Таблица по биологии фазы мейоза. Что такое мейоз? Биологическое значение процесса

Подробно изучить процесс прохождения одной из форм деления диплоидной клетки, а именно со схемой мейоза, поможет данная статья. В ней вы узнаете из скольких фаз состоит данный процесс, какие особенности имеет каждая фаза, в какой фазе происходит конъюгация хромосом, что такое кроссинговер и какая результативность каждого этапа деления.

Значение понятия «мейоз»

Данная форма деления в основном характерна для клеток половой системы, а именно яичников и сперматозоидов. С помощью мейоза из материнской диплоидной клетки образуются четыре гаплоидные гаметы с n набором хромосом.

Состоит процесс из двух стадий:

  • Редукционная, мейоз 1 - состоит из четырёх фаз: профаза, метафаза, анафаза и телофаза. Первое деление мейоза заканчивается образованием из диплоидной клетки двух гаплоидных.
  • Еквационная стадия, мейоз 2 , процессуально схожа с митозом. Для этого этапа характерно разделение сестринских хромосом и расхождение их к разным полюсам.

Каждый этап состоит из четырёх последовательных фаз, которые плавно переходят одна в другую. Между двумя стадиями деления интерфаза практически отсутствует, поэтому повторный процесс репликации ДНК не происходит.

Рис. 1. Схема первого деления мейоза.

Особенностью первой стадии деления является профаза 1, которая состоит из отдельных пяти этапов. Объяснение процессов, которые происходят на каждом из них, вы найдёте далее в таблице. В ходе профазы 1 хромосомы укорачиваются за счёт спирализации. Гомологичные хромосомы так плотно соединяются друг с другом, что происходит процесс конъюгации (сближение и слияние участков хромосом).

В это время некоторые участки несестринских хромосом могут обменяться друг с другом, такой процесс называется кроссинговером.

Рис. 2. Схема второго мейотического деления.

Таблица по фазам мейоза

Фаза

Особенности

Профаза 1

Состоит из пяти этапов:

  • Лептотена (тонкие нити) - вместо гранул хроматина появляются тонкие нити хромосом;
  • Зиготена (объединение нитей) - происходит процесс конъюгации;
  • Пахитена (толстые нити) - характерен кроссинговер участков хромосом;
  • Диплотена (двойные нити) - просматриваются хиазмы и хроматиды;
  • Диакинез – укорачиваются хромосомы, центромеры отталкиваются друг от друга, растворяются ядерные мембраны и ядрышко, формируется веретено деления.

Метафаза 1

Хромосомы выстраиваются на экваторе веретена деления, при этом ориентация центромер к полюсам абсолютно случайная.

Анафаза 1

Гомологичные хромосомы отходят к разным полюсам, при этом сестринские хромосомы всё ещё соединены центромерой.

Телофаза 1

Конец телофазы обозначен деспирализацией хромосом и образованием новой ядерной оболочки.

Профаза 2

Восстанавливается новое веретено деления, ядерная мембрана растворяется.

Метафаза 2

Хромосомы выстраиваются в экваториальной части веретена.

Анафаза 2

Центромеры расщепляются и хроматиды движутся к противоположным полюсам.

Телофаза 2

Из одного гаплоидного ядра образуются два с гаплоидным набором, внутри которых находится одна хроматида.

В результате такого деления из одной диплоидной клетки образуется четыре гаметы с гаплоидным набором. Генетически у каждой из четырёх клеток своё особенное генетическое содержимое.

ТОП-4 статьи которые читают вместе с этой

Рис. 3. Схема гаметогенеза.

Процесс кроссинговер мейозу 2 не характерен, так как обмен участками между хромосомами происходит в профазе первого деления.

Что мы узнали?

Деление клеток половых желёз происходит с помощью мейоза, который состоит из двух этапов деления. Каждая стадия имеет четыре фазы: профазу, метафазу, анафазу и телофазу. Особенностью первого этапа деления является образование двух клеток с гаплоидным набором хромосом. В результате второго деления количество образованных гамет равно четырём.

Тест по теме

Оценка доклада

Средняя оценка: 4.1 . Всего получено оценок: 186.

Профаза первого деления мейоза является чрезвычайно длительным процессом. Ее длительность у разных живых организмов составляет от нескольких дней до нескольких десятков лет. В связи с этим принято условно делить ее на несколько фаз (лептотена, зиготена, пахитена, диплотена, диакинез), во время которых происходят различные события. Важно помнить, что эти фазы четко не разграничены и события одной фазы плавно перетекают в другую.
Во время Профазы1 происходят, среди прочих, события, имеющие огромное биологическое значение. Например, это конъюгация, взаимное соединение гомологичных, удвоенных в результате репликации хромосом, при этом образуются хромосомные комплексы, состоящие из четырех хроматид. Хроматиды соединены вместе с помощью специальной структуры — синаптонемного комплекса. Во время профазы 1 осуществляется и обмен участками между хроматидами гомологичных хромосом (но не между сестринскими хроматидами одного гомолога) — кроссинговер. В процессе профазы 1 происходит синтез примерно 1,5% хромосомной ДНК. Кроме того, хромосомы, в которых в течение этой фазы сохраняются не полностью упакованные, а значит, функциональные участки, продолжают активно синтезировать РНК и регулировать биосинтез белка.

  • Лептотена

  • Аудиофрагмент

  • Лептотена — стадия тонких нитей (хромосом). В начале лептотены происходит компактизация хроматиновых нитей и их превращение в хромосомы. Однако этот процесс не заканчивается. Длина каждой хроматиновой нити в конце этой стадии на 1-2 порядка длиннее, чем у гиперспирализованных хромосом в метафазе1. Это имеет большое биологическое значение, поскольку, не полностью упакованные участки ДНК сохраняют функциональную активность в течение всей профазы1.

    Это позволяет, во-первых, обеспечивать белковым синтезом сложнейшие события во время коньюгации гомологичных хромосом, формирования и разрушения хиазм и кроссинговера. Во-вторых, при овогенезе - создать запас питательных веществ для будущей зиготы.

    Специфическое для каждого вида расположение гиперспирализованных участков - хромомер - на тонких хромосомах, позволяет составлять морфологические карты хромосом, которые используются в цитологическом анализе.

    Уже во время лептотены появляются признаки важнейшего процесса профазы1 - коньюгации гомологичных хромосом, основные события которого происходят во время зиготены.

  • Зиготена

  • Аудиофрагмент

  • Зиготена — стадия конъюгации гомологичных хромосом (синапсис). При этом гомологичные хромосомы (уже двойные после S-периода интерфазы) сближаются и образуют новый хромосомный ансамбль, никогда до этого не встречающийся при клеточном делении, — бивалент. Биваленты — это парные соединения удвоенных гомологичных хромосом, т.е. каждый бивалент состоит из четырех хроматид. Конечная цель формирования бивалентов - это совместное прохождение парой гомологичных хромосом метафазы1 для последующего точного попадания гомологичных хромосом в разные дочерние клетки.

    Главный вопрос до конца до сих пор не понятого процесса коньюгации - как в пространстве ядра хромосомы находят своего специфического гомолога?

    По-видимому, для этого узнавания особое значение имеют участки zДНК, равномерно распределенные по всей длине хромосомы. Расположение этих участков специфично для каждой пары гомологичных хромосом. Репликация zДНК происходит во время зиготены, ингибирование этой репликации (а это всего 0,3% от всей ДНК клетки) останавливает коньюгацию и мейоз. Эти факты свидетельствуют об особой роли zДНК в профазе1.

    Сближение гомологичных хромосом заканчивается формированием синаптонемного комплекса.

  • Синаптонемный комплекс

  • Аудиофрагмент

  • Синаптонемный комплекс встречается практически у всех представителей эукариот, которые обладают половым процессом. Он обнаружен у простейших, водорослей, низших и высших грибов, у высших растений и у животных. Объединение гомологов чаще всего начинается в теломерах и центромерах. В этих местах, а позднее и в других по всей длине соединяющихся хромосом происходит сближение осевых тяжей на расстояние около 100 нм. По своей морфологии синаптонемный комплекс имеет вид трехслойной ленты, состоящей из двух боковых компонентов - тяжей (толщиной 30-60 нм), и центрального осевого элемента (толщиной 10-40 нм); боковые компоненты отстоят друг от друга на 60-120 нм, общая ширина комплекса 160-240 нм. Материал хромосом располагается снаружи от боковых элементов. Каждый боковой элемент связан с петлями двух сестринских хроматид одного гомолога. Большая часть ДНК этих хроматид находится вне синаптонемного комплекса, и лишь менее 5% геномной ДНК входит в его состав, прочно ассоциируясь с белками. В состав этой ДНК входят уникальные и умеренно повторяющиеся последовательности нуклеотидов. Белковый состав синаптонемного комплекса сложен, он состоит более чем из десяти мажорных белков с молекулярными массами от 26 до 190 кДа.

  • Пахитена

  • Аудиофрагмент

  • Пахитена — стадия толстых нитей. Благодаря полной конъюгации гомологов профазные хромосомы как бы увеличились в толщине. Число таких толстых пахитенных хромосом гаплоидно (n), но они состоят из двух объединившихся гомологов, каждый из которых имеет по две сестринские хроматиды. Следовательно, и здесь количество ДНК равно 4с, а число хроматид — 4n.

    Между гомологичными хроматидами (хроматидами разных хромосом) начинают образовываться временные связи, которые многократно перекрещивают бивалент в разных точках - образуются хиазмы.

    На этой стадии происходит второе, чрезвычайно важное событие, характерное для мейоза, — кроссинговер, взаимный обмен идентичными участками по длине гомологических хромосом. Генетическим следствием кроссинговера является рекомбинация сцепленных генов. Здесь возникают отличные от исходных хромосомы, содержащие отдельные участки, пришедшие от их гомологов. Морфологически этот процесс в пахитене уловить нельзя.

    В пахитене также происходит синтез небольшого количества ДНК (всего около 1% от всей ДНК клетки), отличающейся тем, что она содержит повторяющиеся последовательности нуклеотидов. Но этот синтез репаративен, в результате его не образуются дополнительные или недостающие количества ДНК, а происходит восстановление утраченных.

    Весь процесс объединения и обмена между ДНК несестринских хроматид гомологов можно представить следующим образом. По длине хромосомы разбросаны участки повторяющихся последовательностей ДНК, которые при разрывах с помощью специальных ферментов легко могут образовать гибридные молекулы. Сшивание и восстановление целостности молекул с помощью специальных репаративных ферментов приводят к включению предшественников в ДНК на стадии пахитены. По всей вероятности, в этом процессе принимает участие так называемый рекомбинационный узелок — большой белковый ансамбль величиной около 90 нм. Он располагается в синаптонемном комплексе между гомологичными хромосомами, его расположение совпадает с местами хиазм.

    Мейоз – это особый способ деления эукариотических клеток, при котором исходное число хромосом уменьшается в два раза (от древнегреч. «мейон» – меньше – и от «мейозис» – уменьшение).

    Главной особенностью мейоза является конъюгация (спаривание) гомологичных хромосом с последующим расхождением их в разные клетки. Поэтому в первом делении мейоза вследствие образования бивалентов к полюсам клетки расходятся не однохроматидные, а двухроматидные хромосомы. В результате число хромосом уменьшается в два раза, и из диплоидной клетки образуются гаплоидные клетки.

    Исходное число хромосом в клетке, которая вступает в мейоз, называется диплоидным (2n). Число хромосом в клетках, образовавшихся в ходе мейоза, называется гаплоидным (n).

    Мейоз состоит из двух последовательных клеточных делений, которые соответственно называются мейоз I и мейоз II. В первом делении происходит уменьшение числа хромосом в два раза, поэтому его называют редукционным. Во втором делении число хромосом не изменяется; поэтому его называют эквационным (уравнивающим).

    Предмейотическая интерфаза отличается от обычной интерфазы тем, что процесс репликации ДНК не доходит до конца: примерно 0,2...0,4 % ДНК остается неудвоенной. Однако в целом, можно считать, что в диплоидной клетке (2n) содержание ДНК составляет 4с. При наличии центриолей происходит их удвоение. Таким образом, в клетке имеется две диплосомы, каждая из которых содержит пару центриолей.

    Первое деление мейоза (редукционное, или мейоз I)

    Сущность редукционного деления заключается в уменьшении числа хромосом в два раза: из исходной диплоидной клетки образуется две гаплоидные клетки с двухроматидными хромосомами (в состав каждой хромосомы входит 2 хроматиды).

    Профаза I (профаза первого деления) включает ряд стадий.

    Лептотена (стадия тонких нитей). Хромосомы видны в световой микроскоп в виде клубка тонких нитей.

    Зиготена (стадия сливающихся нитей). Происходит конъюгация гомологичных хромосом (от лат. conjugatio – соединение, спаривание, временное слияние). Гомологичные хромосомы (или гомологи) – это парные хромосомы, сходные между собой в морфологическом и генетическом отношении. В результате конъюгации образуются биваленты. Бивалент – это относительно устойчивый комплекс из двух гомологичных хромосом. Гомологи удерживаются друг около друга с помощью белковых синаптонемальных комплексов. Количество бивалентов равно гаплоидному числу хромосом. Иначе биваленты называются тетрады, так как в состав каждого бивалента входит 4 хроматиды.

    Пахитена (стадия толстых нитей). Хромосомы спирализуются, хорошо видна их продольная неоднородность. Завершается репликация ДНК. Завершается кроссинговер – перекрест хромосом, в результате которого они обмениваются участками хроматид.

    Диплотена (стадия двойных нитей). Гомологичные хромосомы в бивалентах отталкиваются друг от друга. Они соединены в отдельных точках, которые называются хиазмы (от древнегреч. буквы χ – «хи»).

    Диакинез (стадия расхождения бивалентов). Хиазмы перемещаются к теломерным участкам хромосом. Биваленты располагаются на периферии ядра. В конце профазы I ядерная оболочка разрушается, и биваленты выходят в цитоплазму.

    Метафаза I (метафаза первого деления). Формируется веретено деления. Биваленты перемещаются в экваториальную плоскость клетки. Образуется метафазная пластинка из бивалентов.

    Анафаза I (анафаза первого деления). Гомологичные хромосомы, входящие в состав каждого бивалента, разъединяются, и каждая хромосома движется в сторону ближайшего полюса клетки. Разъединения хромосом на хроматиды не происходит.

    Телофаза I (телофаза первого деления). Гомологичные двухроматидные хромосомы полностью расходятся к полюсам клетки. В норме каждая дочерняя клетка получает одну гомологичную хромосому из каждой пары гомологов. Формируются два гаплоидных ядра, которые содержат в два раза меньше хромосом, чем ядро исходной диплоидной клетки. Каждое гаплоидное ядро содержит только один хромосомный набор, то есть каждая хромосома представлена только одним гомологом. Содержание ДНК в дочерних клетках составляет 2с.

    В большинстве случаев (но не всегда) телофаза I сопровождается цитокинезом.

    После первого деления мейоза наступает интеркинез – короткий промежуток между двумя мейотическими делениями. Интеркинез отличается от интерфазы тем, что не происходит репликации ДНК, удвоения хромосом и удвоения центриолей: эти процессы произошли в предмейотической интерфазе и, частично, в профазе I.

    Второе деление мейоза (эквационное, или мейоз II)

    В ходе второго деления мейоза уменьшения числа хромосом не происходит. Сущность эквационного деления заключается в образовании четырех гаплоидных клеток с однохроматидными хромосомами (в состав каждой хромосомы входит одна хроматида).

    Профаза II (профаза второго деления). Не отличается существенно от профазы митоза. Хромосомы видны в световой микроскоп в виде тонких нитей. В каждой из дочерних клеток формируется веретено деления.

    Метафаза II (метафаза второго деления). Хромосомы располагаются в экваториальных плоскостях гаплоидных клеток независимо друг от друга. Эти экваториальные плоскости могут быть параллельны друг другу или взаимно перпендикулярны.

    Анафаза II (анафаза второго деления). Хромосомы разделяются на хроматиды (как при митозе). Получившиеся однохроматидные хромосомы в составе анафазных групп перемещаются к полюсам клеток.

    Телофаза II (телофаза второго деления). Однохроматидные хромосомы полностью переместились к полюсам клетки, формируются ядра. Содержание ДНК в каждой из клеток становится минимальным и составляет 1с.

    Таким образом, в результате описанной схемы мейоза из одной диплоидной клетки образуется четыре гаплоидные клетки. Дальнейшая судьба этих клеток зависит от таксономической принадлежности организмов, от пола особи и ряда других факторов.

    Типы мейоза. При зиготном и споровом мейозе образовавшиеся гаплоидные клетки дают начало спорам (зооспорам). Эти типы мейоза характерны для низших эукариот, грибов и растений. Зиготный и споровый мейоз тесно связан со спорогенезом. При гаметном мейозе из образовавшихся гаплоидных клеток образуются гаметы. Этот тип мейоза характерен для животных. Гаметный мейоз тесно связан с гаметогенезом и оплодотворением. Таким образом, мейоз – это цитологическая основа полового и бесполого (спорового) размножения.

    Биологическое значение мейоза. Немецкий биолог Август Вайсман (1887) теоретически обосновал необходимость мейоза как механизма поддержания постоянного числа хромосом. Поскольку при оплодотворении ядра половых клеток сливаются (и, тем самым, в одном ядре объединяются хромосомы этих ядер), и поскольку число хромосом в соматических клетках остается константным, то постоянному удвоению числа хромосом при последовательных оплодотворениях должен противостоять процесс, приводящий к сокращению их числа в гаметах ровно вдвое. Таким образом, биологическое значение мейоза заключается в поддержании постоянства числа хромосом при наличии полового процесса. Мейоз обеспечивает также комбинативную изменчивость – появление новых сочетаний наследственных задатков при дальнейшем оплодотворении.

    С уменьшением числа хромосом в два раза. Происходит в два этапа (редукционный и эквационный этапы мейоза). Мейоз не следует смешивать с гаметогенезом — образованием специализированных половых клеток, или гамет , из недифференцированных стволовых. С уменьшением числа хромосом в результате мейоза в жизненном цикле происходит переход от диплоидной фазы к гаплоидной.

    Восстановление плоидности (переход от гаплоидной фазы к диплоидной) происходит в результате полового процесса. В связи с тем, что в профазе первого, редукционного, этапа происходит попарное слияние (конъюгация) гомологичных хромосом, правильное протекание мейоза возможно только в диплоидных клетках или в чётных полиплоидах (тетра-, гексаплоидных и т. п. клетках).

    Мейоз может происходить и в нечётных полиплоидах (три-, пентаплоидных и т. п. клетках), но в них, из-за невозможности обеспечить попарное слияние хромосом в профазе I, расхождение хромосом происходит с нарушениями, которые ставят под угрозу жизнеспособность клетки или развивающегося из неё многоклеточного гаплоидного организма. Этот же механизм лежит в основе стерильности межвидовых гибридов.

    Поскольку у межвидовых гибридов в ядре клеток сочетаются хромосомы родителей, относящихся к различным видам, хромосомы обычно не могут вступить в конъюгацию. Это приводит к нарушениям в расхождении хромосом при мейозе и, в конечном счете, к нежизнеспособности половых клеток, или гамет. Определенные ограничения на конъюгацию хромосом накладывают и хромосомные мутации (масштабные делеции, дупликации, инверсии или транслокации).

    Фазы мейоза.

    Мейоз состоит из 2 последовательных делений с короткой интерфазой между ними.

    Профаза I — профаза первого деления очень сложная и состоит из 5 стадий:

    Фаза лептотены или лептонемы — упаковка хромосом.

    - Зиготена или зигонема — конъюгация (соединение) гомологичных хромосом с образованием структур, состоящих из двух соединённых хромосом, называемых тетрадами или бивалентами.

    - Пахитена или пахинема — кроссинговер (перекрест), обмен участками между гомологичными хромосомами; гомологичные хромосомы остаются соединенными между собой.

    - Диплотена или диплонема — происходит частичная деконденсация хромосом, при этом часть генома может работать, происходят процессы транскрипции (образование РНК), трансляции (синтез белка); гомологичные хромосомы остаются соединёнными между собой.

    - Диакинез — ДНК снова максимально конденсируется, синтетические процессы прекращаются, растворяется ядерная оболочка; центриоли расходятся к полюсам; гомологичные хромосомы остаются соединёнными между собой.


    • Метафаза I — бивалентные хромосомы выстраиваются вдоль экватора клетки.
    • Анафаза I — микротрубочки сокращаются, биваленты делятся и хромосомы расходятся к полюсам. Важно отметить, что, из-за конъюгации хромосом в зиготене, к полюсам расходятся целые хромосомы, состоящие из двух хроматид каждая, а не отдельные хроматиды, как в митозе.
    • Телофаза I

    Второе деление мейоза следует непосредственно за первым, без выраженной интерфазы: S-период отсутствует, поскольку перед вторым делением не происходит репликации ДНК.

    • Профаза II — происходит конденсация хромосом, клеточный центр делится и продукты его деления расходятся к полюсам ядра, разрушается ядерная оболочка, образуется веретено деления.
    • Метафаза II — унивалентные хромосомы (состоящие из двух хроматид каждая) располагаются на «экваторе» (на равном расстоянии от «полюсов» ядра) в одной плоскости, образуя так называемую метафазную пластинку.
    • Анафаза II — униваленты делятся и хроматиды расходятся к полюсам.
    • Телофаза II — хромосомы деспирализуются и появляется ядерная оболочка.

    В результате из одной диплоидной клетки образуется четыре гаплоидных клетки. В тех случаях, когда мейоз сопряжён с гаметогенезом (например, у многоклеточных животных), при развитии яйцеклеток первое и второе деления мейоза резко неравномерны. В результате формируется одна гаплоидная яйцеклетка и два так называемых редукционных тельца (абортивные дериваты первого и второго делений).

    Кроссинго?вер (другое название в биологии перекрёст ) — явление обмена участками гомологичных хромосом во время конъюгации при мейозе. Помимо мейотического описан также митотический кроссинговер. Поскольку кроссинговер вносит возмущения в картину сцепленного наследования, его удалось использовать для картирования «групп сцепления» (хромосом).

    Возможность картирования была основана на предположении о том, что, чем чаще наблюдается кроссинговер между двумя генами, тем дальше друг от друга расположены эти гены в группе сцепления и тем чаще будут наблюдаться отклонения от сцепленного наследования. Первые карты хромосом были построены в 1913 г. для классического экспериментального объекта плодовой мушки Drosophila melanogaster Альфредом Стёртевантом, учеником и сотрудником Томаса Ханта Моргана.

    Митоз — основной способ деления эукариотических клеток, при котором сначала происходит удвоение, а затем равномерное распределение между дочерними клетками наследственного материала.

    Митоз представляет собой непрерывный процесс, в котором выделяют четыре фазы: профазу, метафазу, анафазу и телофазу. Перед митозом происходит подготовка клетки к делению, или интерфаза. Период подготовки клетки к митозу и собственно митоз вместе составляют митотический цикл . Ниже приводится краткая характеристика фаз цикла.

    Интерфаза состоит из трех периодов: пресинтетического, или постмитотического, — G 1 , синтетического — S, постсинтетического, или премитотического, — G 2 .

    Пресинтетический период (2n 2c , где n — число хромосом, с — число молекул ДНК) — рост клетки, активизация процессов биологического синтеза, подготовка к следующему периоду.

    Синтетический период (2n 4c ) — репликация ДНК.

    Постсинтетический период (2n 4c ) — подготовка клетки к митозу, синтез и накопление белков и энергии для предстоящего деления, увеличение количества органоидов, удвоение центриолей.

    Профаза (2n 4c ) — демонтаж ядерных мембран, расхождение центриолей к разным полюсам клетки, формирование нитей веретена деления, «исчезновение» ядрышек, конденсация двухроматидных хромосом.

    Метафаза (2n 4c ) — выстраивание максимально конденсированных двухроматидных хромосом в экваториальной плоскости клетки (метафазная пластинка), прикрепление нитей веретена деления одним концом к центриолям, другим — к центромерам хромосом.

    Анафаза (4n 4c ) — деление двухроматидных хромосом на хроматиды и расхождение этих сестринских хроматид к противоположным полюсам клетки (при этом хроматиды становятся самостоятельными однохроматидными хромосомами).

    Телофаза (2n 2c в каждой дочерней клетке) — деконденсация хромосом, образование вокруг каждой группы хромосом ядерных мембран, распад нитей веретена деления, появление ядрышка, деление цитоплазмы (цитотомия). Цитотомия в животных клетках происходит за счет борозды деления, в растительных клетках — за счет клеточной пластинки.

    1 — профаза; 2 — метафаза; 3 — анафаза; 4 — телофаза.

    Биологическое значение митоза. Образовавшиеся в результате этого способа деления дочерние клетки являются генетически идентичными материнской. Митоз обеспечивает постоянство хромосомного набора в ряду поколений клеток. Лежит в основе таких процессов, как рост, регенерация, бесполое размножение и др.

    — это особый способ деления эукариотических клеток, в результате которого происходит переход клеток из диплоидного состояния в гаплоидное. Мейоз состоит из двух последовательных делений, которым предшествует однократная репликация ДНК.

    Первое мейотическое деление (мейоз 1) называется редукционным, поскольку именно во время этого деления происходит уменьшение числа хромосом вдвое: из одной диплоидной клетки (2n 4c ) образуются две гаплоидные (1n 2c ).

    Интерфаза 1 (в начале — 2n 2c , в конце — 2n 4c ) — синтез и накопление веществ и энергии, необходимых для осуществления обоих делений, увеличение размеров клетки и числа органоидов, удвоение центриолей, репликация ДНК, которая завершается в профазе 1.

    Профаза 1 (2n 4c ) — демонтаж ядерных мембран, расхождение центриолей к разным полюсам клетки, формирование нитей веретена деления, «исчезновение» ядрышек, конденсация двухроматидных хромосом, конъюгация гомологичных хромосом и кроссинговер. Конъюгация — процесс сближения и переплетения гомологичных хромосом. Пару конъюгирующих гомологичных хромосом называют бивалентом . Кроссинговер — процесс обмена гомологичными участками между гомологичными хромосомами.

    Профаза 1 подразделяется на стадии: лептотена (завершение репликации ДНК), зиготена (конъюгация гомологичных хромосом, образование бивалентов), пахитена (кроссинговер, перекомбинация генов), диплотена (выявление хиазм, 1 блок овогенеза у человека), диакинез (терминализация хиазм).

    1 — лептотена; 2 — зиготена; 3 — пахитена; 4 — диплотена; 5 — диакинез; 6 — метафаза 1; 7 — анафаза 1; 8 — телофаза 1;
    9 — профаза 2; 10 — метафаза 2; 11 — анафаза 2; 12 — телофаза 2.

    Метафаза 1 (2n 4c ) — выстраивание бивалентов в экваториальной плоскости клетки, прикрепление нитей веретена деления одним концом к центриолям, другим — к центромерам хромосом.

    Анафаза 1 (2n 4c ) — случайное независимое расхождение двухроматидных хромосом к противоположным полюсам клетки (из каждой пары гомологичных хромосом одна хромосома отходит к одному полюсу, другая — к другому), перекомбинация хромосом.

    Телофаза 1 (1n 2c в каждой клетке) — образование ядерных мембран вокруг групп двухроматидных хромосом, деление цитоплазмы. У многих растений клетка из анафазы 1 сразу же переходит в профазу 2.

    Второе мейотическое деление (мейоз 2) называется эквационным .

    Интерфаза 2 , или интеркинез (1n 2c ), представляет собой короткий перерыв между первым и вторым мейотическими делениями, во время которого не происходит репликация ДНК. Характерна для животных клеток.

    Профаза 2 (1n 2c ) — демонтаж ядерных мембран, расхождение центриолей к разным полюсам клетки, формирование нитей веретена деления.

    Метафаза 2 (1n 2c ) — выстраивание двухроматидных хромосом в экваториальной плоскости клетки (метафазная пластинка), прикрепление нитей веретена деления одним концом к центриолям, другим — к центромерам хромосом; 2 блок овогенеза у человека.

    Анафаза 2 (2n 2с ) — деление двухроматидных хромосом на хроматиды и расхождение этих сестринских хроматид к противоположным полюсам клетки (при этом хроматиды становятся самостоятельными однохроматидными хромосомами), перекомбинация хромосом.

    Телофаза 2 (1n 1c в каждой клетке) — деконденсация хромосом, образование вокруг каждой группы хромосом ядерных мембран, распад нитей веретена деления, появление ядрышка, деление цитоплазмы (цитотомия) с образованием в итоге четырех гаплоидных клеток.

    Биологическое значение мейоза. Мейоз является центральным событием гаметогенеза у животных и спорогенеза у растений. Являясь основой комбинативной изменчивости, мейоз обеспечивает генетическое разнообразие гамет.

    Амитоз

    Амитоз — прямое деление интерфазного ядра путем перетяжки без образования хромосом, вне митотического цикла. Описан для стареющих, патологически измененных и обреченных на гибель клеток. После амитоза клетка не способна вернуться в нормальный митотический цикл.

    Клеточный цикл

    Клеточный цикл — жизнь клетки от момента ее появления до деления или смерти. Обязательным компонентом клеточного цикла является митотический цикл, который включает в себя период подготовки к делению и собственно митоз. Кроме этого, в жизненном цикле имеются периоды покоя, во время которых клетка выполняет свойственные ей функции и избирает дальнейшую судьбу: гибель или возврат в митотический цикл.

      Перейти к лекции №12 «Фотосинтез. Хемосинтез»

      Перейти к лекции №14 «Размножение организмов»

    Читайте также: