Генетическое заболевание. Генная терапия: как лечат генетические заболевания

Каждый ген человеческого организма несёт в себе уникальную информацию , содержащуюся в ДНК. Генотип конкретной особи обеспечивает как её уникальные внешние признаки, так и во многом обуславливает состояние её здоровья.

Интерес медицины к генетике неуклонно растёт со второй половины XX века. Развитие этой области науки открывает новые методы исследования болезней, в том числе редких, которые признавались неизлечимыми. На сегодняшний день обнаружено несколько тысяч заболеваний, которые полностью зависят от генотипа человека. Рассмотрим причины возникновения этих заболеваний, их специфику, какие методы их диагностики и лечения применяет современная медицина.

Типы генетических заболеваний

Генетическими заболеваниями принято считать передающиеся по наследству болезни, которые обусловлены мутациями в генах. Важно понимать, что врожденные пороки, появившиеся как результат внутриутробных инфекций, приёма беременной запрещенных препаратов и прочих внешних факторов, которые могли повлиять на беременность – не имеют отношения к генетическим заболеваниям.

Генетические заболевания человека подразделяют на следующие виды:

Хромосомные аберрации (перестройки)

К этой группе относят патологии, связанные с изменениями структурного состава хромосом. Вызваны данные изменения разрывом хромосом, который приводит к перераспределению, удвоению или утрате генетического материала в них. Именно этот материал должен обеспечивать хранение, воспроизводство и передачу наследственной информации.

Хромосомные перестройки ведут к возникновению генетического дисбаланса, что негативно сказывается на нормальном течении развития организма. Проявляются абберации в хромосомных болезнях: cиндром кошачьего крика, синдром Дауна, синдром Эдвардса, полисомиях по Х-хромосоме или Y-хромосоме и т.д.

Самой распространенной хромосомной аномалией в мире синдром Дауна. Обусловлена эта патология наличием одной лишней хромосомы в генотипе человека, то есть у больного наблюдается 47 хромосом вместо 46. У людей с синдромом Дауна 21-ая пара (всего их 23) хромосом тремя копиями, а не положенными двумя. Существуют редкие случаи, когда данное генетическое заболевание - результат транслокации хромосомы 21-ой пары или мозаицизма. В абсолютном большинстве случаев синдром не является наследственным нарушением (91 из 100).

Моногенные болезни

Данная группа достаточно разнородна по клиническим проявлениям заболеваний, но каждое генетическое заболевание здесь обусловлено повреждениями ДНК на уровне гена. На сегодняшний день открыто и описано свыше 4000 моногенных болезней. К ним относятся и заболевания с умственной отсталостью, и наследственные болезни обмена веществ, изолированные формы микроцефалии, гидроцефалии и ряд прочих заболеваний. Некоторые из болезней заметны уже у новорожденных, другие дают о себе знать только в пубертатном периоде или по достижению человеком 30 – 50 лет.

Полигенные заболевания

Данные патологии может объяснить не только генетическая предрасположенность, но и, в значительной степени, внешние факторы (неправильное питание, плохая экология и т.д). Полигенные заболевания также принято называть мультифакториальными. Обосновано это тем, что они появляются в результате действий многих генов. К наиболее часто встречающимся мультифакториальным болезням относятся: ревматоидный артрит, гипертония, ишемическая болезнь сердца, сахарный диабет, цирроз печени, псориаз, шизофрения и др.

Эти болезни составляют около 92 % от общего числа патологий, передающихся по наследству. С возрастом частота заболеваний возрастает. В детском возрасте количество больных составляет не менее 10 %, а в пожилом - 25-30 %.

К настоящему времени описано несколько тысяч генетических заболеваний, вот лишь краткий список некоторых из них:

Наиболее часто встречающиеся генетические заболевания Самые редкие генетические заболевания

Гемофилия (нарушение свертываемости крови)

Заблуждение Капграса (человек полагает, что кто-то из близких заменен клоном).

Дальтонизм (неспособность различать цвета)

Синдром Клейна-Левина (чрезмерная сонливость, нарушения поведения)

Муковисцидоз (нарушение функций органов дыхания)

Слоновья болезнь (болезненные разрастания кожи)

Расщепление позвоночника (позвонки не смыкаются вокруг спинного мозга)

Цицеро (психологическое расстройство, желание есть несъедобные вещи)

Болезнь Тея-Сакса (поражение ЦНС)

Синдром Стендаля (учащенное сердцебиение, галлюцинации, потеря сознания при виде произведений искусства)

Синдром Клайнфельтера (андрогенная недостаточность у мужчин)

Синдром Робена (порок челюстно-лицевой области)

Синдром Прадера-Вилли (задержка физического и интеллектуального развития, дефекты внешности)

Гипертрихоз (избыточный рост волос)

Фенилкетонурия (нарушение метаболизма аминокислот)

Синдром голубой кожи (голубой цвет кожных покровов)

Некоторые генетические заболевания могут проявляться буквально в каждом поколении. Как правило, они появляются не у детей, а с возрастом. Факторы риска (плохая экология, стресс, нарушения гормонального фона, неправильное питание) способствуют проявлению генетической ошибки. К таким заболеваниям относят диабет, псориаз, ожирение, гипертонию, эпилепсию, шизофрению, болезнь Альцгеймера и др.

Диагностика генных патологий

Не каждое генетическое заболевание обнаруживается с первого дня жизни человека, некоторые из них проявляют себя лишь по прошествии нескольких лет. В связи с этим очень важно проходить своевременные исследования на наличие генных патологий. Реализовать такую диагностику можно и на этапе планирования беременности, и в период вынашивания ребенка.

Существует несколько методов диагностики:

Биохимический анализ

Позволяет устанавливать заболевания, связанные с наследственным нарушением обмена веществ. Метод подразумевает под собой анализ крови человека, качественное и количественное исследование прочих биологических жидкостей организма;

Цитогенетический метод

Выявляет причины генетических заболеваний, кроющиеся в нарушениях в организации клеточных хромосом;

Молекулярно-цитогенетический метод

Усовершенствованный вариант цитогенетического метода, позволяющий обнаружить даже микроизменения и мельчайшие поломки хромосом;

Синдромологический метод

Генетическое заболевание во многих случаях может иметь те же симптомы, которые будут совпадать с проявлениями других, непатологических болезней. Метод заключается в том, что с помощью обследования генетика и специальных компьютерных программ из всего спектра симптомов выделяют только те, которые конкретно указывают на генетическое заболевание.

Молекулярно-генетический метод

На данный момент является самым достоверным и точным. Даёт возможность изучать ДНК и РНК человека, обнаруживать даже незначительные изменения, в том числе и в последовательности нуклеотидов. Используется с целью диагностирования моногенных болезней и мутаций.

Ультразвуковое исследование (УЗИ)

Для выявления заболеваний женской репродуктивной системы используют УЗИ органов малого таза. Для диагностики врожденных патологий и некоторых хромосомных заболеваний плода также используют УЗИ.

Известно, что около 60% самопроизвольных выкидышей в первом триместре беременности, обусловлены тем, что у плода было генетическое заболевание. Организм матери, таким образом, избавляется от нежизнеспособного эмбриона. Наследственные генетические заболевания могут также спровоцировать бесплодие, либо повторяющиеся выкидыши. Зачастую женщине приходится пройти множество безрезультатных обследований, пока она не обратится к врачу-генетику.

Лучшей профилактикой возникновения генетического заболевания у плода является генетическое обследование родителей во время планирования беременности. Даже будучи здоровыми, мужчина или женщина могут носить в своем генотипе поврежденные участки генов. Универсальный генетический тест способен выявить более ста заболеваний, которые основаны на генных мутациях. Зная о том, что хотя бы один из будущих родителей является носителем нарушений, врач поможет подобрать адекватную тактику подготовки к беременности и её ведения. Дело в том, что генные изменения, сопровождающие беременность, могут нанести непоправимый вред плоду и даже стать угрозой для жизни матери.

Во время беременности женщины, с помощью специальных исследований, иногда бывают диагностированы генетические заболевания плода, которые могут поставить вопрос о том, стоит ли вообще сохранять беременность. Наиболее ранний срок диагностики данных патологий – 9-ая неделя. Осуществляется эта диагностика с помощью безопасного неинвазивного ДНК теста Panorama. Тест заключается в том, что у будущей матери берут кровь из вены, с помощью метода секвенирования выделяют из неё генетический материал плода и изучают его на наличие хромосомных аномалий. Исследование способно выявить такие отклонения, как синдром Дауна, синдром Эдвардса, синдром Патау, микроделеционные синдромы, патологии половых хромосом и ряд других аномалий.

Взрослый же человек, пройдя генетические тесты, может узнать о своей предрасположенности к генетическим заболеваниям. В таком случае у него будет шанс прибегнуть к эффективным профилактическим мерам и предотвратить возникновение патологического состояния, наблюдаясь у специалиста.

Лечение генетических заболеваний

Любое генетическое заболевание представляет для медицины трудности, тем более что некоторые из них достаточно сложно диагностировать. Огромное количество болезней нельзя излечить в принципе: синдром Дауна, синдром Клайнфельтера, муковсицидоз и т.д. Некоторые из них серьезно сокращают продолжительность жизни человека.

Основные методы лечения:

  • Симптоматический

    Снимает причиняющие боль и дискомфорт симптомы, препятствует прогрессу болезни, но не устраняет её причину.

    врач-генетик

    Киевская Юлия Кирилловна

    Если у Вас:

    • возникли вопросы по результатам пренатальной диагностики;
    • плохие результаты по итогам скрининга
    предлагаем Вам записаться на бесплатную консультацию врача генетика *

    *консультация проводится для жителей любого региона России через Интернет. Для жителей Москвы и Подмосковья возможна личная консультация (при себе иметь паспорт и действующий полис ОМС)

Миодистрофия Дюшенна — одно из нечасто встречающихся, но все же относительно распространенных генетических заболеваний. Болезнь диагностируется в трех-пятилетнем возрасте, обычно у мальчиков, проявляясь поначалу лишь в затрудненных движениях, к десяти годам страдающий такой миодистрофией уже не может ходить, к 20−22 годам его жизнь заканчивается. Она вызвана мутацией гена дистрофина, который находится в Х-хромосоме. Он кодирует белок, соединяющий мембрану мышечной клетки с сократительными волокнами. Функционально это своеобразная пружина, обеспечивающая плавное сокращение и целостность клеточной мембраны. Мутации в гене приводят к дистрофии скелетных мышечных тканей, диафрагмы и сердца. Лечение заболевания носит паллиативный характер и позволяет лишь немного облегчить страдания. Однако с развитием генной инженерии появился свет в конце тоннеля.

О войне и мире

Генная терапия — это доставка внутрь клетки конструкций на основе нуклеиновых кислот для лечения генетических заболеваний. С помощью такой терапии можно исправить генетическую проблему на уровне ДНК и РНК, меняя процесс экспрессии нужного белка. Например, в клетку можно доставить ДНК с исправленной последовательностью, с которой синтезируется функциональный белок. Или, напротив, возможны удаления определенных генетических последовательностей, что также поможет уменьшить вредные последствия мутации. В теории это просто, однако на практике генная терапия базируется на сложнейших технологиях работы с объектами микромира и представляет собой совокупность передовых ноу-хау в области молекулярной биологии.


Инъекция ДНК в пронуклеус зиготы — одна из самых ранних и наиболее традиционных технологий создания трансгенов. Инъекция производится вручную с помощью сверхтонких игл под микроскопом с 400-кратным увеличением.

«Ген дистрофина, мутации которого порождают миодистрофию Дюшенна, огромный, — рассказывает директор по развитию биотехнологической компании «Марлин Биотех», кандидат биологических наук Вадим Жерновков. — Он включает в себя 2,5 млн пар нуклеотидов, что можно было бы сравнить с количеством букв в романе «Война и мир». И вот представим себе, что мы вырвали из эпопеи несколько каких-то важных страниц. Если на этих страницах описываются существенные события, то понимание книги было бы уже затруднено. Но с геном все сложнее. Найти другую копию «Войны и мира» несложно, и тогда недостающие страницы можно было бы прочитать. Но ген дистрофина находится в X-хромосоме, а у мужчин она одна. Таким образом, в половых хромосомах у мальчиков при рождении хранится лишь одна копия гена. Другую взять негде.


Наконец, при синтезе белка из РНК важно сохранение рамки считывания. Рамка считывания определяет, какая группа из трех нуклеотидов считывается как кодон, что соответствует одной аминокислоте в белке. Если произошло удаление в гене фрагмента ДНК, не кратное трем нуклеотидам, происходит сдвиг рамки считывания — кодировка изменяется. Это можно было бы сравнить с ситуацией, когда после вырванных страниц во всей оставшейся книге все буквы заменятся на следующие по алфавиту. Получится абракадабра. Вот то же самое происходит с неправильно синтезируемым белком».

Биомолекулярный пластырь

Один из эффективных методов генной терапии для восстановления нормального синтеза белка — пропуск экзонов с помощью коротких нуклеотидных последовательностей. В «Марлин Биотех» уже отработана технология работы с геном дистрофина с помощью такого метода. Как известно, в процессе транскрипции (синтеза РНК) сначала формируется так называемая прематричная РНК, заключающая в себе как кодирующие белок участки (экзоны), так и некодирующие (интроны). Далее начинается процесс сплайсинга, в ходе которого интроны и экзоны разъединяются и формируется «зрелая» РНК, состоящая только из экзонов. В этот момент некоторые экзоны можно заблокировать, «залепить» с помощью особых молекул. В итоге в зрелой РНК не окажется тех кодирующих участков, от которых мы предпочли бы избавиться, и таким образом восстановится рамка считывания, белок будет синтезироваться.


«Эту технологию мы отладили in vitro, — рассказывает Вадим Жерновков, то есть на клеточных культурах, выращенных из клеток пациентов с миодистрофией Дюшенна. Но отдельные клетки — это не организм. Вторгаясь в процессы клетки, мы должны наблюдать последствия вживую, однако привлечь к испытаниям людей не представляется возможным по разным причинам — от этических до организационных. Поэтому возникла необходимость получения модели миодистрофии Дюшенна с определенными мутациями на основе лабораторного животного».

Как уколоть микромир

Трансгенные животные — это полученные в лаборатории животные, в геном которых целенаправленно, осознанно внесены изменения. Еще в 70-е годы прошлого века стало понятно, что создание трансгенов — это важнейший метод исследования функций генов и белков. Одним из самых ранних методов получения полностью генно-модифицированного организма стала инъекция ДНК в пронуклеус («предшественник ядра») зигот оплодотворенных яйцеклеток. Это логично, так как модифицировать геном животного проще всего в самом начале его развития.


На схеме продемонстрирован процесс CRISPR/Cas9, в котором участвуют субгеномная РНК (sgRNA), ее участок, работающий как РНК-гид, а также белок-нуклеаза Cas9, который рассекает обе нити геномной ДНК в указанном РНК-гидом месте.

Инъекция в ядро зиготы — весьма нетривиальная процедура, ведь речь идет о микромасштабах. Яйцеклетка мыши имеет диаметр 100 мкм, а пронуклеус — 20 мкм. Операция происходит под микроскопом с 400-кратным увеличением, однако инъекция — это самая что ни на есть ручная работа. Разумеется, для «укола» применяется не традиционный шприц, а специальная стеклянная игла с полым каналом внутри, куда набирается генный материал. Один ее конец можно держать в руке, а другой — сверхтонкий и острый — практически не виден невооруженным глазом. Конечно, такая хрупкая конструкция из боросиликатного стекла не может храниться долго, поэтому в распоряжении лаборатории есть набор заготовок, которые непосредственно перед работой вытягиваются на специальном станке. Используется особая система контрастной визуализации клетки без окрашивания — вмешательство в пронуклеус само по себе травматично и является фактором риска для выживания клетки. Краска стала бы еще одним таким фактором. К счастью, яйцеклетки достаточно живучи, однако количество зигот, которые дают начало трансгенным животным, составляют лишь несколько процентов от общего числа яйцеклеток, в которые была сделана инъекция ДНК.

Следующий этап — хирургический. Проводится операция по трансплантации микроинъецированных зигот в воронку яйцевода мыши-реципиента, которая станет суррогатной матерью будущим трансгенам. Далее лабораторное животное естественным путем проходит цикл беременности, и на свет появляется потомство. Обычно в помете находится около 20% трансгенных мышат, что также говорит о несовершенстве метода, ибо в нем присутствует большой элемент случайности. При инъекции исследователь не может контролировать, как именно внедренные фрагменты ДНК встроятся в геном будущего организма. Высока вероятность таких комбинаций, которые приведут к гибели животного еще на эмбриональной стадии. Тем не менее метод работает и вполне годен для ряда научных целей.


Развитие трансгенных технологий позволяет производить животные белки, востребованные фармацевтической промышленностью. Эти белки экстрагируются из молока трансгенных коз и коров. Также есть технологии получения специфических белков из куриного яйца.

Ножницы для ДНК

Но есть более эффективный способ на основе целевого редактирования генома по технологии CRISPR/Cas9. «Сегодня молекулярная биология в чем-то подобна эпохе дальних морских экспедиций под парусами, — говорит Вадим Жерновков. — Практически каждый год в этой науке происходят значительные открытия, которые могут изменить нашу жизнь. Например, несколько лет назад микробиологи обнаружили у давно, казалось бы, изученного вида бактерий иммунитет к вирусным инфекциям. В результате дальнейших исследований выяснилось, что ДНК бактерий содержат в себе особые локусы (CRISPR), с которых синтезируются фрагменты РНК, умеющие комплементарно связываться с нуклеиновыми кислотами чужеродных элементов, например с ДНК или РНК вирусов. С такой РНК связывается белок Cas9, представляющий собой фермент-нуклеазу. РНК служит для Cas9 гидом, помечающим определенный участок ДНК, в котором нуклеаза совершает разрез. Примерно три-пять лет назад появились первые научные труды, в которых разрабатывалась технология CRISPR/Cas9 для редактирования генома».


Трансгенные мыши позволяют создавать живые модели тяжелых генетических заболеваний человека. Люди должны быть благодарны этим крохотным существам.

По сравнению со способом введения конструкции для случайного встраивания, новый метод позволяет подобрать элементы системы CRISPR/Cas9 таким образом, чтобы точно нацелить РНК-гиды на нужные участки генома и добиться целенаправленной делеции или вставки нужной последовательности ДНК. В этом методе тоже возможны ошибки (РНК-гид иногда соединяется не с тем участком, на который его нацеливают), однако при использовании CRISPR/Cas9 эффективность создания трансгенов составляет уже около 80%. «Этот метод имеет широкие перспективы, и не только для создания трансгенов, но и в других областях, в частности в генной терапии, — говорит Вадим Жерновков. — Однако технология находится только в начале пути, и представить себе, что в ближайшее время исправлять генный код людей будут с помощью CRISPR/Cas9, довольно сложно. Пока есть вероятность ошибки, есть и опасность, что человек лишится какой-то важной кодирующей части генома».


Молоко-лекарство

Российской компании «Марлин Биотех» удалось создать трансгенную мышь, в которой полностью воспроизведена мутация, приводящая к миодистрофии Дюшенна, и следующим этапом станут испытания технологий генной терапии. Вместе с тем создание моделей генетических заболеваний человека на основе лабораторных животных — не единственное возможное применение трансгенов. Так, в России и западных лабораториях ведутся работы в области биотехнологий, позволяющие получать важные для фарминдустрии лекарственные белки животного происхождения. В качестве продуцентов могут выступать коровы или козы, у которых можно изменять клеточный аппарат производства содержащихся в молоке белков. Из молока можно экстрагировать лекарственный белок, который получен не химическим способом, а с помощью природного механизма, что повысит эффективность лекарства. В настоящее время разработаны технологии получения таких лекарственных белков, как лактоферрин человека, проурокиназа, лизоцим, атрин, антитромбин и другие.

Окружающая среда никогда не была постоянной. Даже в прошлом она не была абсолютно здоровой. Однако существует принципиальное отличие современного периода в истории человечества от всех предыдущих. В последнее время темпы изменения среды стали столь ускоренными, а диапазон изменения так расширился, что проблема изучения последствий стала неотложной.

Отрицательное влияние среды на наследственность человека может выражаться в двух формах:

    факторы среды могут «разбудить» молчавший или заставить «замолчать» работающий ген,

    факторы среды могут вызвать мутации, т.е. изменить генотип человека.

К настоящему времени груз мутаций в популяциях человека составил 5%, а список наследственных заболеваний включает около 2000 болезней. Ощутимый вред человечеству наносят новообразования, вызванные мутациями соматических клеток. Возрастание числа мутаций влечёт за собой рост естественных выкидышей. Сегодня во время беременности погибает до 15% плодов.

Одной из важнейших задач сегодняшнего дня является задача создания службы мониторинга за генофондом человека, которая бы регистрировала число мутаций и темпы мутирования. Несмотря на кажущуюся простоту этой задачи, реальное её решение сталкивается с целым рядом трудностей. Главная трудность состоит в огромном генетическом разнообразии людей. Огромным является и число генетических отклонений от нормы.

В настоящее время отклонениями от нормы в генотипе человека и их фенотипическим проявлением занимается медицинская генетика, в рамках которой разрабатываются методы профилактики, диагностики и лечения наследственных болезней.

Методы профилактики наследственных заболеваний.

Профилактика наследственных болезней может проводиться несколькими способами.

А) Могут проводиться мероприятия, направленные на ослабление действия мутагенных факторов: уменьшение дозы облучения, снижение количества мутагенов в окружающей среде, предупреждение мутагенных свойств сывороток и вакцин.

Б) Перспективным направлением является поиск антимутагенных защитных веществ . Антимутагены – это соединения, нейтрализующие сам мутаген до его реакции с молекулой ДНК или снимающие поражение с молекулы ДНК, вызванные мутагенами. С этой целью применяют цистеин, после введения которого организм мыши оказывается способным переносить смертельную дозу радиации. Антимутагенными свойствами обладает ряд витаминов.

В) Целям профилактики наследственных болезней служит генетическое консультирование. При этом предупреждаются близкородственные браки (инбридинг), поскольку при этом резко возрастает вероятность рождения детей, гомозиготных по аномальному рецессивному гену. Выявляются гетерозиготные носители наследственных заболеваний. Врач-генетик- не юридическое лицо, он не может запретить или разрешить консультируемым иметь детей. Его цель – помочь семье реально оценить степень опасности.

Методы диагностики наследственных заболеваний.

А) Метод массовой (просеивающей) диагностики .

Данный метод используют применительно к новорождённым с целью выявления галактоземии, серповидно-клеточной анемии, фенилкетонурии.

Б) Ультразвуковое обследование.

В 70-е годы на 1У Международном генетическом конгрессе прозвучала идея о внедрении в медицинскую практику дородовой диагностики наследственных заболеваний. Сегодня наиболее широко используется метод ультразвукового обследования. Главное его достоинство состоит в массовости обследования и возможности выявить отклонения на 18 – 23 неделе беременности, когда плод ещё самостоятельно нежизнеспособен.

В) Амниоцентез.

На сроке беременности 15-17 недель прокалывают шприцем плодный пузырь и отсасывают небольшое количество плодной жидкости, в которой есть слущенные клетки эпидермиса плода. Эти клетки 2 – 4 недели выращивают в культуре на специальных питательных средах. Затем с помощью биохимического анализа и изучения хромосомного набора можно выявить около 100 генных и практически все хромосомные и геномные аномалии. Метод амниоцентеза успешно используется в Японии. Здесь обязательно и бесплатно обследуют всех женщин старше 35 лет, а также женщин уже имеющих детей с отклонениями от нормы. Амниоцентез – относительно трудоёмкая и дорогостоящая процедура, но экономисты подсчитали, что стоимость анализа для 900 женщин намного дешевле, чем стоимость прижизненной госпитализации одного больного с наследственными аномалиями.

Г) Цитогенетический метод.

Изучаются образцы крови людей с целью определения аномалий хромосомного аппарата. Особенно важно это при определении носительства заболеваний у гетерозигот.

Д) Биохимический метод.

Основывается на генетическом контроле синтеза белков. Регистрация различных видов белков позволяет оценить частоту мутаций.

Методы лечения наследственных болезней.

А) Диетотерапия.

Заключается в установлении правильно подобранной диеты, которая снизит тяжесть проявления болезни. Например, при галактоземии патологическое изменение наступает в силу того, что нет фермента, расщепляющего галактозу. Галактоза накапливается в клетках, вызывая изменения в печени и головном мозге. Лечение болезни проводят, назначая диету, исключающую в продуктах галактозу. Генетический дефект при этом сохраняется и передаётся потомству, но обычные проявления болезни у человека, использующего данную диету, отсутствуют.

Б) Введение в организм недостающего фактора.

При гемофилии проводят инъекции белка, который временно улучшает состояние больного. В случае наследственных форм сахарного диабета в организме не вырабатывается инсулин, регулирующий углеводный обмен. В этом случае инсулин вводят в организм.

В) Хирургические методы.

Некоторые наследственные заболевания сопровождаются анатомическими отклонениями от нормы. В этом случае используется хирургическое удаление органов или их частей, коррекция, трансплантация. Например, при полипозе удаляют прямую кишку, оперируют врождённые пороки сердца.

Г) Генная терапия – устранение генетических ошибок. Для этого в соматические клетки организма включают одиночный нормальный ген. Этот ген в результате размножения клеток заменит патологический ген. Генная терапия через зародышевые клетки осуществляется в настоящее время на животных. Нормальный ген встраивается в яйцеклетку с аномальным геном. Яйцеклетка имплантируется в организм самки. Из данной яйцеклетки развивается организм с нормальным генотипом. Генная терапия планируется к применению лишь в тех случаях, когда болезнь угрожает жизни и не подлежит лечению другими способами.

За страницами школьного учебника.

Некоторые вопросы евгенизма.

Идея искусственного улучшения человека не нова. Но только в 1880г. появилось понятие «евгенизм». Слово это ввёл двоюродный брат Ч. Дарвина – Ф. Гальтон. Он определял евгенику как науку об улучшении потомства, которая отнюдь не ограничивается вопросами разумных скрещиваний, но, особенно в случае человека, занимается всеми воздействиями, которые способны дать наиболее одарённым расам максимальные шансы преобладать над расами менее одарёнными.

Сам термин «евгенизм» происходит от греческого слова, обозначающего человека хорошего рода, знатного происхождения, хорошей расы.

Гальтон несомненно признавал определённую роль среды в развитии индивидуума, но в конечном счёте он считал, что «раса» важнее среды, т.е. он делал упор на то, что мы сегодня называем генетическим фактором.

Идея об улучшении популяции человека с помощью биологических методов имеет большое прошлое. Рассуждения подобного типа историки находили ещё у Платона. Тем не менее Гальтон был оригинален, разработав законченную теорию. Его произведения представляют собой основной источник, к которому следует обращаться при анализе того, что происходит сегодня. Согласно Гальтону, основанная им евгеника заслуживала статуса науки. Под определённым углом зрения, евгенизм действительно содержит в себе нечто научное, он использует некоторые теории и результаты из области биологии, антропологии, демографии, психологии и др. Очевидно, однако, что основа евгенизма социальная и политическая. Теория имела практическую конечную цель – сохранить наиболее «одарённые расы», увеличить численность элиты нации.

Под влиянием собственных неудач, постигших его в Кембридже, Гальтон пристально заинтересовался следующей проблемой: каково происхождение наиболее одарённых людей. Он написал работы, в которых с помощью статистики старался подтвердить гипотезу, подсказанную ему личными убеждениями, что наиболее одарённые индивидуумы часто бывают близкими родственниками людей, которые тоже одарены. Принцип проведения исследований был у Гальтона простым: он изучал популяции людей, принадлежащих к социальной элите (судьи, государственные деятели, учёные). Он выявил довольно значительное число их близких родственников, которые сами были видными деятелями. Сравнения производились методически с учётом различной степени родства. Установленные таким образом корреляции были явно нестабильными и ограниченными. В действительности интерпретация этих статистических данных в пользу тезиса о биологическом наследовании ни в коей мере не была очевидной. Но сам Гальтон принадлежал к английской элите, поэтому психологически ему было довольно легко допустить наследование гениальности.

В истории биологии роль Гальтона обычно недооценивается. Биологи не воспринимали Гальтона как специалиста: интересы биологические у него были подчинены более общим интересам. И всё же именно он за 10 лет до Вейсмана сформулировал два основных положения его теории. Гальтон проявил интерес к генетике и в связи с тем, что он приписывал наследственности важную роль в социальных явлениях.

Применение евгенизма в области науки в некоторых случаях оказывается плодотворным, но в целом евгеника лишена научной основы. Проект улучшения отдельных рас, наиболее одарённых, опирается, прежде всего, на идеологические и политические мотивы. Тот факт, что генетика может обеспечить евгенистов какими-то аргументами, абсолютно не доказывает ни истинности, ни этической правомерности этого проекта. Понятие «расы» в трактовка Гальтона весьма растяжимо. Прежде всего оно может соответствовать распространённому представлению о расе: жёлтая, белая, чёрная. Использует он понятие «раса» и более гибко: расу образует любая однородная популяция, в которой определённые признаки стойко передаются по наследству. Такая идея в высшей степени спорна. Критерии «хорошей расы» сами по себе довольно расплывчаты, но главными среди них являются такие качества как ум, энергия, физическая сила и здоровье.

В 1873г. Гальтон опубликовал статью «Об улучшении наследственности». В ней он объясняет, что первейшей обязанностью человечества является добровольное участие в общем процессе естественного отбора. По мнению Дальтона, люди должны методично и быстро делать то, что природа делает слепо и медленно, а именно: благоприятствовать выживанию наиболее достойных и замедлять или прерывать воспроизведение недостойных. Многие политические деятели благосклонно выслушивали такие высказывания. Приводились впечатляющие цифры: между 1899 и 1912г.г. в США в штате Индиана было произведено 236 операций вазэктомии умственно отсталым мужчинам. Тот же штат в 1907г. проголосовал за закон, предусматривающий стерилизацию наследственных дегенератов, затем так же поступила Калифорния и ещё 28 штатов. В 1935г. общее число операций по стерилизации достигло 21539. Не все евгенистские мероприятия были такими грубыми, хотя в основе их лежала одна и та же философия селекции наиболее одарённых людей. Заслуживает внимания тот факт, что люди науки, пользующиеся большой известностью, не колеблясь предлагали очень суровые меры. Лауреат Нобелевской премии француз Карел в 1935г. опубликовал свой труд «Это неизвестное существо человек», который имел необыкновенный успех. В этой книге автор объяснял, что учитывая ослабление естественного отбора, необходимо восстановить «биологическую наследственную аристократию». Сожалея о наивности цивилизованных наций, проявляющейся в сохранении бесполезных и вредных существ, он советовал создавать специальные заведения для осуществления эвтаназии преступников.

Таким образом, понятие «евгенизм» охватывает многообразные проявления действительности, но всё многообразие можно свести к двум формам: евгенизм воинственный (сознательный) и евгенизм «мягкий» (бессознательный). Первый наиболее опасен. Это он породил газовые камеры нацистов. Но было бы ошибкой считать второй безвредным. Ему тоже присуща двусмысленность: некоторые мероприятия, связанные с выявлением и предупреждением наследственных болезней, представляют собой зачаточную форму евгенизма.

Отличие евгенизма от социального дарвинизма.

Сторонники социального дарвинизма проповедуют невмешательство. Они полагают, что соревнование между людьми полезно и благодаря борьбе за существование будет обеспечено выживание лучших индивидуумов, поэтому достаточно не препятствовать процессу отбора, протекающему спонтанно.

Что касается евгенизма, то ему присуще нечто полицейское: его цель – установить авторитарную систему, способную производить «научным способом» хороших индивидуумов и хорошие гены, в которых нуждается нация. Тут легко покатиться по наклонной плоскости: начинают с установления карт генетической идентичности, увеличивают число проверок для установления пригодности к браку, перекрывают каналы, ведущие к порочным элементам, и тогда наступает очередь заключительного акта, например, эвтаназии – гуманной и экономичной. Нацистский евгенизм имел сверхнаучное обоснование. Гитлер, чтобы оправдать культ «чистой расы», недвусмысленно ссылается на биологию размножения и теорию эволюции.

Что значит быть евгенистом сегодня?

Со времён Гальтона положение сильно изменилось. Годы существования нацизма привели к тому, что евгенизму в плане идеологическом и социальном пришлось отступить. Но огромные успехи биологии и генной инженерии сделали возможным возникновение неоевгенизма. Большим новшеством была разработка методов, позволяющих выявить «плохие» гены, т.е. гены, ответственные за заболевания. Выявлять генетические дефекты можно на разных стадиях. В одних случаях обследуют людей, желающих иметь детей, в других – беременных женщин. Если у плода выявляется серьёзная аномалия, то может быть поставлен вопрос об аборте. Выявляя серьёзные генетические ошибки у новорождённых, в результате раннего лечения можно восстановить утраченную функцию. Таким образом, возникла новая ситуация: отныне можно планировать грандиозную долгосрочную операцию по капитальной очистке генофонда человечества. Это поднимает многочисленные вопросы как технического, так и этического порядка. Прежде всего, где остановиться при выбраковке генов? Идеал беспощадного генетического отбора представляется спорным в биологическом плане6 не может ли такой отбор привести к обеднению генофонда человечества? Мечта евгенистов – использовать отбор генов сродни отбору в животноводстве. Но именно животноводы имели возможность убедиться в том, что систематический отбор можно использовать лишь до определённого предела: при слишком усиленном улучшении разновидности её жизнеспособность иногда чрезмерно снижается. В настоящее время существует две основных тенденции, выступающие друг против друга. Один лагерь составляют сторонники жёстких мер. Они считают, что генная инженерия дала в руки человека оружие, которое должно быть использовано на благо человечества. Например, лауреат Нобелевской премии по физиологии и медицине Ледерберг является сторонником клонирования человеческих генов как эффективного средства для создания выдающихся людей. В другом лагере находятся те, кто требует объявить сферу генетики человека неприкосновенной. В США, благодаря частной инициативе уже организован сбор и консервация спермы лауреатов Нобелевской премии. Таким образом, если верить ответственным лицам, можно будет путём искусственного осеменения легко произвести на свет детей, имеющих выдающиеся таланты. В действительности ничто не позволяет утверждать, что такой проект научно обоснован.

Целый ряд фактов свидетельствует о том, что сегодня одновременно имеются разные причины, способствующие воскрешению евгенизма.

Тюйе П. «Соблазны евгенизма».

В кн. «Генетика и наследственность». М.: Мир, 1987.

Генная терапия - это лечение наследственных, ненаследственных, которое осуществляется путем введения в клетки пациента других генов. Целью терапии является устранение генных дефектов либо придание клеткам новых функций. Намного проще ввести в клетку здоровый, полноценно работающий ген, чем исправлять дефекты в имеющемся.

Генная терапия ограничивается исследованиями в соматических тканях. Это связано с тем, что любое вмешательство в половые и зародышевые клетки может дать совершенно непредсказуемый результат.

Применяемая в настоящее время методика эффективна при лечении как моногенных, так и мультифакториальных заболеваний (злокачественные опухоли, некоторые виды тяжелых сердечно-сосудистых, вирусных заболеваний).

Около 80% всех проектов генной терапии касаются ВИЧ-инфекции и В настоящее время ведутся исследования таких как гемофилия В, муковисцидоз, гиперхолестеринемия.

Лечение подразумевает:

· выделение и размножение отдельных типов клеток пациента;

· введение чужеродных генов;

· отбор клеток, в которых «прижился» чужеродный ген;

· вживление их больному (например, посредством переливания крови).

Генная терапия основывается на введении клонированных ДНК в ткани больного. Самыми эффективными методами при этом считаются инъекционные и аэрозольные вакцины.

Генная терапия работает в двух направлениях:

1. Лечение моногенных заболеваний. К ним относятся нарушения в работе головного мозга, которые связаны с какими-либо повреждениями клеток, которые вырабатывают нейромедиаторы.

2. Лечение Основные подходы, использующиеся в данной области:

· генетическое усовершенствование иммунных клеток;

· повышение иммунореактивности опухоли;

· блок экспрессии онкогенов;

· защита здоровых клеток от химиотерапии;

· ввод генов-супрессоров опухоли;

· производство противоопухолевых веществ здоровыми клетками;

· продукция противоопухолевых вакцин;

· локальное воспроизведение нормальных тканей при помощи антиоксидантов.

Использование генной терапии имеет много плюсов и в некоторых случаях является единственным шансом на нормальную жизнь для больных людей. Тем не менее, эта область науки до конца не изучена. Существует международный запрет на испытания на половых и доимплантационных зародышевых клетках. Это сделано с целью предотвращения нежелательных генных конструкций и мутаций.

Разработаны и общепризнанны некоторые условия, при которых допускаются клинические испытания:

    Ген, перенесенный в клетки-мишени, должен быть активен продолжительное время.

    В чужеродной среде ген должен сохранять свою эффективность.

    Перенос гена не должен вызывать негативных реакций в организме.

Существует ряд вопросов, которые и сегодня остаются актуальными для многих ученых по всему миру:

    Смогут ли ученые, работающие в области генной терапии, разработать полную генокоррекцию, которая не будет представлять угрозы потомству?

    Будет ли необходимость и полезность генотерапевтической процедуры для отдельной супружеской пары превосходить риск этого вмешательства для будущего человечества?

    Оправданы ли подобные процедуры, учитывая в будущем?

    Каким образом будут соотноситься подобные процедуры на человеке с вопросами гомеостаза биосферы и общества?

В заключении можно отметить, что генетическая терапия на современном этапе предлагает человечеству пути лечения самых тяжелых заболеваний, которые совсем недавно считались неизлечимыми и смертельными. Однако, в то же время, развитие этой науки ставит перед учеными новые проблемы, которые необходимо решать уже сегодня.

Читайте также: