приматов, хищных птиц – сов, соколов, орлов, грифов.

    Положение Солнца является важным фактором навигации различных животным в период дальних миграций.

    Условия обитания в наземно-воздушной среде осложнены погодными и климатическими изменениями. Погода – это непрерывно меняющееся состояние атмосферы около земной поверхности до высоты примерно 20 км (верхняя граница тропосферы). Изменчивость погоды проявляется в постоянных колебаниях значений важнейших факторов среды, таких как температура и влажность воздуха, количество жидкой воды выпадающей на поверхность почвы за счёт атмосферных осадков, степень освещённости, скорость ветрового потока и др. Для погодных характеристик свойственны не только достаточно очевидные сезонные изменения, но и непериодические случайные колебания в течение относительно коротких промежутков времени, а также и в суточном цикле, что в особенности негативно сказывающиеся на жизни обитателей суши, так как к этим колебаниям чрезвычайно трудно выработать эффективные адаптации. На жизнь обитателей крупных водоёмов суши и морей погода влияет в значительно меньшей степени, затрагивая только поверхностные биоценозы.

    Многолетний режим погоды характеризует климат местности. В понятие климата входят не только осреднённые за длительный временной интервал значения важнейших метеорологических характеристик и явлений, но и их годовой ход, а также вероятность отклонения от нормы. Климат зависит, прежде всего, от географических условий региона – широты местности, высоты над уровнем моря, близостью к Океану и др. Зональное разнообразие климатов зависит также от влияния муссонных ветров, несущих теплые влажные воздушные массы с тропических морей на континенты, от траекторий движения циклонов и антициклонов, от влияния горных массивов на движение воздушных масс, и от многих других причин, создающих чрезвычайное разнообразие условий жизни на суше. Для большинства наземных организмов, в особенности для растений и мелких осёдлых животных, важны не столько крупномасштабные особенности климата той природной зоны, в которой они живут, а те условия, которые создаются в их непосредственном местообитании. Такие локальные модификации климата, создающиеся под влиянием многочисленных явлений имеющих локальное распространение, называют микроклиматом . Широко известны различия между температурой и влажностью лесных и луговых местообитаний, на северных и южных склонах холмов. Устойчивый микроклимат возникает в гнездах, дуплах, пещерах и норах. Например в снежной берлоге белого медведя, к моменту появления детёныша, температура воздуха может на 50 °С превышать температуру окружающей среды.

    Для наземно-воздушной среды, свойственны значительно большие колебания температуры в суточном и сезонном цикле, чем для водной. На обширных пространствах умеренных широт Евразии и Северной Америки, находящихся на значительном отдалёнии от Океана, амплитуда температуры в годовом ходе может достигать 60 и даже 100 °С, за счёт очень холодной зимы и жаркого лета. Поэтому основу флоры и фауны в большинстве континентальных районов составляют эвритермные организмы.

    Литература

    Основная – Т.1 – с. 268 – 299; – c. 111 – 121; Дополнительная ; .

    Вопросы для самопроверки:

    1. В чём состоят основные физические отличия наземно-воздушной среды обитания

    от водной?

    2. От каких процессов зависит содержание углекислого газа в приземном слое атмосферы

    и в чём состоит его роль в жизни растений?

    3. В каком диапазоне лучей светового спектра осуществляется фотосинтез?

    4. Каково значение озонового слоя для обитателей суши, как он возник?

    5. От каких факторов зависит интенсивность фотосинтеза растений?

    6. Что такое точка компенсации?

    7. В чём состоят характерные особенности растений-гелиофитов?

    8. В чём состоят характерные особенности растений-сциофитов?

    9. Какова роль солнечного света в жизни животных?

    10. Что такое микроклимат и как он формируется?

    Наземно-воздушная среда обитания

    ОСНОВНЫЕ СРЕДЫ ЖИЗНИ

    ВОДНАЯ СРЕДА

    Водная среда жизни (гидросфера) занимает 71 % площади земного шара. Более 98 % воды сосредоточено в морях и океанах, 1,24 % - льды полярных областей, 0.45 % - пресные воды рек, озер, болот.

    В мировом океане различают две экологические области:

    толщу воды – пелагиаль , и дно - бенталь .

    В водной среде обитает примерно 150 000 видов животных, или около 7 % от их общего количества и 10 000 видов растений – 8%. Различают следующие экологические группы гидробионтов. Пелагиаль - заселена организмами подразделяющимися на нектон и планктон.

    Нектон (нектос – плавающий)- это совокупность пелагических активно передвигающихся животных, не имеющих непосредственной связи с дном. В основном это крупные животные, способные преодолевать большие расстояния и сильные водные течения. Для них характерна обтекаемая форма тела и хорошо развитые органы движения (рыбы, кальмары, ластоногие, киты) В пресных водах к нектону кроме рыб относятся земноводные и активно перемещающиеся насекомые.

    Планктон (блуждающий, парящий)- это совокупность пелагических организмов, не обладающих способностью к быстрым активным передвижениям. Подразделяются на фито- и зоопланктон (мелкие ракообразные, простейшие – фораминиферы, радиолярии; медузы, крылоногие моллюски). Фитопланктон – диатомовые и зеленые водоросли.

    Нейстон – совокупность организмов, населяющих поверхностную пленку воды на границе с воздушной средой. Это личинки дясятиногих, усоногих, веслоногих ракообразных, брюхоногих и двустворчатых моллюсков, иглокожих, рыб. Проходя личиночную стадию, они покидают поверхностный слой, служивший им и убежищем, перемещаются жить на дно или пелагиаль.

    Плейстон – это совокупность организмов, часть тела которых находится над поверхностью воды, а другая в воде - ряска, сифонофоры.

    Бентос (глубина)- совокупность организмов, обитающих на дне водоемов. Подразделяется на фитобентос и зообентос. Фитобентос - водоросли – диатомовые, зеленые, бурые, красные и бактерии; у побережий цветковые растения – зостера, руппия. Зообентос – фораминиферы, губки, кишечнополостные, черви, моллюски, рыбы.

    В жизни водных организмов большую роль играют вертикальное перемещение воды, плотность, температурный, световой, солевой, газовый (содержание кислорода и углекислого газа) режимы, концентрация водородных ионов (рН).

    Температурный режим : Отличается в воде, во-первых, меньшим притоком тепла, во-вторых большей стабильностью, чем на суше. Часть тепловой энергии, поступающей на поверхность воды, отражается, часть расходуется на испарение. Испарение воды с поверхности водоемов, при котором затрачивается около 2263.8 Дж/г, препятствует перегреванию нижних слоев, а образование льда, при котором выделяется теплота плавления (333.48 Дж/г), замедляет их охлаждение. Изменение температуры в текущих водах следует за ее изменениями в окружающем воздухе, отличаясь меньшей амплитудой.

    В озерах и прудах умеренных широт термический режим определяется хорошо известным физическим явлением – вода обладает максимальной плотностью при 4 о С. Вода в них четко делится на три слоя:

    1. эпилимнион - верхний слой температура которого испытывает резкие сезонные колебания;

    2. металимнион – переходный, слой температурного скачка, отмечается резкий перепад температур;

    3. гиполимнион – глубоководный слой, доходящий до самого дна, где температура в течение года изменяется незначительно.

    Летом наиболее теплые слои воды располагаются у поверхности, а холодные – у дна. Данный вид послойного распределения температур в водоеме называется прямая стратификация. Зимой, с понижением температуры, происходит обратная стратификация : поверхностный слой имеет температуру, близкую к 0 С, на дне температура около 4 С, что соответствует максимальной ее плотности. Таким образом, с глубиной температура повышается. Это явление, называемое температурной дихотомией, наблюдается в большинстве озер умеренной зоны летом и зимой. В результате температурной дихотомии нарушается вертикальная циркуляция – наступает период временного застоя – стагнация .

    Веснойповерхностная вода вследствие нагревания до 4С становится более плотной и погружается вглубь, а на ее место с глубины поднимается более теплая вода. В результате такой вертикальной циркуляции в водоеме наступает гомотермия, т.е. на какое-то время температура всей водной массы выравнивается. С дальнейшим повышением температуры верхние слои становятся все менее плотными и уже не опускаются вниз – летняя стагнация. Осенью же поверхностный слой охлаждается становится более плотным и опускается вглубь, вытесняя на поверхность более теплую воду. Это происходит до наступления осенней гомотермии. При охлаждении поверхностных вод ниже 4С они становятся менее плотными и опять остаются на поверхности. В результате прекращается циркуляция воды и наступает зимняя стагнация.

    Воде свойственна значительная плотность (в 800 раз) превосходит воздушную среду) и вязкость. В среднем в водной толще на каждые 10 м глубины давление возрастает на 1 атм. На растениях эти особенности сказываются в том, что у них очень слабо или вовсе не развивается механическая ткань, поэтому стебли их очень эластичны и легко изгибаются. Большинству водных растений присуща плавучесть и способность находиться в толще воды во взвешенном состоянии, у многих водных животных покровы смазываются слизью, уменьшающей трение при передвижении, а тело обретает обтекаемую форму. Многие обитатели относительно стенобатны и приурочены к определенным глубинам.

    Прозрачность и световой режим. Особенно это сказывается на распространении растений: в мутных водоемах они обитают только в поверхностном слое. Световой режим обусловливается также закономерным убыванием света с глубиной из-за того, что вода поглощает солнечный свет. При этом лучи с разной длиной волны поглощаются неодинаково: быстрее всего красные, тогда как сине-зеленые проникают на значительные глубины. Цвет среды при этом меняется, постепенно переходя от зеленоватого до зеленого, голубого, синего, сине-фиолетового, сменяемого постоянным мраком. Соответственно этому с глубиной зеленые водоросли сменяются бурыми и красными, пигменты которых приспособлены к улавливанию солнечных лучей с разной длиной волны. С глубиной также закономерно меняется окраска животных. В поверхностных слоях воды обитают ярко и разнообразно окрашенные животные, тогда как глубоководные виды лишены пигментов. В сумречной обитают животные, окрашенные в цвета с красноватым оттенком, что помогает им скрываться от врагов, так как красный цвет в сине-фиолетовых лучах воспринимается как черный.



    Поглощение света в воде тем сильнее, чем меньше ее прозрачность. Прозрачность характеризуется предельной глубиной, где еще виден специально опускаемый диск Секки (белый диск диаметром 20 см). Отсюда и границы зон фотосинтеза сильно колеблются в разных водоемах. В самых чистых водах зона фотосинтеза достигает глубины 200 м.

    Соленость воды. Вода - прекрасный растворитель многих минеральных соединений. В результате природным водоемам свойствен определенный химический состав. Наибольшее значение имеют сульфаты, карбонаты, хлориды. Количество растворенных солей на 1 л воды в пресных водоемах не превышает 0,5 г, в морях и океанах - 35 г. Пресноводные растения и животные обитают в гипотонической среде, т.е. среде, в которой концентрация растворенных веществ ниже, чем в жидкостях тела и тканей. Из-за разницы в осмотическом давлении вне и внутри тела в организм постоянно проникает вода, и гидробионты пресных вод вынуждены интенсивно удалять ее. В связи с этим у них хорошо выражены процессы осморегуляции. У простейших это достигается работой выделительных вакуолей, у многоклеточных – удалением воды через выделительную систему. Типично морские и типично пресноводные видыне переносят значительных изменений солености воды -стеногалинные организмы. Эвригаллинные - пресноводный судак, лещ, щука, из морских - семейство кефалевых.

    Газовый режим Основными газами в водной среде – кислород и углекислый газ.

    Кислород - важнейший экологический фактор. Он поступает в воду из воздуха и выделяется растениями при фотосинтезе. Содержание его в воде обратно пропорционально температуре- с понижением температуры растворимость кислорода в воде (как и других газов) повышается. В слоях, сильно заселенных животными и бактериями, может создаваться дефицит кислорода из-за усиленного его потребления. Так, в мировом океане богатые жизнью глубины от 50 до 1000 м характеризуются резким ухудшением аэрации. Она в 7-10 раз ниже, чем в поверхностных водах населенных фитопланктоном. Около дна водоемов условия могут быть близкими к анаэробным.

    Углекислый газ - растворяется в воде примерно в 35 раз лучше, чем кислород и концентрация его в воде в 700 раз больше, чем в атмосфере. Обеспечивает фотосинтез водных растений и участвует в формировании известковых скелетных образований беспозвоночных животных.

    Концентрация водородных ионов (рН) – пресноводные бассейны с рН = 3,7-4,7 считаются кислыми, 6,95- 7,3 – нейтральными, с рН 7,8 – щелочными. В пресных водоемах рН испытывает даже суточные колебания. Морская вода более щелочная и ее рН значительно меньше изменяется, чем в пресной. С глубиной рН уменьшается. Концентрация водородных ионов играет большую роль в распределении гидробионтов.

    Наземно-воздушная среда обитания

    Особенностью наземно-воздушной среды жизни является то, что организмы, обитающие здесь, окружены газообразной средой, характеризующейся низкими влажностью, плотностью и давлением, высоким содержанием кислорода. Как правило, животные в этой среде передвигаются по почве (твердый субстрат), а растения укореняются в ней.

    В наземно-воздушной среде действующие экологические факторы имеют ряд характерных особенностей: более высокая интенсивность света в сравнении с другими средами, значительные колебания температуры, изменение влажности в зависимости от географического положения, сезона и времени суток. Воздействие факторов, перечисленных выше, неразрывно связано с движением воздушных масс – ветра.

    В процессе эволюции у живых организмов наземно-воздушной среды выработались характерные анатомо-морфологические, физиологические адаптации.

    Рассмотрим особенности воздействия основных экологических факторов на растения и животных в наземно-воздушной среде.

    Воздух. Воздух как экологический фактор характеризуется постоянством состава – кислорода в нем обычно около 21%, углекислого газа 0,03 %.

    Низкая плотность воздуха определяет его малую подъемную силу и незначительную опорность. Все обитатели воздушной среды тесно связаны с поверхностью земли, служащей им для прикрепления и опоры. Плотность воздушной среды не оказывает высокого сопротивления организмам при их передвижении по поверхности земли, однако затрудняет перемещение по вертикали. Для большинства организмов пребывание в воздухе связано только с расселением или поиском добычи.

    Малая подъемная сила воздуха определяет предельную массу и размеры наземных организмов. Самые крупные животные, обитающие на поверхности земли, меньше, чем гиганты водной среды. Крупные млекопитающиеся (размером и массой современного кита) не могли бы жить на суше, так как были бы раздавлены собственной тяжестью.

    Малая плотность воздуха создает незначительную сопротивляемость передвижению. Экологические выгоды этого свойства воздушной среды использовали многие наземные животные в ходе эволюции, приобретя способность к полету. К активному полету способны 75 % видов всех наземных животных, преимущественно насекомые и птицы, но встречаются летуны и среди млекопитающих и рептилий.

    Благодаря подвижности воздуха, существующим в нижних слоях атмосферы вертикальным и горизонтальным передвижениям воздушных масс возможен пассивный полет ряда организмов. У многих видов развита анемохория – расселение с помощью воздушных потоков. Анемохория характерна для спор, семян и плодов растений, цист простейших, мелких насекомых, пауков и т.д. Пассивно переносимые потоками воздуха организмы получили в совокупности название аэропланктона по аналогии с планктонными обитателями водной среды.

    Основная же экологическая роль горизонтальных воздушных передвижений (ветров) – косвенная в усилении и ослаблении воздействия на наземные организмы таких важных экологических факторов, как температура и влажность. Ветры усиливают отдачу животными и растениями влаги и тепла.

    Газовый состав воздуха в приземном слое воздухе довольно однороден (кислород – 20,9 %, азот – 78,1 %, инертные газы – 1 %, углекислый газ – 0,03 % по объему) благодаря его высокой диффузионной способности и постоянному перемешиванию конвекционным и ветровым потоками. Однако различные примеси газообразных, капельно-жидких и твердых (пылевых) частиц, попадающих в атмосферу из локальных источников, могут иметь существенное экологическое значение.

    Высокое содержание кислорода способствовало повышению обмена веществ у наземных организмов, и на базе высокой эффективности окислительных процессов возникла гомойотермия животных. Кислород из-за постоянно высокого его содержания в воздухе не является фактором, лимитирующим жизнь в наземной среде. Лишь местами, в специфических условиях, создается временный его дефецит, например в скоплениях разлагающихся растительных остатков, запасах зерна, муки и т.д.

    Эдафические факторы. Свойства грунта и рельеф местности также влияют на условия жизни наземных организмов, в первую очередь растений. Свойства земной поверхности, оказывающие экологическое воздействие на ее обитателей, объединяют названием эдафические факторы среды.

    Характер корневой системы растений зависит от гидротермического режима, аэрации, сложения, состав и структуры почвы. Например, корневые системы древесных пород (березы, лиственницы) в районах с многолетней мерзлотой располагаются на небольшой глубине и распростерты вширь. Там, где нет многолетней мерзлоты, корневые системы этих же растений менее распростерты и проникают вглубь. У многих степных растений корни могут доставать воду с большой глубины, в то же время у них много и поверхностных корней в гумусированном горизонте почвы, откуда растения поглощают элементы минерального питания.

    Рельеф местности и характер грунта влияют на специфику передвижения животных. Например, копытные, страусы, дрофы, живущие на открытых пространствах, нуждаются в твердом грунте для усиления отталкивания при быстром беге. У ящериц, обитающих на сыпучих песках, пальцы окаймлены бахромкой из роговых чешуй, которая увеличивает поверхность опоры. Для наземных обитателей, роющих норы, плотные грунты неблагоприятны. Характер почвы в ряде случаев влияет на распределение наземных животных, роющих норы, зарывающих в грунт для спасения от жары или хищников либо откладывающих в почву яйца и т.д.

    Погодные и климатические особенности. Условия жизни в наземно-воздушной среде осложняются, кроме того, погодными изменениями. Погода – это непрерывно меняющееся состояние атмосферы у земной поверхности, до высоты примерно 20 км (граница тропосферы). Изменчивость погоды проявляется в постоянном варьировании сочетании таких факторов среды, как температура и влажность воздуха, облачность, осадки, сила и направление ветра и т.п. Для погодных изменений наряду с закономерным чередованием их в годовом цикле характерны непериодические колебания, что существенно усложняет условия существования наземных организмов. На жизнь водных обитателей погода влияет в значительной меньшей степени и лишь на население поверхностных слоев.

    Климат местности. Многолетний режим погоды характеризует климат местности. В понятие климата входят не только средние значения метеорологических явлений, но также их годовой и суточный ход, отклонения от него и их повторяемость. Климат определяется географическими условиями района.

    Зональное разнообразие климатов осложняется действием муссонных ветров, распределением циклонов и антициклонов, влиянием горных массивов на движение воздушных масс, степенью удаления от океана и многими другими местными факторами.

    Для большинства наземных организмов, особенно мелких, важен не столько климат района, сколько условия их непосредственного местообитания. Очень часто местные элементы среды (рельеф, растительность и т.п.) так изменяют в конкретном участке режим температуры, влажности, света, движения воздуха, что он значительно отличается от климатических условий местности. Такие локальные модификации климата, складывающиеся в приземном слое воздуха, называют микроклиматом. В каждой зоне микроклиматы очень разнообразны. Можно выделить микроклиматы сколь угодно малых участков. Например особый режим создается в венчиках цветков, что используют обитающие там обитатели. Особый устойчивый микроклимат возникает в норах, гнездах, дуплах, пещерах и др. закрытых местах.

    Осадки. Помимо водообеспечения и создания запасов влаги, они могут играть и другую экологическую роль. Так, сильные ливневые дожди или град оказывают иногда механическое воздействие на растения или животных.

    Особенно многообразна экологическая роль снегового покрова. Суточные колебания температур проникают в толщу снега лишь до 25 см, глубже температура почти не изменяется. При морозах в – 20-30 С под слоем снега в 30-40 см температура лишь ненамного ниже нуля. Глубокий снежный покров защищает почки возобновления, предохраняет от вымерзания зеленые части растений; многие виды уходят под снег, не сбрасывая листвы, например ожика волосистая, вероника лекарственная и др.

    Мелкие наземные зверки ведут и зимой активный образ жизни, прокладывая под снегом и в его толще целые галереи ходов. Для ряда видов, питающихся подснежной растительностью, характерно даже зимнее размножение, которое отмечено, например, у леммингов, лесной и желтогорлой мыши, ряда полевок, водяной крысы и др. Тетеревиные птицы – рябчики, тетерева, тундряные куропатки – зарываются в снег на ночевку.

    Крупным животным зимний снеговой покров мешает добывать корм. Многие копытные (северные олени, кабаны, овцебыки) питаются зимой исключительно подснежной растительностью, и глубокий снежный покров, а особенно твердая корка на его поверхности, возникающая в гололед, обрекают их на бескормицу. Глубина снежного покрова может ограничивать географическое распространение видов. Например, настоящие олени не проникают на север в те районы, где толща снега зимой более 40-50 см.

    Световой режим. Количество достигающей поверхности Земли радиации обусловлено географической широтой местности, продолжительностью дня, прозрачностью атмосферы и углом падения солнечных лучей. При разных погодных условиях к поверхности Земли доходит 42-70% солнечной постоянной. Освещенность на поверхности Земли варьирует в широких пределах. Все зависит от высоты стояния Солнца над горизонтом или угла падения солнечных лучей, длины дня и условий погоды, прозрачности атмосферы. Интенсивность света также колеблется в зависимости от времени года и времени суток. В отдельных районах Земли неравноценно и качество света, например, соотношение длинноволновых (красных) и коротковолновых (синих и ультрафиолетовых) лучей. Коротковолновые лучи, как известно, больше, чем длинноволновые, поглощаются и рассеиваются атмосферой.

    Читайте также: