Что такое сжиженный природный газ (СПГ)


Любой газ можно превратить в жидкость простым сжатием, если только его температура ниже критической. Поэтому деление веществ на жидкости и газы в значительной мере условно. Те вещества, которые мы привыкли считать газами, просто имеют очень низкие критические температуры и поэтому при температуре, близкой к комнатной, не могут находиться в жидком состоянии. Наоборот, у веществ, причисляемых нами к жидкостям, критические температуры велики.
Первый газ (аммиак) был обращен в жидкость уже в 1799 г. Дальнейшие успехи в сжижении газов связаны с именем анг- лийского физика М. Фарадея (1791-1867), который сжижал газы путем их одновременного охлаждения и сжатия.
Ко второй половине XIX в. из всех известных в то время газов остались не обращенными в жидкость только шесть: водород, кислород, азот, оксид азота, оксид углерода и метан, - их назвали постоянными газами. Задержка в сжижении этих газов еще на четверть столетия произошла потому, что техника понижения температуры была развита слабо, и они не могли быть охлаждены до температуры ниже критической. Когда физики научились получать температуры порядка 1 К, удалось все газы, в том числе и гелий, обратить не только в жидкое, но и в твердое состояние.
Установки для сжижения газов
Существует много типов машин для получения жидких газов, в частности жидкого воздуха. В современных промышленных установках значительное охлаждение достигается путем расширения газа в условиях теплоизоляции (адиабатное расширение).
Такие машины называют детандерами (расширителями). Расширяющийся газ совершает работу, перемещая поршень (поршневые детандеры) или вращая турбину (турбинные детандеры), за счет своей внутренней энергии и поэтому охлаждается.
Высокопроизводительные турбодетандеры низкого давления были разработаны академиком П. Л. Капицей. Начиная с 50-х годов все крупные установки в мире для сжижения воздуха работают по схеме Капицы.
Капица Петр Леонидович (1894- 1984) - знаменитый советский физик; лауреат Нобелевской премии; ученик Э. Резерфорда.
Капица открыл сверхтекучесть жидкого гелия, разработал новые промышленные методы сжижения газов. Большое значение имеют работы Капицы по созданию сверхсильных магнитных полей и электронных генераторов больших мощностей.
На рисунке 6.14 приведена упрощенная схема поршневого детандера. Атмосферный воздух поступает в компрессор 1, где сжимается до давления в несколько десятков атмосфер. Нагретый при сжатии воздух охлаждается в теплообменнике 2 проточной водой и поступает в цилиндр детандера 3. Здесь он, расширяясь, совершает работу, толкая поршень, и охлаждается настолько сильно, что конденсируется в жидкость. Сжиженный воздух поступает в сосуд 4.
Воздух

Температура кипения жидкого воздуха очень низка. При атмосферном давлении она составляет -193 °С. Поэтому жидкий воздух в открытом сосуде, когда давление его паров равно атмосферному давлению, кипит. Так как окружающие тела значительно теплее, то приток теплоты к жидкому воздуху, если бы он хранился в обычных сосудах, был бы настолько значителен, что за очень короткий срок весь жидкий воздух испарился бы.
Хранение жидких газов

Рис. 6.15
Чтобы сохранить воздух в жидком состоянии, надо воспре-пятствовать его теплообмену с окружающей средой. С этой целью жидкий воздух (и другие жидкие газы) помещают в особые сосуды, называемые сосудами Дьюара. Сосуд Дьюара устроен так же, как и обычный термос. Он имеет двойные стеклянные стенки, из пространства между которыми выка- чан воздух (рис. 6.15). Это уменьшает теплопроводность сосуда. Внутреннюю стенку делают блестящей (посеребренной) для уменьшения нагревания излу-чением. У сосудов Дьюара узкое горлышко, при хранении в них сжиженных газов их оставляют открытыми, чтобы содержащийся в сосуде газ имел возможность постепенно испаряться. Благодаря затрате теплоты на испарение сжиженный газ остается все время холодным. В хорошем сосуде Дьюара жидкий воздух сохраняется в течение нескольких недель.
Применение сжиженных газов
Сжижение газов имеет техническое и научное значение. Сжижение воздуха используется в технике для разделения воздуха на составные части. Метод основан на том, что различные газы, из которых воздух состоит, кипят при различных температурах. Наиболее низкие температуры кипения имеют гелий, неон, азот, аргон. У кислорода температура кипения несколько выше, чем у аргона. Поэтому сначала испаряется гелий, неон, азот, а затем аргон, кислород.
Сжиженные газы находят широкое применение в технике. Азот идет для получения аммиака и азотных солей, употребляемых в сельском хозяйстве для удобрения почвы. Аргон, неон и другие инертные газы используются для наполнения электрических ламп накаливания, а также газосветных ламп. Наибольшее применение имеет кислород. В смеси с ацетиленом или водородом он дает пламя очень высокой температуры, применяемое для резки и сварки металлов. Вдувание кислорода (кислородное дутье) ускоряет металлургические процессы. Доставляемый из аптек в подушках кислород облегчает страдания больных. Особенно важным является применение жидкого кислорода в качестве окислителя для двигателей космических ракет. Двигатели ракеты-носителя, поднявшей в космос первого космонавта Ю. А. Гагарина, работали на жидком кислороде.
Жидкий водород используется как топливо в космических ракетах. Например, для заправки американской ракеты «Сатурн-5» требуется 90 т жидкого водорода. Газы, применяемые в промышленности, медицине и т. п., легче перевозить, когда они находятся в сжиженном состоянии, так как при этом в том же объеме заключается большее количество вещества. Так доставляют в стальных баллонах жидкую углекислоту на заводы газированных вод.
Жидкий аммиак нашел широкое применение в холодильниках - огромных складах, где хранятся скоропортящиеся продукты. Охлаждение, возникающее при испарении сжиженных газов, используют в рефрижераторах при перевозке скоропортящихся продуктов.
Значение сжижения газов для научных исследований
Превращение всех газов в жидкое состояние лишний раз подтвердило единство в строении веществ. Оно показало, что состояние вещества зависит от его температуры и давления, а не определено раз и навсегда для данного тела.
С другой стороны, достигнутые при сжижении газов низкие температуры широко раздвинули границы научных исследований и позволили обнаружить изменение многих свойств веществ при сверхнизких температурах. Упругие тела, сделанные из каучука, становятся при этих температурах хрупкими, как стекло. Кусок резины после охлаждения в жидком воздухе легко ломается, а резиновый мячик при ударе разбивается вдребезги. Ртуть и цинк при низких температурах делаются ковкими, а свинец - пластический металл - упругим, как сталь. Колокольчик, сделанный из свинца, звенит. Очень многие вещества (спирт, яичная скорлупа и др.) после освещения их белым светом создают собственное излучение различного цвета (преимущественно зелено-желтого).
При низких температурах интенсивность теплового движения резко уменьшается, поэтому оказывается возможным наблюдение целого ряда явлений, скрытых при более высоких температурах тепловым движением молекул.
При температурах, близких к абсолютному нулю, сильно изменяются электрические свойства некоторых металлов и сплавов: их сопротивление электрическому току становится равным нулю. Это явление, называемое сверхпроводимостью, открыто Г. Камерлинг-Оннесом в 1911 г. При температуре 2,2 К в жидком гелии исчезает вязкость, т. е. он приобретает свойство сверхтекучести. Сверхтекучесть открыл П. JI. Капица в 1938 г.
Такие газы, как азот, кислород, водород, гелий, могут находиться в жидком состоянии только при очень низких температурах. При таких температурах обнаруживаются особые свойства веществ, маскируемые в обычных условиях тепловым движением молекул. Эти свойства находят применение как в науке, так и в технике.

Более 30 лет в СССР, затем в России сжиженные и сжатые газы применяются в народном хозяйстве. За это время пройден достаточно трудный путь по организации учета сжиженных газов, разработке технологий по их перекачке, измерению, хранению, транспортировке.

От сжигания до признания

Исторически сложилось, что потенциал газа как источника энергии был недооценен в нашей стране. Не видя экономически обоснованных сфер применения, нефтепромышленники старались избавиться от легких фракций углеводородов, сжигали их без пользы. В 1946 году выделение газовой промышленности в самостоятельную отрасль революционно изменило ситуацию. Объём добычи этого типа углеводородов резко увеличился, как и соотношение в топливном балансе России.

Когда ученые и инженеры научились сжижать газы, стало возможным строить газосжижающие предприятия и доставлять голубое топливо в отдаленные районы, не оборудованные газопроводом, и использовать в каждом доме, в качестве автомобильного топлива, на производстве, а также экспортировать его за твердую валюту.

Что такое сжиженные углеводородные газы

Они делятся на две группы:

  1. Сжиженные углеводородные газы (СУГ) - представляют собой смесь химических соединений, состоящую в основном из водорода и углерода с различной структурой молекул, то есть смесь углеводородов различной молекулярной массы и различного строения.
  2. Широкие фракции легких углеводородов (ШФЛУ) - включают большей частью смеси легких углеводородов гексановой (С6) и этановой (С2) фракций. Их типичный состав: этан 2-5 %, сжиженный газ фракций С4-С5 40-85%, гексановая фракция С6 15-30%, на пентановую фракцию приходится остаток.

Сжиженный газ: пропан, бутан

В газовом хозяйстве именно СУГ применяются в промышленном масштабе. Их основными компонентами являются пропан и бутан. Также в виде примесей в них содержатся более легкие углеводороды (метан и этан) и более тяжелые (пентан). Все перечисленные компоненты являются предельными углеводородами. В состав СУГ могут входить также непредельные углеводороды: этилен, пропилен, бутилен. Бутан-бутилены могут присутствовать в виде изомерных соединений (изобутана и изобутилена).

Технологии сжижения

Сжижать газы научились в начале XX века: в 1913 году за сжижение гелия вручена Нобелевская премия голландцу К. О. Хейке. Некоторые газы доводятся до жидкого состояния простым охлаждением без дополнительных условий. Однако большинство углеводородных «промышленных» газов (углекислый, этан, аммиак, бутан, пропан) сжижаются под давлением.

Производство сжиженного газа осуществляется на газосжижающих заводах, расположенных либо около месторождений углеводородов, либо на пути магистральных газопроводов около крупных транспортных узлов. Сжиженный (или сжатый) природный газ можно легко доставить автомобильным, железнодорожным или водным транспортом к конечному потребителю, где его можно хранить, после чего снова преобразовать в газообразное состояние и подавать в сеть газоснабжения.

Специальное оборудование

Для того чтобы сжижать газы, используются специальные установки. Они значительно уменьшают объём голубого топлива и повышают плотность энергии. С их помощью можно осуществлять различные способы переработки углеводородов в зависимости от последующего применения, свойств исходного сырья и условий окружающей среды.

Установки по сжижению и сжатию предназначены для обработки газа и имеют блочное (модульное) исполнение либо полностью контейнеризированы. Благодаря регазификационным станциям становится возможным обеспечение дешёвым природным топливом даже самых отдалённых регионов. Система регазификации также позволяет хранить природный газ и подавать его необходимое количество в зависимости от потребности (например, в периоды пикового потребления).

Большинство различных газов в сжиженном состоянии находят практическое применение:

  • Жидкий хлор используют для дезинфекции и отбеливания тканей, применяется как химическое оружие.
  • Кислород - в лечебных учреждениях для пациентов с проблемами дыхания.
  • Азот - в криохирургии, для замораживания органических тканей.
  • Водород - как реактивное топливо. В последнее время появились автомобили на водородных двигателях.
  • Аргон - в промышленности для резки металлов и плазменной сварки.

Также можно сжижать газы углеводородного класса, наиболее востребованные из которых - пропан и бутан (н-бутан, изобутан):

  • Пропан (C3H8) является веществом органического происхождения класса алканов. Получают из природного газа и при крекинге нефтепродуктов. Бесцветный газ без запаха, малорастворим в воде. Применяют как топливо, для синтеза полипропилена, производства растворителей, в пищевой промышленности (добавка E944).
  • Бутан (C4H10), класс алканов. Бесцветный горючий газ без запаха, легко сжижаемый. Получают из газового конденсата, нефтяного газа (до 12%), при крекинге нефтепродуктов. Используют как топливо, в химической промышленности, в холодильниках как хладоген, в пищевой промышленности (добавка E943).

Характеристики СУГ

Основное преимущество СУГ - возможность их существования при температуре окружающей среды и умеренных давлениях как в жидком, так и в газообразном состоянии. В жидком состоянии они легко перерабатываются, хранятся и транспортируются, в газообразном имеют лучшую характеристику сгорания.

Состояние углеводородных систем определяется совокупностью влияний различных факторов, поэтому для полной характеристики необходимо знать все параметры. К основным из них, поддающимся непосредственному измерению и влияющим на режимы течения, относятся: давление, температура, плотность, вязкость, концентрация компонентов, соотношение фаз.

Система находится в равновесном состоянии, если все параметры остаются неизменными. При таком состоянии в системе не происходит видимых качественных и количественных метаморфоз. Изменение хотя бы одного параметра нарушает равновесное состояние системы, вызывая тот или иной процесс.

Свойства

При хранении сжиженных газов и транспортировании их агрегатное состояние меняется: часть вещества испаряется, трансформируясь в газообразное состояние, часть конденсируется - переходит в жидкое. Это свойство сжиженных газов является одним из определяющих при проектировании систем хранения и распределения. При отборе из резервуаров кипящей жидкости и транспортировании ее по трубопроводу часть жидкости испаряется из-за потерь давления, образуется двухфазный поток, упругость паров которого зависит от температуры потока, которая ниже температуры в резервуаре. В случае прекращения движения двухфазной жидкости по трубопроводу давление во всех точках выравнивается и становится равным упругости паров.

§4. Сжижение газов с использованием эффекта Джоуля – Томсона (метод Линде)

В исторически первой машине для сжижения газов (воздуха) в технических масштабах (Линде и Гэмпсон, 1895 г.) для охлаждения газов ниже критической температуры и последующего сжижения использовался метод дросселирования. В настоящее время для этой цели применяются главным образом машины с расширением в детандерах. Но все же приведем здесь схему машины Линде, поскольку в ней наряду с использованием эффекта Джоуля – Томсона был применен важный конструктивный принцип противоточного теплообмена , в той или иной форме и теперь применяемый во всех ожижительных машинах.

Схема машины Линде представлена на рис. 3.

Воздух поступает в компрессор К , в котором он сжимается до 200 атм. После этого он проходит в змеевик, охлаждаемый проточной водой, где о отдает тепло, выделившееся при сжатии. Таким образом, в дальнейший путь к сжижению идет сжатый газ с температурой такой же, как и до сжатия. Этот газ проходит затем через змеевик ab к дроссельному вентилю (крану) V 1 и расширяется через него в приемник f до давления в 1 атм. При расширении газ несколько охлаждается, но, конечно, не настолько, чтобы превратиться в жидкость.

Охлажденный, но не сжижившийся газ возвращается затем обратно через змеевик cd . Оба змеевика, ab и cd , расположены друг относительно друга так, что между ними, а также между порциями газа, проходящими по ним, существует тепловой контакт. Благодаря этому испытавший расширение и охлаждение газ охлаждает идущую ему навстречу порцию сжатого газа, которой еще предстоит расшириться через вентиль V 1 . В этом и заключается метод противоречивого обмена теплом. Ясно, что рис. 3

вторая порция газа подойдет к расширительному

вентилю V 1 , имея более низкую температуру, чем первая, а после дросселирования она еще более понизится. Проходя в свою очередь через теплообменник, этот уже дважды охлажденный газ снова поглотит тепло от новой встречной порции сжатого газа, и т.д. Таким образом к вентилю будет подходить все более холодный газ. Через некоторое время поле начала работы машины постепенное охлаждение газа холодными встречными потоками приведет к тому, что газ при очередном дросселировании начнет частично сжижаться и накапливаться в приемнике f , откуда он может быть слит через кран V 2 в сосуд Дьюра.

При установившемся процессе работы машины в разных ее местах наблюдаются приблизительно такие температуры: у входа в змеевик ab температура 293 К (комнатная); на выходе из этого змеевика 170 К; после дросселирования 80 К; у входа а змеевик cd (в точке с) 80 К; на выходе из него – комнатная температура. Давление перед вентилем 200 атм, после дросселирования 1 атм.

Устройство, включающее оба змеевика ab и cd , в котором происходит охлаждение газа встречным потоком охлажденного газа, называется теплообменником . В машине Линде теплообменник осуществляется в виде вставленных одна в другую трубок, которым вместе придавалась форма змеевика. Газ высокого давления поступает по внутренней трубке (рис. 4). Встречный поток охлажденного газа низкого давления проходит по внешней трубке, омывая внутреннюю и охлаждая, таким образом, газ в ней.

Рис. 4 рис. 5

Описанный принцип противотока применяется во всех холодильных машинах, хотя конструкции теплообменников подверглись значительным изменениям. В современных установках они обеспечивают лучший теплообмен и, кроме того, делают возможной очистку сжижаемого газа от примесей.

На схемах изображены теплообменники расположенными рядом змеевиками, причем жирными линиями показывают трубки, по которым проходит газ под высоким давлением, тонкими – трубки, в которых проходит газ низкого давления.

В настоящее время машины типа Линде для сжижения воздуха применяются редко. Однако для сжижения водорода и гелия машины этого типа, действие которых основано на использовании эффекта Джоуля – Томсона, применяются и до сих пор. В качестве примера рассмотрим схему одной из машин для сжижения гелия.

Так как температура инверсии эффекта Джоуля – Томсона T i для гелия очень низкая (около 50 К), то он должен быть предварительно охлажден до температуры ниже T i . в описываемой машине гелий охлаждается жидким водородом до температуры 14,5 К. Работу машины иллюстрирует схема, представленная на рис. 5

Гелий, сжатый компрессором до давления 30 атм, поступает в машину двумя потоками по двум трубкам, соединяющимся вместе в точке О. обе эти трубы являются частями двух теплообменников – І и ІІ. В теплообменнике І гелий охлаждается встречным потоком газообразного гелия, испаряющегося из приемника f и прошедшего уже через теплообменник ІV. В теплообменнике ІІ вторая часть сжатого газа охлаждается встречным потоком газообразного водорода, испаряющегося из ванны с жидким водородом Н.

Соединившись в точке О, оба потока вместе поступают в змеевик ІІІ, проходящий через жидководородную ванну Н, и принимает ее температуру (14,5 К). пройдя через эту ванну, гелий попадает в теплообменник ІV, где он дополнительно охлаждается испаряющимся из приемника гелием до температуры 5,8 К. При такой температуре гелий подвергается дросселированию через вентиль V и сжижается.

Весь аппарат помещается в вакуумный чехол, обеспечивающий надежную тепловую изоляцию.

Приведенные выше цифры для температур в разных частях установки относятся, конечно, к установившемуся режиму работы. Во время разгона машины температура гелия перед дросселированием выше, чем 5,8 К (но, конечно, не выше 14,5 К), так как в это время в приемнике еще нет жидкого гелия. Машина обладает проводимостью около 10 литров жидкого гелия в час, что является сравнительно высокой цифрой.

§5. Сжижение газов методом адиабатного расширения в детандерах (метод Клода)

Применение детандеров, в которых газ охлаждается при адиабатном расширении с совершением внешней работы, повышает, как мы уже видели, эффективность ожижительных машин. В машинах для сжижения гелия использование расширения в детандерах позволяет, кроме того, отказаться от предварительного охлаждения газа жидким водородом – веществом, легко воспламеняющимся и взрывоопасным. Обе эти причины привели к широкому использованию детандерных машин.

Впервые такая машина была построена Клодом (1902 г.) для сжижения воздуха. Схема машины представлена на рис. 6.

рис. 6

Газ подвергается изотермическому сжатию в компрессоре К, откуда он поступает в теплообменник Е 1 . Здесь он разделяется на два потока (в точке О). первый идет через теплообменник Е 2 к дроссельному вентилю и подвергается дросселированию с охлаждением за счет эффекта Джоуля – Томсона; второй поток (на его долю приходится 80 % газа) поступает в детандер, расширяется в нем, совершая работу, и за этот счет охлаждается. Из детандера охлажденный газ возвращается в теплообменник Е 1 , охлаждая встречную очередную порцию сжатого газа. К нему в точке О" присоединяется и тот газ, который охладился в результате дросселирования. До этого он, проходя через теплообменник Е 2 , тоже охлаждал встречный газовый поток.

Из приведенного краткого описания видно,что охлаждение в детандере используется для предварительного охлаждения перед дросселированием.

В первой машине Клода детандер представлял собой поршневую машину. Работу, которую в ней совершает сжатый газ, можно использовать для облегчения работы компрессора, для принудительной смазки машины и т.д.

Условия, характерные для машины Клода (ожижающей воздух), примерно таковы: давление на выходе компрессора 40 атм, температура на входе в детандер (т.е. после охлаждения в теплообменник Е 1) 200 К; температура после расширения в детандере 110 К при давлении в 1 атм.

Существует много различных по конструкции машин типа Клода для сжижения воздуха. Одной из самых интересных является машина П. Л. Капицы, в которой поршневой детандер заменен турбиной (турбодетандер). Другой возможностью этой машины является низкое давление, по которым газ поступает в детандер. Оно равно лишь 6,5 атм. Зато в этой машине почти весь газ (а не 80%, как в машине Клода) проходит через детандер. В результате расширения в турбодетандере газ охлаждается до 86 К и сжижает ту часть газа, которая миновала детандер. Получившаяся жидкость находится под повышенным давлением и дросселируется через соответствующий вентиль к боле низкому давлению.

Расширение в детандерах (исключительно поршневых) используется также в машинах для сжижения водорода и гелия. Первая детандерная машина для сжижения гелия также была построена П. Л. Капицей (1934 г). Она была рассчитана на предварительное охлаждение гелия не жидким водородом, а жидким азотом . Недостающее охлаждение создавалось расширением в детандере. Самое ожижение газа производилось дросселированием.

При использовании детандеров в гелиевых ожижительных машинах возникает острая проблема смазки, так как при тех низких температурах, которые создаются в таких машинах, все смазочные средства твердеют. В детандере П. Л. Капицы смазкой служит сам гелий, для которого между поршнем и цилиндром оставлялся зазор около 0,05 мм. Впоследствии Коллинз (1947 г) построил детандерную машину для сжижения гелия, усовершенствовав детандер П. Л. Капицы (зазор в детандере Коллинза не превышает 10 микрон). Машина Коллинза снабжен двухступенчатым детандером и может работать без предварительного охлаждения гелия. Производительность машины сравнительно велика – до 10 литров в час, а с предварительным охлаждением жидким азотом – до 30 литров в час.

§6. Некоторые свойства сжиженных газов

Сжиженные газы, о которых шла речь выше, - азот, кислород, водород и гелий, - позволяют получить низкие температуры в интервалах температур, простирающихся от температур их кипения под атмосферным давлением до температур их отвердения, до которого их можно довести, откачивая пары над ними (исключение составляет гелий, не твердеющий ни при каком охлаждении). В твердом состоянии эти газы могут служить хладоагентами, так как трудно создать надежный тепловой контакт между ними и охлажденными телами.

Температура кипения под давлением 1атм, К

Температура отвердения, К

Не твердеет

Упругость пара при температуре отвердения, мбар

Плотность при температуре кипения при 1 атм, кг/м 3

Теплота испарения при температуре кипения при 1 атм, кДж/кг

Плотность в твердом состоянии, кг/м 3

В таблице приведены данные, показывающие, какие именно интервалы температур перекрываются этими сжиженными газами. Там же приведены и некоторые другие сведения о них.

Из таблицы видно, что сжиженные газы позволяют непосредственно получать низкие температуры в следующих интервалах:

63,14 – 77,32 К – жидкий азот,

54,36 – 90,12 К – жидкий водород,

14,04 – 20,39 К – жидкий водород,

0,7 – 4,21 К – жидкий гелий (0,7 К – наинизшая температура, достигаемая откачкой паров жидкого гелия Не 4 .)

С помощью этих сжиженных газов могут быть получены и любые промежуточные температуры, хотя это требует применения особых, иногда весьма сложных устройств.

Устройства эти, служащие для проведения исследований как внутри, так и вне приведенных выше температурных интервалов, называются криостатами . Они позволяют получить не только нужную температуру, но и поддерживать ее во время исследования постоянной. Они снабжаются даже тем или иным термометром для измерения температуры.

На рис. 7 показан простейший криостат для исследований в области гелиевых температур.

Он состоит из двух, помещенных один на другой сосудов Дьюара – внутреннего А и внешнего В. первый из них рис.7

наполняется жидким гелием, второй – жидким азотом. Такое азотное «окружение» необходимо для уменьшения подвода тепла извне, что позволяет замедлить испарение и продлить тем самым «срок службы» налитого жидкого гелия. Внутренний сосуд вакуумно плотно закрывается крышкой (уплотнение обеспечивается резиновой манжетой m, охватывающей крышку и сосуд). Трубка N в крышке служит для откачки паров гелия, что позволяет изменять его температуру. Поддерживая упругость паров постоянной (с помощью особого устройства вне криостата, не показанного на рисунке), можно поддерживать и температуру жидкости постоянной. Манометр (также не показанный на рисунке), присоединенный к криостату через трубку М, служит для измерения упругости паров, а по ней судят о температуре жидкости. Исследуемое тело, помещаемое в жидкий гелий, крепится к крышке тонкостенными трубками из материала,плохо проводящего тепло.

Сжиженным газом . Карбюратор К-126 Г. Работа четырехтактного двигателяКонтрольная работа >> Транспорт

Двигателя сжиженным газом . Изобразите схему системы питания автомобиля ГАЗ -2417 В газобаллонной установке на сжиженном газе ... . Фильтры газа . Для очистки газа от механических примесей применяют фильтры газа . Сжиженный газ от механических...

  • Проблемы и перспективы производства и экспорта российского природного газа

    Реферат >> Экономика

    СПГ используется специально разработанная технология сжижения газа с применением двойного смешанного хладагента, повышающая... судов, осуществляющих транспорт крупнотоннажных грузов сжиженных газов» . В этом кодексе приводятся требования, включающие...

  • Морской транспорт сжиженного природного газа

    Реферат >> Промышленность, производство

    ... % от ее количества содержащегося в сжиженном газе . В процессе сжижения используются различные виды установок - дроссельные... танкеры для перевозки сжиженных нефтяных газов . У наибольшего танкера для перевозки сжиженных газов - «Хилли», построенного...

  • Сжиженный природный газ или сокращенно СПГ , как принято называть его в энергетической отрасли (англ. соотв. Liquefied Natural Gas , сокр. LNG ) представляет собой обыкновенный природный газ, охлажденный до температуры –162°С (так называемая температура сжижения ) для хранения и транспортировки в жидком виде. Хранится сжиженный газ в при температуре кипения, которая поддерживается вследствие испарения СПГ . Данный способ хранения СПГ связан с тем, что для метана, основной составляющей СПГ , критическая температура –83°С, что гораздо ниже температуры окружающей среды, и не предоставляет возможным хранить сжиженный природный газ в резервуарах высокого давления (для справки: критическая температура для этана составляет +32°С, для пропана +97°С). Для использования СПГ подвергается испарению до исходного состояния без присутствия воздуха. При (возвращении газа в исходное парообразное состояние ) из одного кубометра сжиженного газа образуется около 600 кубометров обычного природного газа.

    Температура сжиженного газа

    Чрезвычайно низкая температура СПГ делает его криогенной жидкостью . Как правило, вещества, температура которых составляет –100°С (–48°F) или еще ниже, считаются криогенными и требуют специальных технологий для обработки. Для сравнения, самая низкая зарегистрированная температура на Земле составляет –89,2°С (Антарктика), а в населенном пункте –77,8°С (поселок Оймякон, Якутия). Криогенная температура сжиженного природного газа означает, что контакт с СПГ может вызвать изменение свойств контактирующих материалов, которые впоследствии станут ломкими и потеряют свою прочность и функциональность. Поэтому в отрасли СПГ используют специальные и технологии.

    Химический состав СПГ

    Сырая нефть и природный газ являются ископаемыми видами топлива, известными как «углеводороды» , потому что содержат химические комбинации атомов углерода и водорода. Химический состав природного газа зависит от места добычи газа и его обработки. Сжиженный природный газ представляет собой смесь метана, этана, пропана и бутана с небольшим количеством более тяжелых углеводородов и некоторых примесей, в частности, азотных и комплексных соединений серы, воды, углекислого газа и сероводорода, которые могут существовать в исходном газе, но должны быть удалены перед . Метан является самым главным компонентом, обычно, хотя и не всегда, более чем на 85% по объему.

    Плотность сжиженного газа

    Поскольку СПГ представляет собой некую смесь, плотность сжиженного природного газа изменяется незначительно с ее фактическим составом. Плотность сжиженного природного газа , как правило, находится в диапазоне 430–470 килограммов на кубический метр, а его объем составляет примерно 1/600 объема газа в атмосферных условиях. Это делает его примерно на треть легче, чем воздух. Другим следствием этих фактов является то, что СПГ имеет меньшую плотность, чем вода, что позволяет ему находиться на поверхности в случае разлива и вернуться к парообразному состоянию достаточно быстро.

    Другие свойства СПГ

    Сжиженный природный газ не имеет запаха, бесцветный, не вызывает коррозии, не горюч и не токсичен. СПГ хранится и транспортируется при сверхнизких температурах при атмосферном давлении (отсутствие высоких давлений). При воздействии на окружающую среду СПГ быстро испаряется, не оставляя следов на воде или почве.

    В своей жидкой форме сжиженный природный газ не имеет способность взрываться или воспламеняться. При испарении природный газ может воспламениться в случае контакта с источником горения, и если концентрация испарений в воздухе будет составлять от 5 до 15 процентов. Если концентрация паров газа менее 5 процентов, то для начала возгорания испарений недостаточно, а если более 15 процентов, то в окружающей среде будет нехватка кислорода.

    Преимущества сжиженного природного газа

    1. В плотность газа увеличивается в сотни раз, что повышает эффективность и удобство хранения, а также транспортировки и потребления энергоносителя.
    2. Сжиженный природный газ – нетоксичная криогенная жидкость , хранение которой осуществляется в теплоизолированной емкости при температуре –162°С. Большие объемы СПГ возможно хранить в при атмосферном давлении.
    3. Возможность межконтинентальных перевозок СПГ специальными , а также перевозка железнодорожным и автомобильным видами транспорта в цистернах.
    4. Сжиженный природный газ дает возможность газификации объектов, удаленных от магистральных трубопроводов на большие расстояния, путем создания резерва СПГ непосредственно у потребителя, избегая строительства дорогостоящих трубопроводных систем.

    С точки зрения потребителя, преимущества сжиженного природного газа, исходя из его , состоят еще и в том, что СПГ является не только источником , транспортируемого по газопроводам, а также источником ШФЛУ (широкая фракция легких углеводородов – этана, пропана, бутанов и пентанов), входящих в состав СПГ и выделяемых из СПГ при регазификации . Эти углеводороды используются в качестве нефтехимического сырья и в качестве источника экологически чистого топлива для различных видов транспорта (а также в быту). В будет происходить выделение фракции С 2 + или С 3 +. Возможность перевозить ШФЛУ в составе сжиженного природного газа выступает не только в пользу потребителя, но также решает и проблемы производителя по транспортировке ШФЛУ с газового месторождения.

    Сжиженный природный газ представляет собой безопасный, экологически чистый вид топлива с высокими энергетическими характеристиками и октановым числом. Цена СПГ по стоимости у потребителя ниже цены сжиженного нефтяного газа, мазута и тем более дизельного топлива.

    СЖИЖЕНИЕ ГАЗОВ - производят при охлаждении их ниже критич. темп-ры Т к (см. Критическая точка ).С. г. с критич. темп-рой выше темп-ры окружающей среды (С1 2 , NH 3 , CO 2 и др.) производится сжатием их в компрессорах и последующей конденсацией в теплообменниках, охлаждаемых водой или холодильным рассолом. Для С. г. с критич. темп-рой ниже темп-ры окружающей среды их предварительно охлаждают с помощью соответствующих холодильных (криогенных) циклов.

    Идеальный цикл С. г. приведён на рис. 1: 1 - 2 - изобарич. охлаждение газа от темп-ры Т 0 до темп-ры Т 2 начала конденсации (T 2 ниже Т к) , изотерма 2-0 - конденсация газа; 1-3 - изотермич. сжатие газа, 3-0 - адиабатич. его расширение. Площадь под 1 -2 -0 соответствует отводимой при С. г. теплоте, площадь внутри 1 - 2 - 0- 3 - мин. работе A мин С. г.: где S Г, S Ж - энтропия, Н Г, Н Ж - энтальпия газа и жидкости соответственно.

    Рис. 1. Т - S-диаграм-ма идеального цикла сжижения газов (р - давление, Н - энтальпия) .

    Давления, необходимые для идеального цикла С. г., составляют сотни тысяч атм, поэтому на практике цикл неосуществим. Реальные затраты энергии при С. г. обычно превышают А мин в 5-10 и более раз.

    Совр. методы С. г. основаны на охлаждении предварительно сжатого газа при Джоуля - Томсона эффекте (т. е. при дросселировании - пропускании газа через пористую перегородку, кран, вентиль), изоэнтропич. расширении газа с совершением внеш. работы в детандере и при выпуске газа из сосуда пост. объёма (выхлоп). Процесс дросселирования необратим, идёт с возрастанием энтропии по закону: Н = const. Инверсионная темп-pa всех газов (темп-pa, при к-рой положит. становится отрицательным и газ начинает нагреваться), кроме Н 2 , Не и Ne, на сотни градусов выше темп-ры окружающей среды, и поэтому они могут быть охлаждены и сжижены простым дросселированием. Инверсионные темп-ры Н 2 , Не и Ne значительно ниже комнатных, поэтому их предварительно охлаждают (Н 2 и Ne - жидким азотом, Не - жидким водородом).

    Термодинамически наиб. эффективен метод С. г. с помощью детандера; этот метод в пром. установках является основным. В поршневых детандерах сжатый газ движет поршень и охлаждается, в турбодетандерах - вращает турбину. В большинстве случаев после детандера газ дополнительно охлаждают дросселированием. Процесс расширения газа в детандере: S = const.

    Рис. 2. Схема установки сжижения газов (а) и её Т - S-диаграмма (б); К - компрессор, Д - детандер, Т/о - теплообменники, Др - дроссель, Сб - сборник .

    На рис. 2 приведены типовая схема установки для С. г. (а Т - S -диаграмма (б )термодинамич. процессов в ней. После сжатия в компрессоре (1-2 )и предварит. охлаждения в теплообменнике (2-3 )поток сжатого газа делится на два: поток М отводится в детандер, где, расширяясь, производит работу, охлаждается (3-7 )и охлаждает вторую часть сжатого газа 1 - М , к-рый затем дросселируется и сжижается. Теоретически расширение газа в детандере должно протекать при пост. энтропии (3-6) , однако в результате разл. потерь реально идёт процесс 3-7 . В крупных установках С. г. применяют неск. детандеров, работающих в разных температурных интервалах. Спец. устройство позволяет получать сжиженный газ непосредственно в самом детандере и обходиться без дроссельной ступени. Для сжижения небольших кол-в газа используются криогенно-газовые машины, представляющие собой комбинацию компрессора, теплообменного аппарата и детандера. С помощью таких машин получают темп-ры до 10 К, т. е. достаточно низкие для сжижения всех газов, кроме гелия (для сжижения гелия пристраивается дополнит. дроссельная ступень). В небольшом объёме С. г. может производиться при охлаждении испаряющейся жидкостью с более низкой (чем получаемая) темп-рой кипения. Так, с помощью жидкого азота можно сжижать кислород, аргон, метан и др. газы, с помощью жидкого водорода - неон. Такой процесс энергетически невыгоден и применяется только в лаб. условиях.

    Подвергаемые сжижению газы должны быть очищены от примесей, к-рые имеют тем-ру замерзания более высокую, чем в цикле сжижения данного газа, и, затвердевая, могут закупорить теплообменную аппаратуру. Сжижение газов (N, О 2 , Н 2 , природного газа и др.) - крупная отрасль хим. пром-сти.

    Лит.: Справочник по физико-техническим основам криогеники, под ред. М. П. Малкова, 3 изд., М., 1985; Фрадков А. Б., Что такое криогеника, М., 1991. А. Б. Фрадков .

    Читайте также: