Уравнение координаты гармонических колебаний. Гармонические колебания — Гипермаркет знаний

Простейшим видом колебаний являются гармонические колебания - колебания, при которых смещение колеблющейся точки от положения равновесия изменяется с течением времени по закону синуса или косинуса.

Так, при равномерном вращении шарика по окружности его проекция (тень в параллельных лучах света) совершает на вертикальном экране (рис. 1) гармоническое колебательное движение.

Смещение от положения равновесия при гармонических колебаниях описывается уравнением (его называют кинематическим законом гармонического движения) вида:

где х - смешение - величина, характеризующая положение колеблющейся точки в момент времени t относительно положения равновесия и измеряемая расстоянием от положения равновесия до положения точки в заданный момент времени; А - амплитуда колебаний - максимальное смещение тела из положения равновесия; Т - период колебаний - время совершения одного полного колебания; т.е. наименьший промежуток времени, по истечении которого повторяются значения физических величин, характеризующих колебание; - начальная фаза;

Фаза колебании в момент времени t. Фаза колебаний - это аргумент периодической функции, который при заданной амплитуде колебаний определяет состояние колебательной системы (смещение, скорость, ускорение) тела в любой момент времени.

Если в начальный момент времени колеблющаяся точка максимально смещена от положения равновесия, то , а смещение точки от положения равновесия изменяется по закону

Если колеблющаяся точка при находится в положении устойчивого равновесия, то смещение точки от положения равновесия изменяется по закону

Величину V, обратную периоду и равную числу полных колебаний, совершаемых за 1 с, называют частотой колебаний:

Если за время t тело совершает N полных колебаний, то

Величину , показывающую, сколько колебаний совершает тело за с, называют циклической (круговой) частотой .

Кинематический закон гармонического движения можно записать в виде:

Графически зависимость смещения колеблющейся точки от времени изображается косинусоидой (или синусоидой).

На рисунке 2, а представлен график зависимости от времени смещения колеблющейся точки от положения равновесия для случая .

Выясним, как изменяется скорость колеблющейся точки со временем. Для этого найдем производную по времени от этого выражения:

где - амплитуда проекции скорости на ось х.

Эта формула показывает, что при гармонических колебаниях проекция скорости тела на ось х изменяется тоже по гармоническому закону с той же частотой, с другой амплитудой и опережает по фазе смешение на (рис. 2, б).

Для выяснения зависимости ускорения найдем производную по времени от проекции скорости:

где - амплитуда проекции ускорения на ось х.

При гармонических колебаниях проекция ускорения опережает смещение по фазе на к (рис. 2, в).

Аналогично можно построить графики зависимостей

Учитывая, что , формулу для ускорения можно записать

т.е. при гармонических колебаниях проекция ускорения прямо пропорциональна смещению и противоположна ему по знаку, т.е. ускорение направлено в сторону, противоположную смещению.

Так, проекция ускорения - это вторая производная от смещения , то полученное соотношение можно записать в виде:

Последнее равенство называют уравнением гармонических колебаний .

Физическую систему, в которой могут существовать гармонические колебания, называют гармоническим осциллятором , а уравнение гармонических колебаний - уравнением гармонического осциллятора .

Колебания, возникающие под действием внешних, периодически изменяющихся сил (при периодическом поступлении энергии извне к колебательной системе)

Превращение энергии

Пружинный маятник

Циклическая частота и период колебаний равны, соответственно:

Материальная точка, закрепленная на абсолютно упругой пружине

Ø график зависимости потенциальной и кинетической энергии пружинного маятника от координаты х.

Ø качественные графики зависимостей кинетической и потенциальной энергии от времени.

Ø Вынужденные

Ø Частота вынужденных колебаний равна частоте изменения внешней силы

Ø Если Fbc изменяется по закону синуса или косинуса, то вынужденные колебания будут гармоническими


Ø При автоколебаниях необходимо периодическое поступлении энергии от собственного источника внутри колебательной системы

Гармонические колебания – это колебания, при которых колеблющаяся величина изменяется со временем по закону синуса или косинуса

уравнения гармонических колебаний (законы движения точек) имеют вид


Гармоническими колебаниями называются такие колебания, при которых колеблющаяся величина меняется от времени по закону синуса или косинуса .
Уравнение гармонических колебаний имеет вид:

,
где A - амплитуда колебаний (величина наибольшего отклонения системы от положения равновесия) ; - круговая (циклическая) частота. Периодически изменяющийся аргумент косинуса - называется фазой колебаний . Фаза колебаний определяет смещение колеблющейся величины от положения равновесия в данный момент времени t. Постояннаяφ представляет собой значение фазы в момент времени t = 0 и называется начальной фазой колебания . Значение начальной фазы определяется выбором начала отсчета. Величина x может принимать значения, лежащие в пределах от -A до +A.
Промежуток времени T, через который повторяются определенные состояния колебательной системы, называется периодом колебаний . Косинус - периодическая функция с периодом 2π, поэтому за промежуток времени T, через который фаза колебаний получит приращение равное 2π, состояние системы, совершающей гармонические колебания, будет повторяться. Этот промежуток времени T называется периодом гармонических колебаний.
Период гармонических колебаний равен : T = 2π/.
Число колебаний в единицу времени называется частотой колебаний ν.
Частота гармонических колебаний равна: ν = 1/T. Единица измерения частоты герц (Гц) - одно колебание в секунду.
Круговая частота = 2π/T = 2πν дает число колебаний за 2π секунд.

Обобщенное гармоническое колебание в дифференциальном виде



Графически гармонические колебания можно изображать в виде зависимости x от t (рис.1.1.А), так и методом вращающейся амплитуды (метод векторных диаграмм) (рис.1.1.Б).

Метод вращающейся амплитуды позволяет наглядно представить все параметры, входящие в уравнение гармонических колебаний. Действительно, если вектор амплитуды А расположен под углом φ к оси х (см. Рисунок 1.1. Б), то его проекция на ось х будет равна: x = Acos(φ). Угол φ и есть начальная фаза. Если вектор А привести во вращение с угловой скоростью , равной круговой частоте колебаний, то проекция конца вектора будет перемещаться по оси х и принимать значения, лежащие в пределах от -A до +A, причем координата этой проекции будет меняться со временем по закону:
.
Таким образом, длина вектора равна амплитуде гармонического колебания, направление вектора в начальный момент образует с осью x угол равный начальной фазе колебаний φ, а изменение угла направления от времени равно фазе гармонических колебаний. Время, за которое вектор амплитуды делает один полный оборот, равно периоду Т гармонических колебаний. Число оборотов вектора в секунду равно частоте колебаний ν.

Изменения какой- либо величины описывают с помощью законов синуса или косинуса, то такие колебания называют гармоническими. Рассмотрим контур, из конденсатора (который перед включением в цепь зарядили) и катушки индуктивности (рис.1).

Рисунок 1.

Уравнение гармонических колебаний можно записать следующим образом:

$q=q_0cos({\omega }_0t+{\alpha }_0)$ (1)

где $t$-время; $q$ заряд, $q_0$-- максимальное отклонение заряда от своего среднего (нулевого) значения в ходе изменений; ${\omega }_0t+{\alpha }_0$- фаза колебаний; ${\alpha }_0$- начальная фаза; ${\omega }_0$- циклическая частота. За период фаза меняется на $2\pi $.

Уравнение вида:

уравнение гармонических колебаний в дифференциальном виде для колебательного контура, который не будет содержать активного сопротивления.

Любой вид периодических колебаний можно точности представить как сумму гармонических колебаний, так называемого гармонического ряда.

Для периода колебаний цепи, которая состоит из катушки и конденсатора мы получим формулу Томсона:

Если мы продифференцируем выражение (1) по времени, то можем получить формулу фунци $I(t)$:

Напряжение на конденсаторе, можно найти как:

Из формул (5) и (6) следует, что сила тока опережает напряжение на конденсаторе на $\frac{\pi }{2}.$

Гармонические колебания можно представлять как в виде уравнений, функций так и векторными диаграммами.

Уравнение (1) представляет свободные незатухающие колебания.

Уравнение затухающих колебаний

Изменение заряда ($q$) на обкладках конденсатора в контуре, при учете сопротивления (рис.2) будет описываться дифференциальным уравнением вида:

Рисунок 2.

Если сопротивление, которое входит в состав контура $R \

где $\omega =\sqrt{\frac{1}{LC}-\frac{R^2}{4L^2}}$ -- циклическая частота колебаний. $\beta =\frac{R}{2L}-$коэффициент затухания. Амплитуда затухающих колебаний выражается как:

В том случае, если при $t=0$ заряд на конденсаторе равен $q=q_0$, тока в цепи нет, то для $A_0$ можно записать:

Фаза колебаний в начальный момент времени (${\alpha }_0$) равна:

При $R >2\sqrt{\frac{L}{C}}$ изменение заряда не является колебаниями, разряд конденсатора называют апериодическим.

Пример 1

Задание: Максимальное значение заряда равно $q_0=10\ Кл$. Он изменяется гармонически с периодом $T= 5 c$. Определите максимально возможную силу тока.

Решение:

В качестве основания для решения задачи используем:

Для нахождения силы тока выражение (1.1) необходимо продифференцировать по времени:

где максимальным (амплитудным значением) силы тока является выражение:

Из условий задачи нам известно амплитудное значение заряда ($q_0=10\ Кл$). Следует найти собственную частоту колебаний. Ее выразим как:

\[{\omega }_0=\frac{2\pi }{T}\left(1.4\right).\]

В таком случае искомая величина будет найдена при помощи уравнений (1.3) и (1.2) как:

Так как все величины в условиях задачи представлены в системе СИ, проведем вычисления:

Ответ: $I_0=12,56\ А.$

Пример 2

Задание: Каков период колебаний в контуре, который содержит катушку индуктивности $L=1$Гн и конденсатор, если сила тока в контуре изменяется по закону: $I\left(t\right)=-0,1sin20\pi t\ \left(A\right)?$ Какова емкость конденсатора?

Решение:

Из уравнения колебаний силы тока, которое приведено в условиях задачи:

мы видим, что ${\omega }_0=20\pi $, следовательно, мы можем вычислить период Колебаний по формуле:

\ \

По формуле Томсона для контура, который содержит катушку индуктивности и конденсатор, мы имеем:

Вычислим емкость:

Ответ: $T=0,1$ c, $C=2,5\cdot {10}^{-4}Ф.$

Механическое гармоническое колебание - это прямолинейное неравномерное движение, при котором координаты колеблющегося тела (материальной точки) изменяются по закону косинуса или синуса в зависимости от времени.

Согласно этому определению, закон изменения координаты в зависимости от времени имеет вид:

Где wt - величина под знаком косинуса или синуса; w - коэффициент, физический смысл которого раскроем ниже; А - амплитуда механических гармонических колебаний.

Уравнения (4.1) являются основными кинематическими уравнениями механических гармонических колебаний.

Рассмотрим следующий пример. Возьмем ось Ох (рис. 64). Из точки 0 проведем окружность с радиусом R = А. Пусть точка М из положения 1 начинает двигаться по окружности с постоянной скоростью v (или с постоянной угловой скоростью w , v = wА ). Через некоторое время t радиус повернется на угол ф: ф=wt .

При таком движении по окружности точки М ее проекция на ось х М х будет совершать движение вдоль оси х, координата которой х будет равна х = А cos ф = = А cos wt . Таким образом, если материальная точка движется по окружности радиусом А, центр которой совпадает с началом координат, то проекция этой точки на ось х (и на ось у) будет совершать гармонические механические колебания.

Если известна величина wt, которая стоит под знаком косинуса, и амплитуда А, то можно определить и х в уравнении (4.1).

Величину wt, стоящую под знаком косинуса (или синуса), однозначно определяющую координату колеблющейся точки при заданной амплитуде, называют фазой колебания . Для точки М, движущейся по окружности, величина w означает ее угловую скорость. Каков физический смысл величины w для точки М х, совершающей механические гармонические колебания? Координаты колеблющейся точки М х одинаковы в некоторый момент времени t и (Т +1) (из определения периода Т), т. е. A cos wt = A cos w (t + Т), а это значит, что w (t + Т) - wt = 2ПИ (из свойства периодичности функции косинуса). Отсюда следует, что

Следовательно, для материальной точки, совершающей гармонические механические колебания, величину w можно интерпретировать как количество колебаний за определенный цикл времени, равный . Поэтому величину w назвали циклической (или круговой) частотой .

Если точка М начинает свое движение не из точки 1 а из точки 2, то уравнение (4,1) примет вид:

Величину ф 0 называют начальной фазой .

Скорость точки М х найдем как производную от координаты по времени:

Ускорение точки, колеблющейся по гармоническому закону, определим как производную от скорости:

Из формулы (4.4) видно, что скорость точки, совершающей гармонические колебания, изменяется тоже по закону косинуса. Но скорость по фазе опережает координату на ПИ/2 . Ускорение при гармоническом колебании изменяется по закону косинуса, но опережает координату по фазе на п . Уравнение (4.5) можно записать через координату х:

Ускорение при гармонических колебаниях пропорционально смещению с противоположным знаком. Умножим правую и левую части уравнения (4.5) на массу колеблющей материальной точки т, получим соотношения:

Согласно второму закону Ньютона, физический смысл правой части выражения (4.6) есть проекция силы F x , которая обеспечивает гармоническое механическое движение:

Величина F x пропорциональна смещению х и направлена противоположно ему. Примером такой силы является сила упругости, величина которой пропорциональна деформации и противоположно ей направлена (закон Гука).

Закономерность зависимости ускорения от смещения, вытекающую из уравнения (4.6), рассмотренную нами для механических гармонических колебаний, можно обобщить и применить при рассмотрении колебаний другой физической природы (например, изменение тока в колебательном контуре, изменение заряда, напряжения, индукции магнитного поля и т. д.). Поэтому уравнение (4.8) называют основным уравнением динамики гармонических колебаний .

Рассмотрим движение пружинного и математического маятников.

Пусть к пружине (рис. 63), расположенной горизонтально и закрепленной в точке 0, одним концом прикреплено тело массой т, которое может перемещаться вдоль оси х без трения. Коэффициент жесткости пружины пусть будет равен k. Выведем тело m внешней силой из положения равновесия и отпустим. Тогда вдоль оси х на тело будет действовать только упругая сила, которая согласно закону Гука, будет равна: F yпp = -kx.

Уравнение движения этого тела будет иметь вид:

Сравнивая уравнения (4.6) и (4.9), делаем два вывода:

Из формул (4.2) и (4.10) выводим формулу для периода колебаний груза на пружине:

Математическим маятником называется тело массой т, подвешенное на длинной нерастяжимой нити пренебрежимо малой массы. В положении равновесия на это тело будут действовать сила тяжести и сила упругости нити. Эти силы будут уравновешивать друг друга.

Если нить отклонить на угол а от положения равновесия, то на тело действуют те же силы, но они уже не уравновешивают друг друга, и тело начинает двигаться по дуге под действием составляющей силы тяжести, направленной вдоль касательной к дуге и равной mg sin a .

Уравнение движения маятника принимает вид:

Знак минус в правой части означает, что сила F x = mg sin a направлена против смещения. Гармоническое колебание будет происходить при малых углах отклонения, т. е. при условии а 2* sin a .

Заменим sin а в уравнении (4.12), получим следующее уравнение.

Максимальные значения скорости и ускорения

Проанализировав уравнения зависимости v(t) и a(t), можно догадаться, что максимальные значения скорость и ускорение принимают в том случае, когда тригонометрический множитель равен 1 или -1. Определяются по формуле

Как получить зависимости v(t) и a(t)

7. Свободные колебания. Скорость, ускорение и энергия колебательного движения. Сложение колебаний

Свободные колебания (или собственные колебания ) - это колебания колебательной системы, совершаемые только благодаря первоначально сообщенной энергии (потенциальной или кинети­ческой) при отсутствии внешних воздействий.

Потенциальная или кинетическая энергия может быть сообщена, например, в механических системах через начальное смещение или начальную скорость.

Свободно колеблющиеся тела всегда взаимодействуют с другими телами и вместе с ними обра­зуют систему тел, которая называется колебательной системой .

Например, пружина, шарик и вертикальная стойка, к которой прикреплен верхний конец пружины (см. рис. ниже), входят в колебательную систему. Здесь шарик свободно скользит по струне (силы трения пренебрежимо малы). Если отвести шарик вправо и предоставить его самому себе, он будет совершать свободные колебания около положения равновесия (точки О ) вследствие действия силы упругости пружины, направленной к положению равновесия.

Другим классическим примером механической колебательной системы является математический маятник (см. рис. ниже). В данном случае шарик совершает свободные колебания под действием двух сил: силы тяжести и силы упругости нити (в колебательную систему входит также Земля). Их равнодействующая направлена к положению равновесия.

Силы, действующие между телами колебательной системы, называются внутренними силами . Внешними силами называют­ся силы, действующие на систему со стороны тел, не входящих в нее. С этой точки зрения свобод­ные колебания можно определить как колебания в системе под действием внутренних сил после того, как система выведена из положения равновесия.

Условиями возникновения свободных колебаний являются:

1) возникновение в них силы, возвращающей систему в положение устойчивого равновесия, после того как ее вывели из этого состояния;

2) отсутствие трения в системе.

Динамика свободных колебаний.

Колебания тела под действием сил упругости . Уравнение колебательного движения тела под действием силы упругости F (см. рис.) может быть получено с учетом второго закона Ньютона (F = mа ) и закона Гука (F упр = -kx ), где m - масса шарика, а - ускорение, приобретаемое шариком под действием силы упругости, k - коэффициент жесткости пружины, х - смещение тела от положения равновесия (оба уравнения записаны в проекции на горизонтальную ось Ох ). Приравнивая правые части этих уравнений и учитывая, что ускорение а - это вторая производная от координаты х (смещения), получим:

.

Это дифференциальное уравнение движения тела, колеблющегося под действием силы упругости: вторая производная координаты по времени (ускорение тела) прямо пропорциональна его координате, взятой с противоположным знаком.

Колебания математического маятника. Для получения уравнения колебания математического маятника (рисунок) необходимо разложить силу тяжести F T = mg на нормальную F n (направлен­ную вдоль нити) и тангенциальную F τ (касательную к траектории движения шарика - окружности) составляющие. Нормальная составляющая силы тяжести F n и сила упругости нити F ynp в сумме сооб­щают маятнику центростремительное ускорение, не влияющее на величину скорости, а лишь меня­ющее ее направление, а тангенциальная составляющая F τ является той силой, которая возвращает шарик в положение равновесия и заставляет его совершать колебательные движения. Используя, как и в предыдущем случае, закон Ньютона для тангенциального ускоренияma τ = F τ и учитывая, что F τ = -mg sinα , получим:

a τ = -g sinα ,

Знак минус появился потому, что сила и угол отклонения от положения равновесия α име­ют противоположные знаки. Для малых углов отклонения sin α ≈ α . В свою очередь, α = s/l , где s - дуга OA , I - длина нити. Учитывая, что а τ = s" , окончательно получим:

Вид уравнения аналогичен уравнению . Только здесь параметрами системы являются длина нити и ускорение свободного падения, а не жесткость пружины и масса шарика; роль координаты играет длина дуги (т. е. пройденный путь, как и в первом случае).

Таким образом, свободные колебания описываются уравнениями одного вида (подчиняются одним и тем же законам) независимо от физической природы сил, вызывающих эти колебания.

Решением уравнений и является функция вида:

x = x m cos ω 0 t (илиx = x m sin ω 0 t) .

То есть координата тела, совершающего свободные колебания, меняется с течением времени по закону косинуса или синуса, и, следовательно, эти колебания являются гармоническими:

В уравнении x = x m cos ω 0 t (или x = x m sin ω 0 t ), х m - амплитуда колебания, ω 0 - собственная циклическая (круговая) частота колебаний.

Циклическая частота и период свободных гармонических колебаний определяются свойствами системы. Так, для колебаний тела, прикрепленного к пружине, справедливы соотношения:

.

Собственная частота тем больше, чем больше жесткость пружины или меньше масса груза, что вполне подтверждается опытом.

Для математического маятника выполняются равенства:

.

Эта формула была впервые получена и проверена на опыте голландским ученым Гюйгенсом (современником Ньютона).

Период колебаний возрастает с увеличением длины маятника и не зависит от его массы.

Следует особо обратить внимание на то, что гармонические колебания являются строго периодическими (т. к. подчиняются закону синуса или косинуса) и даже для математического маятни­ка, являющегося идеализацией реального (физического) маятника, возможны только при малых углах колебания. Если углы отклонения велики, смещение груза не будет пропорционально углу отклонения (синусу угла) и ускорение не будет пропорционально смещению.

Скорость и ускорение тела, совершающего свободные колебания, также будут совершать гармонические колебания. Беря производную по времени функции (x = x m cos ω 0 t (или x = x m sin ω 0 t )), получим выражение для скорости:

v = -v m sin ω 0 t = -v m x m cos (ω 0 t + π/2),

гдеv m = ω 0 x m - амплитуда скорости.

Аналогично выражение для ускорения а получим, дифференцируя (v = -v m sin ω 0 t = -v m x m cos (ω 0 t + π/2) ):

a = -a m cos ω 0 t,

где a m = ω 2 0 x m - амплитуда ускорения. Таким образом, амплитуда скорости гармонических коле­баний пропорциональна частоте, а амплитуда ускорения - квадрату частоты колебания.

ГАРМОНИЧЕСКИЕ КОЛЕБАНИЯ
Колебания, при которых изменения физических величин происходят по закону косинуса или синуса (гармоническому закону), наз. гармоническими колебаниями. Например, в случае механических гармонических колебаний:. В этих формулах ω – частота колебания, x m – амплитуда колебания, φ 0 и φ 0 ’ – начальные фазы колебания. Приведенные формулы отличаются определением начальной фазы и при φ 0 ’ = φ 0 +π/2 полностью совпадают.
Это простейший вид периодических колебаний. Конкретный вид функции (синус или косинус) зависит от способа выведения системы из положения равновесия. Если выведение происходит толчком (сообщается кинетическая энергия), то при t=0 смещение х=0, следовательно, удобнее пользоваться функцией sin, положив φ 0 ’=0; при отклонении от положения равновесия (сообщается потенциальная энергия) при t=0 смещение х=х m , следовательно, удобнее пользоваться функцией cos и φ 0 =0.
Выражение, стоящее под знаком cos или sin, наз. фазой колебания: . Фаза колебания измеряется в радианах и определяет значение смещения (колеблющейся величины) в данный момент времени.
Амплитуда колебания зависит только от начального отклонения (начальной энергии, сообщенной колебательной системе).
Скорость и ускорение при гармонических колебаниях.
Согласно определению скорости, скорость – это производная от координаты по времени
Таким образом, мы видим, что скорость при гармоническом колебательном движении также изменяется по гармоническому закону, но колебания скорости опережают колебания смещения по фазе на π/2.
Величина - максимальная скорость колебательного движения (амплитуда колебаний скорости).
Следовательно, для скорости при гармоническом колебании имеем: , а для случая нулевой начальной фазы (см. график).
Согласно определению ускорения, ускорение – это производная от скорости по времени: - вторая производная от координаты по времени. Тогда: . Ускорение при гармоническом колебательном движении также изменяется по гармоническому закону, но колебания ускорения опережают колебания скорости на π/2 и колебания смещения на π (говорят, что колебания происходят в противофазе) .
Величина - максимальное ускорение (амплитуда колебаний ускорения). Следовательно, для ускорения имеем: , а для случая нулевой начальной фазы: (см. график).
Из анализа процесса колебательного движения, графиков и соответствующих математических выражений видно, что при прохождении колеблющимся телом положения равновесия (смещение равно нулю) ускорение равно нулю, а скорость тела максимальна (тело проходит положение равновесия по инерции), а при достижении амплитудного значения смещения – скорость равна нулю, а ускорение максимально по модулю (тело меняет направление своего движения).
Сравним выражения для смещения и ускорения при гармонических колебаниях: и .
Можно записать: - т.е. вторая производная смещения прямо пропорциональна (с противоположным знаком) смещению. Такое уравнение наз. уравнением гармонического колебания. Эта зависимость выполняется для любого гармонического колебания, независимо от его природы. Поскольку мы нигде не использовали параметров конкретной колебательной системы, то от них может зависеть только циклическая частота.
Часто бывает удобно записывать уравнения для колебаний в виде: , где T– период колебания. Тогда, если время выражать в долях периода подсчеты будут упрощаться. Например, если надо найти смещение через 1/8 периода, получим: . Аналогично для скорости и ускорения.

Неpедки случаи, когда система одновpеменно участвует в двух или нескольких независимых дpуг от дpуга колебаниях. В этих случаях обpазуется сложное колебательное движение, котоpое создается путем наложения (сложения) колебаний дpуг на дpуга. Очевидно, случаи сложения колебаний могут быть весьма pазнообpазны. Они зависят не только от числа складываемых колебаний, но и от паpаметpов колебаний, от их частот, фаз, амплитуд, напpавлений. Не пpедставляется возможным обозpеть все возможное pазнообpазие случаев сложения колебаний, поэтому огpаничимся pассмотpением лишь отдельных пpимеpов.
1. Сложение колебаний одного напpавления. Сложим два колебания одинаковой частоты, но pазличных фаз и амплитуд.

(4.40)
Пpи наложении колебаний дpуг на дpуга


Введем новые паpаметpы А и j согласно уpавнениям:

(4.42)
Система уpавнений (4.42) легко pешается.

(4.43)

(4.44)
Таким обpазом, для х окончательно получаем уpавнение

(4.45)
Итак, в pезультате сложения однонапpавленных колебаний одинаковой частоты получаем гаpмоническое (синусоидальное) колебание, амплитуда и фаза котоpого опpеделяется фоpмулами (4.43) и (4.44).
Рассмотpим частные случаи, пpи котоpых соотношения между фазами двух складываемых колебаний pазличны:


(4.46)
Сложим тепеpь однонапpавленные колебания одинаковой амплитуды, одинаковых фаз, но pазной частоты.


(4.47)
Рассмотpим случай, когда частоты близки дpуг к дpугу, т. е.w1~w2=w
Тогда пpиближенно будем считать, что (w1+w2)/2= w, а (w2-w1)/2 величина малая. Уpавнение pезультиpующего колебания будет иметь вид:

(4.48)
Его гpафик изобpажен на pис. 4.5 Такое колебание называется биением. Оно осуществляется с частотой w но его амплитуда совеpшает колебание с большим пеpиодом.

2. Сложение двух взаимно пеpпендикуляpных колебаний. Допустим, что одно колебание осуществляется вдоль оси х, дpугое - вдоль оси y. Результиpующее движение, очевидно, pасполагается в плоскости xy.
1. Допустим, что частоты колебаний и фазы одинаковы, а амплитуды pазличны.

(4.49)
Чтобы найти тpаектоpию pезультиpующего движения, нужно из уpавнений (4.49) исключить вpемя. Для этого достаточно поделить почленно одно уpавнение на другое, в pезультате чего получим

(4.50)
Уpавнение (4.50) показывает, что в данном случае сложение колебаний пpиводит к колебанию по пpямой линии, тангенс угла наклона котоpой опpеделяется отношением амплитуд.
2. Пусть фазы складываемых колебаний отличаются дpуг от дpуга на /2 и уpавнения имеют вид:

(4.51)
Чтобы найти тpаектоpию pезультиpующего движения, исключив вpемя, нужно уpавнения (4.51) возвести в квадpат, пpедваpительно поделив их на А1 и А2 соответственно, а затем сложить. Уpавнение тpаектоpии пpимет вид:

(4.52)
Это - уpавнение эллипса. Можно доказать, что и пpи любых начальных фазах и любых амплитудах двух складываемых взаимно пеpпендикуляpных колебаний одинаковой частоты pезультиpующее колебание будет осуществляться по эллипсу. Его оpиентация будет зависеть от фаз и амплитуд складываемых колебаний.
Если же складываемые колебания имеют pазличные частоты, то тpаектоpии pезультиpующих движений получаются весьма pазнообpазными. Только в случае если частоты колебаний по х и по y кpатны дpуг дpугу, получаются замкнутые тpаектоpии. Такие движения можно отнести к числу пеpиодических. В этом случае тpаектоpии движений называются фигуpами Лиссажу. Рассмотpим одну из фигуp Лиссажу, котоpая получается пpи сложении колебаний с отношениями частот 1:2, с одинаковыми амплитудами и фазами в начале движения.

(4.53)
Вдоль оси y колебания пpоисходят в два pаза чаще, чем вдоль оси х. Сложение таких колебаний пpиведет к траектоpии движения в виде восьмеpки (pис.4.7).

8. Затухающие колебания и их параметры: декремент и коэффициент колебания, время релаксации

)Период затухающих колебаний :

Т = (58)

При δ << ω o колебания не отличаются от гармонческих: Т = 2π / ω o .

2) Амплитуда затухающих колебаний выражается формулой (119).

3) Декремент затухания, равный отношению двух последовательных амплитуд колебаний А (t ) и А (t+Т ), характеризует быстроту уменьшения амплитуды за период:

= e d Т (59)

4) Логарифмический декремент затухания - натуральныйлогарифм отношения амплитуд двух последовательных колебаний, соответст­вующих моментам времени, отличающимся на период

q = ln = ln e d Т =dT (60)

Логарифмический декремент затухания - по­стоянная для данной колебательной системы величина.

5) Временем релаксации принято называть промежуток времени (t ) в течение которого амплитуда затухающих колебаний уменьшается в е раз:

e d τ = е , δτ = 1,

t = 1/d , (61)

Из сравнения выражений (60) и (61) получим:

q = = , (62)

где N e - число колебаний, совершаемых за время релаксации.

В случае если за время t система совершает Ν колебаний, то t = Ν . Τ и уравнение затухающих колебаний можно представить в виде:

S = A 0 e -d N T cos (w t+j )= A 0 e -q N cos (w t+j ).

6)Добротностью колебательной системы (Q ) принято называть величина, характеризующая потерю энергии в системе за период колебаний:

Q = 2p , (63)

где W - полная энергия системы, ΔW - энергия, рассеянная за период. Чем меньше энергии рассеивается, тем больше добротность системы. Расчеты показывают, что

Q = = pN e = = . (64)

Τᴀᴋᴎᴍ ᴏϬᴩᴀᴈᴏᴍ, добротность обратно пропорциональна логарифмическому декременту затухания. Из формулы (64) следует, что добротность пропорциональна числу колебаний N e , совершаемых системой за время релаксации.

7) Потенциальную энергию системы в момент t, можно выразить через потенциальную энергию W 0 при наибольшем отклонении:

W = = kA o 2 e -2 qN = W 0 e -2 qN . (65)

Обычно условно считают, что колебания практически прекратились, в случае если их энергия уменьшилась в 100 раз (амплитуда уменьшилась в 10 раз). Отсюда можно получить выражение для расчета числа колебаний, совершенных системой:

= e 2qN = 100, ln100 = 2qN ;

N = = . (66)

9. Вынужденные колебания. Резонанс. Апериодические колебания. Автоколебания.

Для того чтобы система совершала незатухающие колебания, необходимо извне восполнять потери энергии колебаний на трение. Для того, чтобы энергия колебаний системы не убывала обычно вводят силу, периодически воздействующую на систему (такую силу будем называть вынуждающей , а колебания вынужденными).

ОПРЕДЕЛЕНИЕ: вынужденными называются такие колебания, которые возникают в колебательной системе под действием внешней периодически изменяющейся силы.

Эта сила, как правило, выполняет двоякую роль:

во-первых, она раскачивает систему и сообщает ей определенный запас энергии;

во-вторых, она периодически восполняет потери энергии (расход энергии) на преодоление сил сопротивления и трения.

Пусть вынуждающая сила изменяется со временем по закону:

.

Составим уравнение движения для системы, колеблющейся под воздействием такой силы. Предполагаем, что на систему также действует квазиупругая сила и сила сопротивления среды (что справедливо в предположении малости колебаний). Тогда уравнение движения системы будет иметь вид:

Или .

Проведя подстановки , , – собственная частота колебаний системы, получим неоднородное линейной дифференциальное уравнение 2 го порядка:

Из теории дифференциальных уравнений известно, что общее решение неоднородного уравнения равно сумме общего решения однородного уравнения и частного решения неоднородного уравнения.

Общее решение однородного уравнения известно:

,

где ; a 0 и a – произвольные const.

.

С помощью векторной диаграммы можно убедиться, что такое предположение справедливо, а также определить значения “a ” и “j ”.

Амплитуда колебаний определяется следующим выражением:

.

Значение “j ”, которое представляет собой величину отставания по фазе вынужденного колебания от обусловившей его вынуждающей силы , также определяется из векторной диаграммы и составляет:

.

Окончательно, частное решение неоднородного уравнения примет вид:


(8.18)

Эта функция в сумме с

(8.19)

дает общее решение неоднородного дифференциального уравнения, описывающего поведение системы при вынужденных колебаниях. Слагаемое (8.19) играет заметную роль в начальной стадии процесса, при так называемом установлении колебаний (рис. 8.10). С течением времени из-за экспоненциального множителя роль второго слагаемого (8.19) все больше уменьшается, и по прошествии достаточного времени им можно пренебречь, сохраняя в решении лишь слагаемое (8.18).

Таким образом, функция (8.18) описывает установившиеся вынужденные колебания. Они представляют собой гармонические колебания с частотой равной частоте вынуждающей силы. Амплитуда вынужденных колебаний пропорциональна амплитуде вынуждающей силы. Для данной колебательной системы (определенных w 0 и b) амплитуда зависит от частоты вынуждающей силы. Вынужденные колебания отстают по фазе от вынуждающей силы, причем величина отставания “j” также зависит от частоты вынуждающей силы.

Зависимость амплитуды вынужденных колебаний от частоты вынуждающей силы приводит к тому, что при некоторой определенной для данной системы частоте амплитуда колебаний достигает максимального значения. Колебательная система оказывается особенно отзывчивой на действие вынуждающей силы при этой частоте. Это явление называется резонансом , а соответствующая частота – резонансной частотой .

ОПРЕДЕЛЕНИЕ: явление, при котором наблюдается резкое возрастание амплитуды вынужденных колебаний, называется резонансом .

Резонансная частота определяется из условия максимума для амплитуды вынужденных колебаний:

. (8.20)

Тогда, подставив это значение в выражение для амплитуды, получим:

. (8.21)

При отсутствии сопротивления среды амплитуда колебаний при резонансе обращалась бы в бесконечность; резонансная частота при тех же условиях (b=0) совпадает с собственной частотой колебаний.

Зависимость амплитуды вынужденных колебаний от частоты вынуждающей силы (или, что то же самое, от частоты колебаний) можно представить графически (рис. 8.11). Отдельные кривые соответствуют различным значениям “b”. Чем меньше “b”, тем выше и правее лежит максимум данной кривой (см. выражение для w рез.). При очень большом затухании резонанс не наблюдается – с увеличением частоты амплитуда вынужденных колебаний монотонно убывает (нижняя кривая на рис. 8.11).

Совокупность представленных графиков, соответствующих различным значениям b, называется резонансными кривыми .

Замечания по поводу резонансных кривых:

при стремлении w®0 все кривые приходят к одному, отличному от нуля значению, равному . Это значение представляет собой смещение из положения равновесия, которое получает система под действием постоянной силы F 0 .

при w®¥ все кривые асимптотически стремятся к нулю, т.к. при большой частоте сила так быстро изменяет свое направление, что система не успевает заметно сместится из положения равновесия.

чем меньше b, тем сильнее изменяется с частотой амплитуда вблизи резонанса, тем «острее» максимум.

Явление резонанса часто оказывается полезным, особенно в акустике и радиотехнике.

Автоколеба́ния - незатухающие колебания в диссипативной динамической системе с нелинейной обратной связью, поддерживающиеся за счёт энергии постоянного, то есть непериодического внешнего воздействия.

Автоколебания отличаются от вынужденных колебаний тем, что последние вызваны периодическим внешним воздействием и происходят с частотой этого воздействия, в то время как возникновение автоколебаний и их частота определяются внутренними свойствами самой автоколебательной системы.

Термин автоколебания в русскоязычную терминологию введён А. А. Андроновым в 1928 году.

Примеры[

Примерами автоколебаний могут служить:

· незатухающие колебания маятника часов за счёт постоянного действия тяжести заводной гири;

· колебания скрипичной струны под воздействием равномерно движущегося смычка

· возникновение переменного тока в цепях мультивибратора и в других электронных генераторах при постоянном напряжении питания;

· колебание воздушного столба в трубе орга́на, при равномерной подаче воздуха в неё. (см. также Стоячая волна)

· вращательные колебания латунной часовой шестерёнки со стальной осью, подвешенной к магниту и закрученной (опыт Гамазкова) (кинетическая энергия колеса, как в униполярном генераторе преобразуется в потенциальную энергию электрического поля, потенциальная энергия электрического поля, как в униполярном двигателе, преобразуется в кинетическую энергию колеса и т. д.)

Молоток Маклакова

Молоток, совершающий удары за счёт энергии переменного тока с частотой, во много раз меньшей частоты тока в электрической цепи .

Катушка L колебательного контура помещается над столом (или другим предметом, по которому требуется ударять). Снизу в неё входит железная трубка, нижний конец которой является ударной частью молотка. В трубке есть вертикальная прорезь, чтобы уменьшить токи Фуко. Параметры колебательного контура такие, что собственная частота его колебаний совпадает с частотой тока в цепи (например, переменного городского тока, 50 герц).

После включения тока и установления колебаний наблюдается резонанс токов контура и внешней цепи, и железная трубка втягивается в катушку. Индуктивность катушки растёт, колебательный контур выходит из резонанса, а амплитуда колебаний тока в катушке уменьшается. Поэтому трубка возвращается в исходное положение - вне катушки - под действием силы тяжести. Затем колебания тока внутри контура начинают нарастать, и снова наступает резонанс: трубка опять втягивается в катушку.

Трубка совершает автоколебания , то есть периодические движения вверх и вниз, и при этом громко стучит по столу, подобно молотку. Период этих механических автоколебаний в десятки раз превосходит период переменного тока, поддерживающего их.

Молоток назван по имени М. И. Маклакова, лекционного ассистента Московского физико-технического института, предложившего и осуществившего такой опыт для демонстрации автоколебаний.

Механизм автоколебаний

Рис 1. Механизм автоколебаний

Автоколебания могут иметь различную природу: механическую, тепловую, электромагнитную, химическую. Механизм возникновения и поддержания автоколебаний в разных системах может основываться на разных законах физики или химии. Для точного количественного описания автоколебаний разных систем может потребоваться разный математический аппарат. Тем не менее, можно представить схему, общую для всех автоколебательных систем, качественно описывающую этот механизм (рис. 1).

На схеме: S - источник постоянного (непериодического) воздействия; R - нелинейный регулятор, преобразующий постоянное воздействие в переменное (например, в прерывистое во времени), которое и «раскачивает» осциллятор V - колеблющийся элемент (элементы) системы, а колебания осциллятора через обратную связь B управляют работой регулятора R , задавая фазу и частоту его действия. Диссипация (рассеивание энергии) в автоколебательной системе возмещается за счёт поступления в неё энергии из источника постоянного воздействия, благодаря чему автоколебания не затухают.

Рис. 2 Схема храпового механизма маятниковых часов

Если колеблющийся элемент системы способен к собственным затухающим колебаниям (т. н. гармонический диссипативный осциллятор ), автоколебания (при равенстве диссипации и поступления энергии в систему за время периода) устанавливаются на частоте, близкой к резонансной для этого осциллятора, их форма становится близкой к гармонической, а амплитуда, в некотором диапазоне значений, тем больше, чем больше величина постоянного внешнего воздействия.

Примером такого рода системы может служить храповой механизм маятниковых часов, схема которого представлена на рис. 2. На ось храпового колеса A (которое в этой системе выполняет функцию нелинейного регулятора) действует постоянный момент силы M , передающийся через зубчатую передачу от заводной пружины или от гири. При вращении колеса A его зубцы сообщают кратковременные импульсы силы маятнику P (осциллятору), благодаря которым его колебания не затухают. Кинематика механизма играет роль обратной связи в системе, синхронизируя вращение колеса с колебаниями маятника таким образом, что за полный период колебания колесо поворачивается на угол, соответствующий одному зубцу.

Автоколебательные системы, не содержащие гармонических осцилляторов, называются релаксационными . Колебания в них могут сильно отличаться от гармонических, и иметь прямоугольную, треугольную или трапецеидальную форму. Амплитуда и период релаксационных автоколебаний определяются соотношением величины постоянного воздействия и характеристик инерционности и диссипации системы.

Рис. 3 Электрозвонок

Простейшим примером релаксационных автоколебаний может служить работа электрического звонка, изображённого на рис. 3. Источником постоянного (непериодического) воздействия здесь является электрическая батарея U ; роль нелинейного регулятора выполняет прерыватель T , замыкающий и размыкающий электрическую цепь, в результате чего в ней возникает прерывистый ток; колеблющимися элементами являются магнитное поле, периодически наводимое в сердечнике электромагнита E , и якорь A , движущийся под воздействием переменного магнитного поля. Колебания якоря приводят в действие прерыватель, что и образует обратную связь.

Инерционность этой системы определяется двумя различными физическими величинами: моментом инерции якоря А и индуктивностью обмотки электромагнита E . Увеличение любого из этих параметров приводит к увеличению периода автоколебаний.

При наличии в системе нескольких элементов, колеблющихся независимо друг от друга, и одновременно воздействующих на нелинейный регулятор или регуляторы (которых тоже может быть несколько), автоколебания могут принимать более сложный характер, например, апериодический , или динамический хаос .

В природе и технике

Автоколебания лежат в основе многих явлений природы:

· колебания листьев растений под действием равномерного потока воздуха;

· образование турбулентных потоков на перекатах и порогах рек;

· действие регулярных гейзеров и пр.

На автоколебаниях основан принцип действия большого количества всевозможных технических устройств и приспособлений, в том числе:

· работа всевозможных часов, как механических, так и электрических;

· звучание всех духовых и струнно-смычковых музыкальных инструментов;


©2015-2019 сайт
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2017-04-04

Читайте также: