Дыхательный коэффициент его значение величина. Дыхательный коэффициент (ДК). Дыхание и температура

Дыхательным коэффициентом называется отношение объема выделенного угле­кислого газа к объему поглощенного кислорода. Дыхательный коэффициент различен при окислении белков, жиров и углеводов. Рассмотрим для примера, каков будет дыхательный коэффициент при использовании организмом глюкозы. Общий итог окисле­ния молекулы глюкозы можно выразить формулой:

При окислении глюкозы количество молекул образовавшегося углекислого газа и количество молекул затраченного (поглощенного) кислорода равны. Равное количество молекул газа при одной и той же температуре и одном и том же давлении занимает один и тот же объем (закон Авогадро - Жерара). Следовательно, дыхательный коэффициент

отношение) при окислении глюкозы и других углеводов равен единице.


При окислении жиров и белков дыхательный коэффициент будет ниже единицы. При окислении жиров дыхательный коэффициент равен 0,7. Проиллюстрируем это на примере окисления трипальмитина:

Отношение между объемами углекислого газа и кислорода составляет в данном случае:

Аналогичный расчет можно сделать и для белка; при его окислении в организме дыхательный коэффициент равен 0,8.

При смешанной пище у человека дыхательный коэффициент обычно равен 0,85-0,9. Определенному дыхательному коэффициенту соответствует определенный калорический эквивалент кислорода, что видно из табл. 20.

Таблица 20 Соотношение дыхательного коэффициента и калорического эквивалента кислорода

Определение энергетического обмена у человека в покое методом закрытой системы с неполным газовым анализом. Оч носительное постоянство дыхательного коэффициента (0,85-0,90) у людей при обычном питании в условиях покоя позволяет производить достаточно точное определение энергетического обмена у человека в покое, вычисляя только количество потребленного кислорода и беря его калорический эквивалент при усредненном дыхательном коэффициенте.

Количество потребленного организмом кислорода исследуется при помощи различ­ного типа спирографов.

Работа 3. Определение дыхательного коэффициента

Важный показатель химической природы дыхательного субстрата – дыхательный коэффициент (ДК ) – отношение объема выделенного углекислого газа (V (СО 2)) к объему поглощенного кислорода (V (О 2)). При окислении углеводов дыхательный коэффициент равен 1, при окислении жиров (более восстановленных соединений) кислорода поглощается больше, чем выделяется углекислого газа и ДК < 1. При окислении органических кислот (менее восстановленных, чем углеводы соединений) ДК > 1.

Величина ДК зависит и от других причин. В некоторых тканях из-за затрудненного доступа кислорода наряду с аэробным происходит анаэробное дыхание, не сопровождающееся поглощением кислорода, что приводит к повышению значения ДК . Величина дыхательного коэффициента обусловлена также полнотой окисления дыхательного субстрата. Если, кроме конечных продуктов, в тканях накапливаются менее окисленные соединения, то ДК < 1.

Прибор для определения дыхательного коэффициента (рис. 8) состоит из пробирки (рис. 8, а) или другого стеклянного сосуда (рис. 8, б ) с плотно пригнанной пробкой, в которую вставлена измерительная трубка со шкалой из миллиметровой бумаги.

Материалы и оборудование. Прорастающие семена подсолнечника, ячменя, гороха, фасоли, льна, пшеницы, 20 %-й раствор гидроксида натрия, шприц на 2 см 3 , цветная жидкость, чашка Петри, химическая пробирка, U-образно изогнутая трубка, эластичная трубка, пробка с отверстием, пинцет анатомический, полоски фильтровальной бумаги (1,5 5 см), миллиметровая бумага, песочные часы на 3 мин, штатив для пробирок.

Ход работы. В пробирку внесите 2 г прорастающих семян подсолнечника. Плотно закройте пробирку пробкой, соединенной эластичной трубкой с изогнутой U-образно стеклянной трубкой, и введите в конец последней при помощи пипетки небольшую каплю жидкости, создавая внутри прибора замкнутую атмосферу. Во время опыта обязательно поддерживайте постоянную температуру. Для этого поставьте прибор в штатив, избегая тем самым нагревания его руками или дыханием. Определите на сколько делений шкалы продвинется капля внутрь трубки за 3 мин. Для получения точного результата вычислите среднюю величину из трех измерений. Полученная величина выражает разницу между объемом поглощенного при дыхании кислорода и объемом выделенного углекислого газа.

Откройте прибор с семенами и положите в него пинцетом свернутую в кольцо полоску фильтровальной бумаги, предварительно пропитанную раствором NaOH. Снова закройте пробирку, поместите в измерительную трубку новую каплю цветной жидкости и продолжайте измерение скорости ее движения при той же температуре. Новые данные, из которых опять вычислите среднюю величину, выражают объем поглощенного при дыхании кислорода, так как выделившийся углекислый газ поглощается щелочью.

Рассчитайте дыхательный коэффициент по формуле: , где ДК – дыхательный коэффициент; В – объем поглощенного при дыхании кислорода; А – разница между объемом поглощенного при дыхании кислорода и объемом выделенного углекислого газа.

Сравните величины дыхательных коэффициентов предложенных объектов и сделайте вывод о химической природе дыхательных субстратов каждого из объектов.

_________________________________

1 Прибор для наблюдений газообмена при дыхании растений и животных ПГД (учебный): руководство по эксплуатации / под ред. Т.С.Чанова. – М.: Просвещение, 1987. – 8 с.

(устаревшие син.: дыхательное отношение, респираторный коэффициент ) - отношение объема выделенного из организма (органа, ткани) углекислого газа (VCO 2) к объему поглощенного за это же время кислорода (VO 2). Определение Д. к. проводят при изучении особенностей газообмена (см.) и обмена веществ и энергии (см.) у животных и растительных организмов.

Определение Д. к. имеет важное значение также при исследовании внешнего дыхания. Во многие формулы для расчетного определения состава альвеолярного воздуха входит величина Д. к. Так как между величиной Д. к. и отношением количества вентилирующего альвеолы воздуха к количеству протекающей через их капилляры крови существует определенная зависимость, то по Д.к. можно судить о вентиляционно-перфузионных отношениях. Установлено, что величины Д. к. для воздуха, выдыхаемого из верхних и нижних долей легких, существенно различны из-за неравенства их вентиляционно-перфузионных отношений.

Сравнение Д. к. левого и правого легкого при раздельной бронхоспирометрии помогает судить об особенностях вентиляции и обмене газов в каждом из них. Определение Д. к. в разных частях выдыхаемого воздуха используется для углубленного исследования некоторых сторон внешнего дыхания.

У человека и животных Д. к. обычно колеблется в пределах от 0,7 до 1. При окислении углеводов на 1 моль потребляемого кислорода в организме образуется 1 моль углекислого газа, т. к. весь потребляемый из вдыхаемого воздуха кислород в конечном счете идет только на окисление углерода углеводов, а окисление находящегося в составе углеводов водорода до воды обеспечивается заключенным в молекуле углевода кислородом. Грамм-молекулы различных газов (в данном случае кислорода и углекислого газа) занимают при одинаковых давлении и температуре равные объемы, поэтому при окислении углеводов Д. к. равняется 1. При окислении жиров, в молекуле которых содержится много атомов водорода и мало атомов кислорода, потребление кислорода количественно связано также с образованием воды из содержащегося в жирах водорода. В результате объем образующегося в организме (и выделяющегося) углекислого газа при диссимиляции жиров меньше объема потребляемого кислорода. При окислении жиров Д. к. равен 0,70- 0,72. Окислению белков, в результате к-рого образуются, кроме воды и углекислого газа, азотсодержащие соединения, выделяющиеся гл. обр. с мочой, соответствует величина Д. к., равная 0,80-0,82.

Количество окисляющегося в организме белка определяется по выводимым с мочой азотистым продуктам его распада. Учитывая эту величину (в приближенных расчетах ею можно пренебречь), по Д. к. определяют долю участия в диссимиляции жиров и углеводов. Количество энергии (в килокалориях), освобождающейся в организме при потреблении 1 л кислорода (так наз. калорический эквивалент кислорода), при окислении углеводов равно 5,05, жиров - 4,69, белков - 4,49.

Д. к. закономерно изменяется в зависимости от величины калорического эквивалента кислорода (табл.).

Таблица. Изменение величины дыхательного коэффициента в зависимости от величины калорического эквивалента кислорода

Если в рацион входят углеводы, жиры и белки, Д. к. колеблется в пределах 0,8-0,9. При преимущественном углеводном питании Д. к. составляет 0,9-1; при избыточном потреблении углеводов и их частичном переходе в организме в жиры (напр., при откорме свиней, гусей) Д. к. может достигать 1,2-1,4. Это связано с тем, что при переходе богатых кислородом углеводов в бедные кислородом жиры часть выделяемого организмом углекислого газа образуется при участии освобождающегося при этом процессе кислорода, а не только поглощаемого в легких из вдыхаемого воздуха. Аналогичное повышение Д. к., но менее выраженное, наблюдается у людей, восстанавливающих свой нормальный вес после частичного или полного голодания. Обратное явление - снижение Д. к.- наблюдается при голодании и при спячке. При мышечной работе умеренной мощности, во время так наз. устойчивого состояния, когда потребление кислорода соответствует потребности в нем организма, Д. к. в связи с усиленной диссимиляцией преимущественно углеводов обычно повышается, составляя 0.9-1. Однако при очень длительной работе, связанной с уменьшением запасов углеводов в организме, Д. к. начинает понижаться, что свидетельствует о постепенно увеличивающемся использовании жиров.

Помимо характера окисляющихся веществ, на количество выделенного углекислого газа оказывает влияние ряд физ. и хим. факторов, не имеющих отношения к процессам окисления. К первым относятся часто встречающиеся в клинике нарушения вентиляции (см. Дыхание). Так, гипер-вентиляция, уменьшая парциальное давление углекислоты в альвеолярном воздухе, способствует значительному вымыванию ее из крови и увеличивает Д. к. Гиповентиляция, увеличивая напряжение углекислоты альвеолярного воздуха, соответственно снижает Д. к. К хим. факторам относится накопление в крови не полностью окисленных продуктов обмена (ацетоновые тела, молочная к-та и т. п.), изменяющих кислотно-щелочное равновесие в сторону ацидоза (см.) и создающих условия для вытеснения углекислоты из крови (см. Кислотно-щелочное равновесие). Кроме того, интенсивный переход жиров и белков в углеводы (при диабете) или углеводов в жиры (при ожирении) также влияет на выделение углекислоты, и, следовательно, на величину Д. к.

Определение Д. к. проводится также при исследованиях газообмена отдельных органов и тканей. О Д. к. органов в условиях целостного организма можно судить по содержанию кислорода и углекислоты в артериальной крови и в оттекающей от данных органов венозной крови. Д. к. при этом равняется отношению разности между содержанием напряжения углекислого газа в венозной и артериальной крови к разности между содержанием кислорода в артериальной и венозной крови:

Полученные т. о. результаты указывают на некоторые особенности и более широкие границы колебаний Д. к. разных органов по сравнению с организмом в целом (Д. к. изолированных тканей - см. Окисление биологическое).

Клиническое изучение дыхательного коэффициента. В клин, практике уровень Д. к. не всегда характеризует течение окислительных процессов в организме и характер окисляющихся веществ, т. к. при исследовании газообмена определяется не потребление кислорода, а его поглощение. Поглощение кислорода определяется тем его количеством, к-рое проникает из альвеолярного воздуха в кровь легочных капилляров, а потребление - его участием в биохим, реакциях окисления. В обычных условиях различия между этими терминами не делают, т. к. поглощение и потребление кислорода практически одинаковы.

Несоответствие между поглощением и потреблением возникает при переходе от дыхания атмосферным воздухом к дыханию чистым кислородом, когда в плазме крови и в тканях растворяется добавочное его количество без эквивалентного увеличения потребления в тканевом дыхании, а также при резком изменении кислородной емкости крови или изменении условий насыщения крови кислородом в легких.

Сама методика исследования газообмена может существенно изменять вентиляцию как в сторону ее повышения, так и снижения. Поэтому величину Д. к., определяемую при кратковременных клин. опытах, нельзя считать достоверной. Существующая аппаратура позволяет определять газообмен только по поглощению кислорода, а при расчете основного обмена (см.) Д. к. условно берется по средней его величине (0,82-0,85). Результаты получаются аналогичные тем, которые дают расчеты величины Д. к. по выделению углекислого газа.

Т. о., только при определенных условиях, влияние которых не всегда может быть учтено, цифра Д. к. действительно отражает характер веществ, подвергающихся окислению. Поэтому данные о Д. к. при различных заболеваниях разноречивы. Так, при нарушениях углеводного или жирового обмена Д. к. может колебаться от 0,5 до 1; различные величины Д. к. наблюдаются при тиреотоксикозе и беременности.

Изменения Д. к. при сердечной недостаточности, по-видимому, связаны с изменениями вентиляции.

При определении основного обмена Д. к. почти в 100% случаев не выходит за пределы 0,74 - 0,9. Практически следует считать, что цифры Д. к., оказывающиеся выше или ниже этих, являются результатом методических погрешностей и не отражают истинного характера окислительных процессов в организме.

Библиография Дeмбо А. Г. Недостаточность функций внешнего дыхания, Л., 1957, библиогр.; Навратил М., Кадлец К. и Даум С. Патофизиология дыхания, пер. с чешек., М., 1967, библиогр.; Сыркина П. Е. Газовый анализ в медицинской практике, М., 1956, библиогр.; Физиология дыхания, под ред. Л. Л. Шика и др., М., 1973, библиогр.; A n t h о n у А. J. Funktionspriifung der Atmung, Lpz., 1962, Bibliogr.

Л. Л. Шик; А. Г. Дембо (клин, значение).

(например, в листьях и побегах суккулентных растений) и т. д. В зависимости от преимущественного использования тех или иных веществ в процессе дыхания величина дыхательного коэффициента будет изменяться. Когда дыхательным материалом является гексоза, то при полном ее окислении величина, дыхательного коэффициента равняется единице  

Увеличение влажности резко усиливает жизнедеятельность и в первую очередь дыхание зерна, сопровождающееся потребностью в кислороде. Вместе с тем запас кислорода в воде очень быстро истощается, например прн замачивании ячменя - за 60-80 мпн, и обеспечение зерна кислородом затруднено . Проникновению кислорода в зерно через зародыш (в начале замачивания) препятствует щиток, а через оболочки впоследствии - большое количество воды в тканях. Диффузия кислорода в воде примерное 10 ООО раз медленнее, чем в газе, кроме того, растворимость его в воде в 40 раз меньше, чем диоксида углерода . Недостаток кислорода в процессе замачивания подтверждается и величиной дыхательного коэффициента, который выше единицы (около 1,07), а через 8 ч от начала замочки равен 1,38, т. е. наблюдается уже анаэробное дыхание. 

Фактически же из рис. 60 можно увидеть, что дыхательный коэффициент окисления чайного таннина составляет 0,75, т. е. величину, почти вдвое превышающую теоретически рассчитанную. Интересно отметить, что, по данным Шуберт (1959), дыхательный коэффициент листьев чая в конце составляет 0,7-0,75 факт, свидетельствующий о том, что основным субстратом окислительных процессов в это время служит комплекс катехинов. 

Установив величину дыхательного коэффициента прямым определением , делают приближенное вычисление количества превратившихся в организме жиров и углеводов, приняв, что на долю белков приходится обычно около 15% энергии. Для этого можно руководствоваться табл. 16. 

Отравление организма сопровождается значительным нарушением обмена веществ. Усиливаются гидролитические процессы , уменьшается содержание в организме гликогена, жиров и липоидов, белковых веществ . Усиление транспирации приводит к значительной потере организмом воды . Уменьшается вес насекомых. Соответственно нарушениям обмена веществ уменьшается дыхательный коэффициент , достигая минимальной величины 0,4-0,5. 

Во всяком случае, при фотодинамических процессах потребляется кислород , но это не приводит к образованию СО, так как дыхательный коэффициент (т. е. отношение количества образовавшегося СО2 к количеству поглощенного О2) падает от величины, приблизительно равной единице, до 0,05. 

Величина дыхательного коэффициента 

Снижение величины дыхательного коэффициента

Интересен вопрос о влиянии света на величину дыхательного коэффициента. Выше уже отмечалось, что выделение СОг листьями на свету у всех видов исследованных растений происходит медленнее, чем у тех же листьев в темноте. Объясняется это тем, что та или иная часть СОг дыхания используется листьями в ходе процессов фотосинтеза. По этой причине ДК листьев на свету всегда ниже, чем тех же листьев в темноте. В особенности отчетливо эти закономерности наблюдаются на суккулентах, в тканях которых, как известно, накапливаются большие количества органических кислот. 

Изменения температуры могут резко сказываться на интенсивности поглощения тканями растения кислорода даже и в том случае, если содержание последнего в атмосфере остается неизменным. Наряду с этим температура оказывает мощное влияние не только на общую интенсивность дыхания, но и на соотно-щение между отдельными звеньями этого сложного комплекса процессов. В частности, изменения температуры нередко сильно сказываются на соотнощении между поглощением кислорода и выделением СОг, т. е. на величине дыхательного коэффициента. 

Врачи и биологи установили, что при окислении в организме углеводов до воды и углекислого гмза на одну затраченную молекулу кислорода выделяется одна молекула СО2. Таким образом , отношение выделенного СО2 к поглощенному О2 (величина дыхательного коэффициента) равна единице. В случае окисления жиров дыхательный коэффициент равен примерно 0,7. Следовательно, определяя величину дыхательного коэффициента, можно судить, какие вещества преимущественно сгорают в организме. Экспериментально установлено, что при кратковременных, но интенсивных энергия получается за счет окисления углеводов, а при длительных - преимущественно за счет сгорания жиров. Полагают, что переключение организма на окисление жиров связано с истощением резерва углеводов, что обычно наблюдается через 5- 20 мин после начала интенсивной мышечной работы. 

Вместо 100 мл начального объема газа при изменившемси давлении в конце опыта имеем 97,68 мл, а 1 мл при этих условних соответствует 0,9768 мл. Последний цифра и ивляется поправочным множителем (К) к первому отсчету объема газа в эвдиометре. Подставляем полученные величины в юрмулу и определяем дыхательный коэффициент  

Рис. 61 показывает, что в случае индивидуальных катехинов выделение углекислоты наблюдается лишь через 30 мин. При совместном же окислении этих катехинов выделение углекислоты начинается сразу же и в 3 раза превосходит величину, которую можно рассчитать на основании опытов с отдельными катехинами. Одновременно у смеси катехинов наблюдается и прирост ио-глощения кислорода, но в значительно меньших размерах (-1-45%), чем увеличение выделения углекислоты (- -300%). В результате дыхательный коэффициент возрастает более, чем вдвое. 

Макенн и Демусси определяли поправку на дыхание, экспериментируя в темноте Вильштеттер и Штоль доводили поправку на дыхание до ничтожно малой величины , работая на очень сильном свету с высокими концентрациями двуокиси углерода, т. е. в таких условиях , при которых фотосинтез был в 20-30 раз интенсивнее дыхания . В табл. 5 приведены данные из этих работ, а также из некоторых новых исследований, где материалом служили иные типы растений (низшие водоросли). Данные табл. 5 показывают удивительную устойчивость фотосинтетического коэффициента он не зависит от интенсивности света , длительности освещения, температуры, а кислорода и двуокиси углерода. Преобладают значения несколько выше единицы, и отклонения вряд ли превышают предел экспериментальной ошибки . Табл. 5 показывает также, что дыхательный коэффициент 

Для соединений, состоящих только из атомов С, О и Н (без перекисных связей), подходящей мерой уровня восстановленности является дыхательный коэффициент (выраженный в виде отношения АСОа/ - ДОд) или еще более удобна обратная ему величина- уровень восстановленности L. Показатель L равен числу молекул кислорода, необходимого для полного сжигания молекулы. 

К ресинтезу углеводов, или это чисто окислительный процесс . Если признать правильность теории, доказывающей, что все восстановительные ступени фотосинтеза между комплексами СО) и Н СО должны быть фотохимическими (см. фиг. 20), то темновое превращение яблочной или лимонной кислоты в углеводы кажется невозможным. Уровни восстановленности этих кислот меньше единицы, т. е. они не могут превращаться в углеводы без доступа энергии. Но мы уже рассматривали в главе VH схемы реакций , в которых лишь первая ступень восстановления двуокиси углерода использует световую энергию , а энергия, нужная для последующих ступеней восстановления , доставляется дисмутациями. Таким образом , яблочная и лимонная кислоты могли бы восстанавливаться до углеводов и без помощи света, если часть их будет одновременно окисляться. Подобная энзиматическая дисмутация считается возможной она поддерживается фактом, что дыхательный коэффициент суккулентов во время темнового разрушения кислот часто значительно выше чем 1,33, т. е. величины,. соответствующей сжиганию яблочной кислоты 1212J. В случае чистой дисмутации этот коэффициент должен обратиться в бесконечность. В связи с этими рассуждениями можно привести и другие экспериментальные данные. На стр. 271 указывалось, что в опытах по образованию водорослями крахмала в темноте могли использоваться, как правило, только вещества с i >-1 однако оказалось, что существуют некоторые исключения. 

Если листья толстянковых, после того как в них произошло максимальное накопление кислот , оставить в темноте, то их кислотность начинает падать в результате потребления яблочной кислоты с выделением СО2. Это выделение СО2 накладывается на дыхательный обмен , приводя к увеличению дыхательного коэффициента , так что иногда он начинает намного превышать величину 1,33 (это максимальная величина , ожидаемая для полного окисления малата до СО2 и воды). В некоторых, весьма немногочисленных опытах имеются указания на то, что в процессе темнового снижения кислотности происходит некоторое накопление углеводов эти данные служат подтверждением предположения, высказанного много лет назад Беннетом-Кларком согласно этому предположению, в тех случаях, когда наблюдаются очень высокие величины дыхательного коэффициента, происходит потребление части малата в анаболических реакциях . Однако, когда листья, содержащие меченый малат (фиксация С в темноте), подвергали воздействиям , способствующим уменьшению кислотности (к таким воздействиям относится, в частности, повышение температуры), в углеводах листьев обнаруживалось не больше нескольких процентов С. Таким образом , в настоящее время приходится признать , что предположение, согласно которому малат, образовавшийся в процессе ОКТ, превращается в темноте в углеводы в количестве, поддающемся учету, не имеет прямых доказательств если это и возможно, то лишь в исключительных обстоятельствах. 

Как уже обсуждалось в предыдущем разделе, растения, у которых протекает ОКТ, обладают выраженной способностью к фиксации СО2. Первым накапливающимся продуктом является малат однако возможно, что изолимонная и лимонная кислоты , накапливающиеся в заметных количествах в листьях таких растений при их развитии, образуются из малата посредством реакций цикла таким образом , в них находится часть углерода, включившегося в листья при темновой фиксации СО2. Такую фиксацию можно легко наблюдать у растений типа толстянковых, так как накопление малата у них происходит быстро и обратимо. В других органах , например в развивающихся листьях, побегах и плодах, кислоты накапливаются относительно медленно и для практических целей необратимо. В этих органах фиксацию СО2, если она происходит, приходится выявлять в таких условиях , когда количество фиксированной СО2 незначительно по сравнению с количеством СО2, выделяющейся в клеточных процессах окисления. Таким образом , в конечном счете можно было бы наблюдать некоторое, возможно, совсем незначительное, понижение величины дыхательного коэффициента по сравнению с той величиной, которую следовало бы ожидать для процессов окисления в органе. Имеются сообщения, что в нескольких случаях наблюдались низкие величины дыхательного коэффициента во время накопления кислот, причем на более ноздних стадиях, когда происходит суммарное расходование кислот, эти величины повышались . Эти наблюдения 

Хьюм и др. показали также, что окислительная активность митохондрий, выделенных из яблок (особенно из ткапи кожицы), повышалась на протяжении климактерического периода , причем это повышение начиналось за несколько дней до того, как усиливалось выделение СО2 в целом плоде. (Митохондриальную активность измеряли по поглощению кислорода и выделению углекислоты при добавлении сукцината и малата.) Это наблюдение наряду с тем фактом, что во время климактерического периода несколько возрастало содержание белка, привело Хьюма и его сотрудников к предположению, что в этот период происходит синтез ферментов (пируватдекарбоксилазы и малик-фермента), причем энергия, необходимая для этого синтеза , поступает за счет повышенной митохондриальной активности. Исследователи предположили, далее, что причиной конечного падения интенсивности дыхания до величины, которая остается затем почти постоянной (пока не наступит полный распад ткани), является недостаток кислотного субстрата , необходимого как для цикла Кребса , так и для малик-фермента . Нил и Хьюм показали, что дыхательный коэффициент у дисков из сильно перезревших 

Эти длппыс получены Б экспсримбнтзх с кйрпом и серебряным карасем - представителями

Количество тепла, освобождающегося после потребления организмом 1 л кислорода, носит название калорического эквивалента кислорода.

Зная общее количество кислорода, использованное организмом, можно вычислить энергетические затраты только в том случае, если известно, какие вещества - белки, жиры или углеводы окислялись в теле. Показателем этого может служить дыхательный коэффициент.

Дыхательный коэффициент и его значение в исследовании обмена веществ

Дыхательным коэффициентом называется отношение объема выделенного угле­кислого газа к объему поглощенного кислорода. Дыхательный коэффициент различен при окислении белков, жиров и углеводов. Рассмотрим для примера, каков будет дыхательный коэффициент при использовании организмом глюкозы. Общий итог окисле­ния молекулы глюкозы можно выразить формулой:

При окислении глюкозы количество молекул образовавшегося углекислого газа и количество молекул затраченного (поглощенного) кислорода равны. Равное количество молекул газа при одной и той же температуре и одном и том же давлении занимает один и тот же объем (закон Авогадро - Жерара). Следовательно, дыхательный коэффициент

отношение) при окислении глюкозы и других углеводов равен единице.

При окислении жиров и белков дыхательный коэффициент будет ниже единицы. При окислении жиров дыхательный коэффициент равен 0,7. Проиллюстрируем это на примере окисления трипальмитина:

Отношение между объемами углекислого газа и кислорода составляет в данном случае:

Аналогичный расчет можно сделать и для белка; при его окислении в организме дыхательный коэффициент равен 0,8.

При смешанной пище у человека дыхательный коэффициент обычно равен 0,85-0,9. Определенному дыхательному коэффициенту соответствует определенный калорический эквивалент кислорода, что видно из табл. 20.

Таблица 20 Соотношение дыхательного коэффициента и калорического эквивалента кислорода

Дыхательный коэффициент

Калорический эквивалент

кислорода, в килоджоулях

Калорический эквивалент

кислорода, в килокалориях

Определение энергетического обмена у человека в покое методом закрытой системы с неполным газовым анализом. Оч носительное постоянство дыхательного коэффициента (0,85-0,90) у людей при обычном питании в условиях покоя позволяет производить достаточно точное определение энергетического обмена у человека в покое, вычисляя только количество потребленного кислорода и беря его калорический эквивалент при усредненном дыхательном коэффициенте.

Количество потребленного организмом кислорода исследуется при помощи различ­ного типа спирографов.

Определив количество поглощенного кислорода и приняв усредненный дыхательный коэффициент равным 0,85, можно рассчитать энергообразование в организме; калори-ческий эквивалент 1 л кислорода при данном дыхательном коэффициенте равен 20,356 кДж, т. е. 4,862 ккал (см. табл. 20). Способ неполного газоанализа, благодаря своей простоте, получил широкое распространение.

Дыхательный коэффициент во время работы

Во время интенсивной мышечной работы дыхательный коэффициент повышается и в большинстве случаев приближается к единице. Это объясняется тем, что главным источником энергии во время напряженной деятельности является окисление углеводов. После завершения работы дыхательный коэффициент в течение нескольких первых минут так называемого периода восстановления резко повышается и может превысить единицу. В дальнейшем дыхательный коэффициент резко снижается до величин меньших, чем исходные, и только спустя 30-50 мин после напряженной работы он обычно нормализует­ся. Эти изменения дыхательного коэффициента показаны на рис. 196.

Изменения дыхательного коэффициента после окончания работы не отражают истинного отношения между используемым в данный момент кислородом и выделенной углекислотой. Дыхательный коэффициент в начале восстановительного периода повы­шается по следующей причине: в мышцах во время работы накапливается молочная кислота, на окисление которой во время работы не хватало кислорода (это так назы­ваемый кислородный долг). Молочная кислота поступает в кровь и вытесняет углекисло­ту из бикарбонатов, присоединяя основания. Благодаря этому количество выделенного углекислого газа больше количества углекислого газа, образовавшегося в данный момент в тканях. Обратная картина наблюдается в. дальнейшем, когда молочная кислота посте-

Рис. 196. Кривые четырех наблюдений (1-4) изменения дыхательного коэффициента во время двухчасовой интенсивной работы и после нее.

пенно исчезает из крови. Часть ее окисляется, часть ресинтезируется в гликоген, а часть выделяется с мочой и потом. По мере убыли молочной кислоты освобождаются основа­ния, которые до того были отняты у бикарбонатов. Эти основания вновь связывают углекислоту и образуют бикарбонаты. Поэтому через некоторое время после работы дыхательный коэффициент резко падает вследствие задержки в крови углекислоты, поступающей из тканей.

Исследование валового обмена

Длительное (на протяжении суток) определение газообмена дает возможность не только найти теплопродукцию организма, но решить вопрос о том, за счет окисления ка­ких питательных начал шло теплообразование. Рассмотрим это на примере.

Допустим, что обследуемый человек за сутки использовал 654,141 л кислорода и выделил 574,180 л углекислого газа. За это же время с мочой выделилось 16,8 г азота и 9,0191 г углерода.

Количество белка, распавшегося в организме, определяем по азоту мочи. Так как 1 г азота содержится в 6,25 г белка, то, следовательно, в организме распалось 16,8-6,25== 105 г белка. Находим количество углерода белкового происхождения. Для этого определяем количество углерода в распавшемся белке. Так как в белках содержится около 53% углерода, то, следовательно, в распав

шемся белке его было. На образование же углекислого газа пошла разность меж­

ду количеством углерода в распавшемся белке и углеродом, выделившимся с мочой, 55,65-9,0191 ==46,63 г. Определяем объемные количества углекислого газа белкового происхожде­ния, выделенного через легкие, исходя из того, что из 1 грамм-молекулы углерода (12 г) образуется

22,4 л углекислого газ; . Далее, исходя из дыхательного коэффициента,

равного для белков 0,8, находим количество кислорода, пошедшего на окисление белков:

. По разности между всем поглощенным кислородом и кислородом, пошедшим

на окисление белков, находим количество кислорода, пошедшее на окисление углеводов и жиров, 654,141 - 108,8= 545,341 л С>2. По разности между всем выделившимся углекислым газом и углекис­лым газом белкового происхождения, выделившимся легкими, находим количество углекислого газа, образовавшееся при окислении углеводов и жиров, 574,18-87,043 ==487,137 л СОа. Определяем количество углеводов и жиров, окислившихся в организме обследуемого за сутки. На основании того, что при окислении 1 г жира потребляется 2,019 л кислорода и образуется 1,431 л углекислого газа, а при окислении 1 г углеводов потребляется 0,829 л кислорода и столько же (0,829 г) образуется углекислого газа (ДК для углеводов равен 1), составляем уравнение, приняв за х количество жира, а за у количество углеводов, окисленных в организме. Решив систему уравнений с двумя неизвестными, получим:

Находим количество углеводов, окисленных в организме, подставляя значение х в любое из уравнений:

Итак, освобождение энергии в организме протекало за счет окисления 105 г белков, 99 г жиров и 417 г углеводов. Зная количество тепла, образуемого при окислении 1 г каждого из веществ (см. табл. 19), нетрудно рассчитать общую теплопродукцию организма за сутки:

Основной обмен

Интенсивность окислительных процессов и превращения энергии находится в зави­симости от индивидуальных особенностей организма (пол, возраст, масса тела и рост, условия и характер питания, мышечная работа, состояние эндокринных желез, нервной системы и внутренних органов - печени, почек, пищеварительного тракта и др.), а также от условий внешней среды (температура, барометрическое давление, влажность воздуха и его состав, воздействие лучистой энергии и т. д.).

Чтобы определить присущий данному организму уровень окислительных процессов и энергетических затрат, проводится исследование в определенных стандартных усло­виях. При этом стремятся исключить влияние ряда факторов, которые существенно сказываются на интенсивности энергетических затрат, а именно мышечную работу, прием пищи, влияние температуры окружающей среды. Энергетические затраты организма в таких стандартных условиях получили название основного обмена.

Энергетические затраты основного обмена связаны с поддержанием минимально необходимого для жизни клеток уровня окислительных процессов и с деятельностью постоянно работающих органов и систем - дыхательной мускулатуры, сердца, почек, печени. Некоторая часть энергетических затрат основного обмена связана с поддержани­ем мышечного"тонуса. Освобождение в ходе всех этих процессов тепловой энергии обеспе­чивает ту теплопродукцию, которая необходима для поддержания температуры тела на постоянном уровне, как правило, превышающем температуру внешней среды.

Для определения основного обмена обследуемый должен находиться: 1) в состоянии мышечного покоя (положение лежа с расслабленной мускулатурой), не подвергаясь раздражениям, вызывающим эмоциональное напряжение; 2) натощак, т. е. через 12-16 ч после приема пищи; 3) при внешней температуре «комфорта» (18-20 °С), не вызывающей ощущения холода или жары.

Основной обмен определяют в состоянии бодрствования. Во время сна уровень окислительных процессов и, следовательно, энергетических затрат организма на 8-10% ниже, чем в состоянии покоя при бодрствовании.

Нормальные величины основного обмена человека. Величину основного обмена обычно выражают количеством тепла в больших калориях на 1 кг массы тела или на 1 м 2 поверхности тела за 1 ч или за одни сутки.

Для мужчины среднего возраста (примерно 35 лет), среднего роста (примерно 165 см) и со средней массой тела (примерно 70 кг) основной обмен равен 4,19 кДж (1 ккал) на 1 кг массы тела в час, или 7117 кДж (1700 ккал) в сутки; У женщин той же массы он примерно на 10% ниже.

Интенсивность основного обмена, пересчитанная на 1 кг массы тела, у детей значи­тельно выше, чем у взрослых. Величина основного обмена человека в возрасте от 20 до 40 лет сохраняется на довольно постоянном уровне. В пожилом возрасте основной обмен снижается.

Согласно формуле Дрейера, суточная величина основного обмена в килокалориях (//) составляет:

где V - масса тела в граммах, А - возраст человека, /< - константа, равная для муж­чины 0,1015, а для женщины-0,1129.

Формулы и таблицы основного обмена представляют средние данные, выведенные из большого числа исследований здоровых людей разного пола, возраста, массы тела и роста.

Определение основного обмена, согласно этим таблицам, у здоровых людей нормаль­ного телосложения дают приблизительно верные (ошибка « 5-8%) величины затраты энергии. Несоразмерно высокие для данной массы тела, роста, возраста и поверхности тела величины основного обмена наблюдаются при избыточной функции щитовидной железы. Понижение основного обмена встречается при недостаточности щитовидной железы (микседема), гипофиза, половых желез.

Правило поверхности

Если пересчитать интенсивность основного обмена на 1 кг массы тела, то у тепло­кровных животных разных видов (табл. 21) и у людей с разной массой тела и ростом она весьма различна. Если же произвести перерасчет интенсивности основного обмена на 1 м 2 поверхности тела, полученные у разных животных и людей величины различаются не столь резко.

Таблица 21

Величина теплопродукции у человека и других орга­низмов

Теплопродукция за 24 ч кДж (ккал)

Объект ис­

следования

на 1 кг массы

на 1 м поверх­

ности тела

Согласно правилу поверхности тела, затраты энергии теплокровными животными пропорциональны величине поверхности тела.

Ежедневная продукция тепла на 1 м 2 поверхности тела у человека равно 3559- 5234 кДж (850-1250 ккал), средняя цифра для мужчин-3969 кДж (948 ккал).

Для определения поверхности тела /? применяется формула:

Эта формула выведена на основании анализа результатов прямых измерений по­верхности тела. Константа К у человека равна 12,3. Более точная формула предложена Дюбуа:

где 1У 7 - масса тела в килограммах, Н - рост в сантиметрах.

Результат вычисления выражен в квадратных сантиметрах.

Правило поверхности верно неабсолютно. Как показано в приведенной выше табл. 21, оно представляет собой лишь правило, имеющее известное практическое значе­ние для ориентировочных расчетов освобождения энергии в организме.

Об относительности правила поверхности свидетельствует тот факт, что интенсив­ность обмена веществ у двух индивидуумов, у которых поверхность тела одинакова, может значительно различаться. Уровень окислительных процессов определяется не столько теплоотдачей с поверхности тела, сколько теплопродукцией, зависящей от биологических особенностей вида животных и состояния организма, которое обусловлено деятельностью нервной, эндокринной и других систем.

Обмен энергии при физическом труде

Мышечная работа значительно увеличивает расход энергии. Поэтому суточный расход энергии у здорового человека, проводящего часть суток в движении и физической работе, значительно превышает величину основного обмена. Это увеличение энергети­ческих затрат составляет рабочую прибавку, которая тем больше, чем интенсивнее мы­шечная работа.

При мышечной работе освобождается тепловая и механическая энергия. Отношение механической энергии ко всей энергии, затраченной на работу, выраженное в процентах, называется коэффициентом полезного действия. При физическом труде человека коэф­фициент полезного действия колеблется от 16 до 25% и равняется в среднем 20%, но в от­дельных случаях может быть и выше.

Коэффициент полезного действия изменяется в зависимости от ряда условий. Так, у нетренированных людей он ниже, чем у тренированных, и увеличивается по мере тренировки.

Затраты энергии тем больше, чем интенсивнее совершаемая организмом мышечная работа. Это видно из следующих данных: если затраты энергии в условиях основного обмена составляют в среднем 4,2 кДж (1 ккал) на 1 кг массы тела в час, то при спокойном сидении затраты энергии в среднем равны 5,9 кДж (1,4 ккал) на 1 кг массы тела в час, при стоянии без напряжения - 6,3 кДж (1,5 ккал), при легкой работе (канце­лярские служащие, портные, механики по тонким работам, учителя) -7,5-10,5 кДж (1,8-2,5 ккал), при небольшой мышечной работе, связанной с ходьбой (врачи, лаборан­ты, почтальоны, переплетчики)-11,8-13,4 кДж-(2,8-3,2 ккал), при труде, связанном с мышечной работой средней тяжести (металлисты, маляры, столяры), 13,4-16,8 кДж (3,2-4,0 ккал), при тяжелом физическом труде 21,0-31,5 кДж (5,0-7,5 ккал).

Взрослое население по энергетическим затратам делится на 4 группы в зависимости от особенностей профессии (табл. 22).

Таблица22 Величина энергетических затрат в зависимости от особенностей профессий

Особенности профессии

Общий суточный расход энергии

Лица, работа которых не связана с затратой физи­

9211 .-13 816 кДж (2200-

ческого труда или требует не существенных фи­

зических усилий

9838-14 654 кДж (2350-

обслуживания, труд которых не требует больших

физических усилий

Работники механизированного труда и сферы

10 467-15 491 кДж (2500-

обслуживания, труд которых связан со значи­

тельными физическими усилиями

Четвертая

Работники немеханизированного труда или частич­

12 142-17 585 кДж (2900-

но механизированного труда большой и средней

Значительные различия энергетической потребности в группах зависят от пола (у мужчин больше), возраста (снижаются после 40 лет), степени активности отдыха и уровня коммунального обслуживания.

Суточный расход энергии детей и подростков зависит от возраста и составляет в среднем:

В старости энергозатраты снижаются и к 80 годам составляют 8373-9211 (2000-2200 ккал).

Обмен энергии при умственном труде

При умственном труде энергетические затраты значительно ниже, че.м при физическом.

Трудные математические вычисления, работа с книгой и другие формы умственного труда, если они не сопровождаются движением, вызывают ничтожное (2-3%) повыше­ние затраты энергии по сравнению с полным покоем. Однако в большинстве случаев различные виды умственного труда сопровождаются мышечной деятельностью, в особен­ности при эмоциональном возбуждении работающего (лектор, артист, писатель, оратор и т. д.), поэтому и энергетические затраты могут быть относительно большими. Пережи­тое эмоциональное возбуждение может вызвать в течение нескольких последующих дней повышение обмена на 11-19%. "

Специфически-динамическое действие пищи

После приема пищи интенсивность обмена веществ и энергетические затраты орга­низма увеличиваются но сравнению с их уровнем в условиях основного обмена. Увеличение обмена веществ и энергии начинается через час, достигает максимума через 3 ч после приема пищи и сохраняется в течение нескольких часов. Влияние приема пищи, усили­вающее обмен веществ и энергетические затраты, получило название специфически-динамического действия пищи.

При белковой пище оно наиболее велико: обмен увеличивается в среднем на 30 %. При питании жирами и углеводами обмен увеличивается у человека на 14-15%.

Регуляция обмена энергии

Уровень энергетического обмена находится в тесной зависимости от физической активности, эмоционального напряжения, характера питания, степени напряженности терморегуляции и ряда других факторов.

Получены многочисленные факты, свидетельствующие об условнорефлекторном изменении потребления кислорода и энергообмена. Любой ранее индифферентный раздражитель, будучи связан во времени с мышечной деятельностью, может служить сигналом к увеличению обмена веществ и энергии.

У спортсмена в предстартовом состоянии разко увеличивается потребление кислоро­да, а следовательно, и энергообмен. То же происходит во время прихода на работу и при действии факторов рабочей обстановки у рабочих, деятельность которых связана с мы­шечными усилиями. Если под гипнозом испытуемому внушить, что он выполняет тяжелую мышечную работу, обмен у него может значительно повыситься, хотя в действительности он не производит никакой работы. Все это свидетельствует о том, что уровень энергети­ческого обмена в организме может изменяться под влиянием коры головного мозга.

Особую роль в регуляции обмена энергии играет гипоталамичсская область мозга. Здесь формируются регуляторные влияния, которые реализуются вегетативными нерва­ми или гуморальным звеном за счет увеличения секреции ряда эндокринных желез. Особенно выражение усиливают обмен энергии гормоны щитовидной железы - тироксин и трийодтиронин и гормон мозгового слоя надпочечника - адреналин.

ПИТАНИЕ

Задача физиологов в обосновании рационального питания состоит в том, чтобы указать состав и количество пищевых продуктов, которые могут удовлетворить потреб­ности организма. Понятие «пищевые продукты», или «пищевые средства», не следует

смешивать с понятием «питательные вещества». К питательным веществам относятся определенные группы химических соединений: белки, жиры, углеводы, минеральные соли, витамины и вода. В том или ином количестве они содержатся в любом продукте, который в большинстве случаев представляет собой смесь ряда веществ.

Калорические коэффициенты питательных веществ

Зная состав пищевых продуктов и их усвояемость, можно вычислить энергетическую ценность принятой пищи, используя так называемые калорические коэффициенты пита­тельных веществ. Калорическим, или тепловым, коэффициентом, называют количество тепла, освобождаемое при сгорании 1 г вещества. Калорические коэффициенты основных питательных веществ при окислении их в организме таковы.

Читайте также: