Вращается ли Солнце вокруг своей оси? Почему ночью бывает темно: вращение Земли вокруг своей оси и Солнца

Основные параметры Марса, определяющие влияние на многие свойства этой планеты зародились во время возникновения Солнечной системы. К ним относятся масса, наклон оси вращения, период и форма орбиты. Успешное изучение этих характеристик лежит в основе проекта по Марса и поиску жизни на этой планете.


Орбита Марса. Причины вращения

Движение по орбите обусловлено влиянием солнечных сил притяжения. Чем массивнее объект, тем выше его гравитационное воздействие на другие объекты в пространстве. Солнце обладает наибольшей массой в Солнечной системе. Его масса составляет 1,98892х1030 килограммов. Благодаря этим характеристикам Солнце имеет гораздо большую силу притяжения, чем Земля и Марс вместе. В последнее время все чаще можно встретить утверждение, что Марс и остальные планеты вращаются вокруг центра масс солнечной системы. И это не является ошибкой, так как ученые установили, что центр масс нашей системы находится практически в центре Солнца.

Из-за воздействия силы притяжения звезды, Марс вытягивает на орбиту вокруг Солнца. Но почему тогда он вращается и не падает на Солнце? Чтобы найти ответ, рассмотрим пример. К длинной веревочке с одной стороны привязан шар, а другой её конец зафиксирован в руке. Если раскрутить этот шар, он будет вращаться вокруг руки, но при этом не сможет отдалиться дальше, чем позволит длина веревки. Марс движется по тому же принципу, сила притяжения Солнца не отпускает его и заставляет двигаться по орбите, а центробежная сила, которая появляется при круговом движении, стремится вытолкнуть планету за пределы траектории его движения. На этом хрупком равновесии между силами и основывается принцип движения Марса в пространстве.

Период Марса вокруг Солнца в два раза длиннее земного. Полный оборот вокруг Солнца он совершает за 687 земных суток. Или 1,88, если измерять в земных годах. Однако это измерение отражает изменение положения планеты относительно звёзд и называется сидерический период вращения.

Можно так же рассчитать период обращения вокруг Солнца относительно Земли — это называется синодический период вращения. Он представляет собой промежуток между соединениями планеты в конкретной точке неба, обычно эта точка — Солнце. Синодический период красной планеты равен – 2,135.

Движение Марса. Основные параметры

Характеристики движения Марса по орбите и вокруг своей оси имеют много общего с земными. Однако, осевое движение Марса более хаотично и нестабильно, чем движение Земли. Во время движения марсианская ось может хаотично и непредсказуемо наклоняться, это объясняется отсутствием у него такого же массивного спутника, как Луна, который силой притяжения регулировал и стабилизировал бы движение планеты. Его спутники, Фобос и Деймос, ничтожно малы, их влияние на скорость вращения незначительно и не принимается во внимание в расчетах.

Характеристики марсианской орбиты

Марс движется вокруг Солнца по круговой орбите, которая не является окружностью, а представляет собой сложную эллиптическую фигуру. Орбита Марса отдалена от солнца на полтора раза больше, чем земная. Она имеет эллиптическую форму, которая образовалась под влиянием на нее сил притяжения других планет Солнечной системы. Ученые установили, что 1,35 миллиона лет назад его орбита представляла собой почти ровную окружность. Эксцентриситет марсианской орбиты (характеристика, которая показывает, насколько орбита отклоняется от окружности) равен 0,0934. Его орбита вторая в системе по эксцентричности, на первом месте Меркурий. Для сравнения эксцентриситет орбиты Земли равен 0,017.

При нахождении планеты в ближайшей к Солнцу точке — перигелии, радиус орбиты составляет 206,7 миллиона километров, при нахождении на максимальном расстоянии от Солнца – афелии, радиус увеличивается до 249,2 миллиона километров. Из-за разницы расстояний меняется количество поступающей на планету солнечной энергии, она составляет 20-30%, поэтому на Марсе наблюдается широкий разброс температур.

Одна из основных характеристик – это орбитальная скорость. Средняя скорость вращения вокруг Солнца равна 24,13 км/с.

Марс от Солнца на большее расстояние, чем Земля, поэтому радиус марсианской орбиты так же отличается в большую сторону. Мы уже выяснили, что марсианская траектория движения представляет собой вытянутый эллипс, поэтому её радиус не является постоянной величиной, среднее расстояние до Солнца равно 228 миллиона километров.

Каждый 26 месяцев Земля догоняет Марс по орбите. Это происходит из-за разницы в скорости движения планет (земная — 30 километров в секунду) и меньшего диаметра орбиты. В это время расстояние между планетами минимально, потому удобнее всего планировать космические миссии по изучению планеты в этот период. Это снижает затраты топлива и времени на , 6-8 месяцев, по космическим меркам это не так уж много.

Осевое вращение

Марс не ограничивается движением только по орбите, он также совершает вращение вокруг своей оси. Скорость экваториального вращения равняется 868,22 км/ч, для сравнения, на Земле она равняется 1674,4 км/час. Сутки на красной планете длятся 24 часа, если вас интересуют средние солнечный день, или 24 часа, 56 минут и 4 секунды, если принимать в расчёт сидерический день. Получается, что красная планета вращается только на 40 минут медленнее Земли.

Вращение обеспечивает на планете не только смену дня и ночи, оно также меняет форму планеты под влиянием центробежной силы, сплющивая ее с полюсов на 0,3%. Изменение формы не так заметно из-за высокой плотности планеты.

Наклон марсианской оси вращения равен 25,19°, земной – 23,5°. Смена марсианских зимне-весенних происходит благодаря наклону оси вращения и эксцентриситету орбиты. Смена зимнего и летнего сезонов на Марсе происходит в противофазе, то есть, когда в одном полушарии наступает летний период, в другом неизменно начинаются зимние холода. Но из-за формы орбиты, длительность сезонов здесь может растягиваться, а, может, уменьшаться. Так в северном полушарии лето и весна длятся 371 сол. Они наступают, когда Марс находится на участке орбиты, максимально удаленном от Солнца. Потому марсианское лето на севере долгое, но прохладное, а на юге — короткое и тёплое. На Земле времена года распределяются равномернее, так как земная орбита близка к идеальной окружности по форме. Стоит заметить, что Марс вращается вокруг оси хаотичнее, чем планеты с более массивными спутниками, что может в любой момент повлиять на длительность зимне-весенних сезонов.

Наша планета находится в постоянном движении. Вместе с Солнцем она перемещается в космосе вокруг центра Галактики. А та, в свою очередь, движется во Вселенной. Но наибольшее значение для всего живого играет вращение Земли вокруг Солнца и собственной оси. Без этого движения условия на планете были бы непригодными для поддержания жизни.

Солнечная система

Земля как планета Солнечной системы по расчетам ученых сформировалась более 4,5 млрд лет назад. За это время расстояние от светила практически не изменялось. Скорость движения планеты и сила притяжения Солнца уравновесили ее орбиту. Она не идеально круглая, но стабильная. Если бы сила притяжения светила была сильнее или скорость Земли заметно уменьшилась, то она бы упала на Солнце. В противном случае она рано или поздно улетела бы в космос, перестав быть частью системы.

Расстояние от Солнца до Земли делает возможным поддержание оптимальной температуры на ее поверхности. В этом немаловажную роль играет и атмосфера. Во время вращения Земли вокруг Солнца меняются времена года. Природа приспособилась к таким циклам. Но если бы наша планета была отдалена на большее расстояние, то температура на ней стала бы отрицательной. Очутись она ближе - вся вода бы испарилась, так как столбик термометра превысил бы точку кипения.

Путь планеты вокруг светила называется орбитой. Траектория этого полета не идеально круглая. Она имеет эллипсность. Максимальная разница составляет 5 млн км. Самая близкая точка орбиты к Солнцу находится на расстоянии 147 км. Она называется перигелием. Земля ее проходит в январе. В июле планета находится от светила на максимальном отдалении. Наибольшее расстояние - 152 млн км. Эта точка называется афелием.

Вращение Земли вокруг своей оси и Солнца обеспечивает соответственно смену суточных режимов и годовых периодов.

Для человека движение планеты вокруг центра системы незаметно. Это из-за того, что масса Земли огромна. Тем не менее каждую секунду мы пролетаем в пространстве около 30 км. Это кажется нереальным, но таковы расчеты. В среднем считается, что Земля находится от Солнца на расстоянии около 150 млн км. Один полный оборот вокруг светила она делает за 365 дней. Пройденное расстояние за год составляет почти миллиард километров.

Точное расстояние, которое наша планета проходит за год, двигаясь вокруг светила, составляет 942 млн км. Мы вместе с ней движемся в пространстве по эллиптической орбите со скоростью 107 000 км/час. Направление вращения - с запада на восток, то есть против условной часовой стрелки.

Полный оборот планета завершает не ровно за 365 дней, как принято считать. При этом проходит еще около шести часов. Но для удобства летоисчисления это время учитывают суммарно за 4 года. В итоге «набегает» один дополнительный день, его добавляют в феврале. Такой год считается високосным.

Скорость вращения Земли вокруг Солнца непостоянна. Она имеет отклонения от среднего значения. Это связано с эллиптической орбитой. Разница между значениями наиболее проявляется в точках перигелия и афелия и составляет 1 км/сек. Эти изменения незаметны, так как мы и все окружающие нас предметы двигаются в системе координат одинаково.

Смена сезонов

Вращение Земли вокруг Солнца и наклон оси планеты делает возможным смену времен года. Это меньше заметно на экваторе. Но ближе к полюсам годовая цикличность проявляется больше. Северное и Южное полушария планеты обогреваются энергией Солнца неравномерно.

Двигаясь вокруг светила, они проходят четыре условные точки орбиты. При этом поочередно два раза в течение полугодичного цикла они оказываются к нему дальше или ближе (в декабре и июне - дни солнцестояний). Соответственно в месте, где поверхность планеты прогревается лучше, там температура окружающей среды выше. Период на такой территории принято называть летом. В другом полушарии в это время заметно холоднее - там зима.

Спустя три месяца такого движения с периодичностью в полгода планетарная ось располагается таким образом, что оба полушария находятся в одинаковых условиях для обогрева. В это время (в марте и сентябре - дни равноденствия) температурные режимы приблизительно равны. Тогда, в зависимости от полушария, наступают осень и весна.

Земная ось

Наша планета - это вращающийся шар. Движение ее осуществляется вокруг условной оси и происходит по принципу волчка. Опираясь основанием в плоскость в раскрученном состоянии, он будет удерживать равновесие. Когда скорость вращения ослабевает, волчок падает.

Земля упора не имеет. На планету действуют силы притяжения Солнца, Луны и других объектов системы и Вселенной. Тем не менее она выдерживает постоянное положение в пространстве. Скорость ее вращения, полученная еще при формировании ядра, достаточна для поддержания относительного равновесия.

Земная ось проходит через шар планеты не перпендикулярно. Она наклонена под углом 66°33´. Вращение Земли вокруг своей оси и Солнца делает возможным смену сезонов года. Планета «кувыркалась» бы в пространстве, если бы у нее не было строгой ориентации. Ни о каком постоянстве условий среды и жизненных процессов на ее поверхности не было бы речи.

Осевое вращение Земли

Вращение Земли вокруг Солнца (один оборот) происходит в течение года. За день на ней сменяются день и ночь. Если посмотреть на Северный полюс Земли с космоса, то можно увидеть, как она вращается против часовой стрелки. Полный оборот она совершает приблизительно за 24 часа. Этот период называют сутками.

Скорость вращения определяет быстроту смены дня и ночи. За один час планета оборачивается приблизительно на 15 градусов. Скорость вращения в разных точках ее поверхности различна. Это происходит из-за того, что она имеет шарообразную форму. На экваторе линейная скорость составляет 1669 км/час, или 464 м/сек. Ближе к полюсам этот показатель уменьшается. На тридцатой широте линейная скорость уже будет составлять 1445 км/час (400 м/сек).

Из-за осевого вращения планета имеет несколько сжатую с полюсов форму. Также это движение «заставляет» отклоняться перемещающиеся предметы (в том числе воздушные и водные потоки) от первоначального направления (сила Кориолиса). Еще одним важным следствием такого вращения являются приливы и отливы.

Смена дня и ночи

Шарообразный объект единственным источником света в определенный момент освещается только наполовину. Применительно к нашей планете в одной ее части в этот момент будет день. Неосвещенная часть будет скрыта от Солнца - там ночь. Осевое вращение дает возможность сменяться этим периодам.

Кроме светового режима изменяются условия обогрева поверхности планеты энергией светила. Такая цикличность имеет важное значение. Скорость смены световых и тепловых режимов осуществляется сравнительно быстро. За 24 часа поверхность не успевает ни чрезмерно нагреться, ни остыть ниже оптимального показателя.

Вращение Земли вокруг Солнца и своей оси с относительно постоянной скоростью имеет определяющее для животного мира значение. Без постоянства орбиты планета не удержалась бы в зоне оптимального обогрева. Без осевого вращения день и ночь длились бы по полгода. Ни то ни другое не способствовало бы зарождению и сохранению жизни.

Неравномерность вращения

Человечество за свою историю привыкло к тому, что смена дня и ночи происходит постоянно. Это служило неким эталоном времени и символом равномерности жизненных процессов. На период вращения Земли вокруг Солнца до определенной степени оказывает влияние эллипсность орбиты и другие планеты системы.

Другая особенность - изменение продолжительности суток. Осевое вращение Земли происходит неравномерно. Выделяют несколько основных причин. Значение имеют сезонные колебания, связанные с динамикой атмосферы и распределением осадков. Кроме того, приливная волна, направленная против хода движения планеты, постоянно его тормозит. Этот показатель ничтожен (за 40 тыс. лет на 1 секунду). Но за 1 млрд лет под действием этого продолжительность суток увеличилась на 7 часов (с 17 до 24).

Следствия вращения Земли вокруг Солнца и своей оси изучаются. Данные исследования имеют большое практическое и научное значение. Их используют не только для точности определения звездных координат, но и для выявления закономерностей, которые могут влиять на процессы жизнедеятельности человека и природные явления в гидрометеорологии и других областях.

Солнечные пятна видимым образом перемещаются по солнечному диску от восточного края к западному. Это перемещение Галилей в 1610 г. правильно понял как выражение осевого вращения Солнца, направленного так же, как вращение Земли. Пятна, особенно крупные, существуют долго, и поэтому можно наблюдать их повторное появление на обращенной к Земле стороне Солнца, а фиксируя более точно их положение на солнечном диске, можно легко и точно установить синодический период вращения Солнца S. Он будет отличаться от звездного периода вращения Р, так как мы наблюдаем вращение Солн вокруг оси с движущейся Земли. Период обращения Земли Е составляет 1 год. Три величины - S, Р и Е - связаны очевидной формулой

из которой легко получить период Р вращения Солнца вокруг своей оси относительно звезд.

Исследование движений пятен позволило установить, с одной стороны, положение в мировом пространстве оси вращения и экватора Солнца, а с другой, - показало, что пятна, помимо общего монотонного перемещения по диску Солнца, имеют еще собственные перемещения по нему.

Вместе с тем оказалось, что период возвращения пятен в то же положение на диске Солнца закономерно изменяется с гелиографической широтой (т. е. с положением пятна относительно солнечного экватора): экваториальные области Солнца вращаются всего быстрее, а по мере удаления от экватора вращение замедляется. Проследить это экваториальное ускорение вращения Солнца по пятнам удается лишь в поясе от +40° до -40° гелиографической широты, так как на более высоких широтах пятна почти не встречаются.

Весьма обстоятельное определение элементов вращения Солнца сделал более 100 лет назад Кэррингтон. Он нашел следующее положение экватора Солнца:

долгота восходящего узла солнечного экватора относительно эклиптики

наклон солнечного экватора к эклиптике

Земля пересекает плоскость солнечного экватора в начале июня и в начале декабря. В это время пути видимого перемещения пятен по диску Солнца прямолинейны. В остальное время они криволинейны. Первую половину года к Земле обращен южный полюс Солнца, а вторую - северный.

Для расчета гелиографических долгот служит, по предложению Кэррингтона, тот нулевой меридиан, который проходил через центр солнечного диска в гринвичский полдень 1 января 1854 г. (юлианская дата JD 2 398 220,0). В дальнейшем этот же меридиан проходит центр солнечного диска через каждые 27,2753 суток, на основании чего идет счет солнечных оборотов (так, например, 1954, дек. 21,63 начался 1355-й оборот Солнца). Приведенное выше значение есть синодический период S вращения Солнца на средней широте пятен (около 16°). Ему соответствует по формуле (1.1) звездный период вращения Солнца . Отсюда получается угловая скорость вращения Солнца на гелиографической широте за сутки. На других гелиографических широтах угловая скорость

Это одна из многих эмпирических формул, выводимых по наблюдениям тысяч пятен.

Большое количество пятен в данном случае необходимо, чтобы уничтожить влияние эффекта собственных перемещений пятен по поверхности Солнца. С меньшей точностью определяется вращение Солнца по факелам. Одно из таких определений дало формулу

Описанными средствами изучается вращение Солнца вблизи его экватора. Для того чтобы проследить солнечное вращение на более высоких широтах, эффективно применяется метод определения лучевых скоростей противоположных точек солнечного диска, лежащих на одной широте.

Для этого получают спектрограммы того и другого края солнечного диска одновременно, одну под другой, для чего диск Солнца проектируют на длинную щель спектрографа, и призмами, установленными перед щелью, переносят изображения противоположных точек диска в середину щели на ось спектрографа (призмы расположены подобно зеркалам в перископе и, в частности, в перископическом интерферометре; см. КПА 461). При достаточно большой дисперсии, например 0,5 А/мм, линии солнечного спектра, принадлежащие восточному и западному краям Солнца, будут заметным образом смещены друг оносительно друга; величина этого смещения даст (по формуле эффекта Доплера) удвоенную скорость вращения Солнца на соответствующей гелиографической широте. В конце прошлого и начале нынешнего столетия были проведены многочисленные и обширные ряды наблюдений (Дунер, Хальм, Белопольский, Адамс и др.), позволяющие проследить вращение Солнца до гелиографической широты 75°. По последним определениям оно подчиняется формуле вида (1.2) или (1.3), но с существенно иным значением вращения на экваторе, а именно:

Из формулы (1.4) получается скорость вращения экватора Солнца 1,93 км/с, тогда как по формуле (1.2) эта же величина получается равной 2,03 км/с.

Можно думать, что такие расхождения реальны и связаны с различием уровней, на которых существуют пятна или зарождаются спектральные линии. Кроме того, на протяжении десятилетий значение первого члена в формуле (1.4) сильно меняется: так, в начале нашего столетия экваториальная скорость вращения Солнца определялась как 2,06 и даже 2,08 км/с, но ввиду множества обстоятельств, осложняющих наблюдения и обработку, говорить о реальном изменении скорости вращения Солнца было бы неосторожно, тем более, что самые последние измерения опять дают среднее значение скорости вращения Солнца на экваторе 2,06 км/с. Для характеристики изменения вращения Солнца с широтой формула (1.4) заслуживает полного доверия. В частности, из нее следует, что на широте 75° период вращения Солнца достигает 32 земных суток.

Все изложенные факты - экваториальное ускорение вращения Солнца и разная скорость вращения его на разных уровнях - указывают на то, что Солнце вращается не как твердое тело. Это вполне соответствует нашему представлению о его газовой природе.

Один год из жизни Солнца

Звезда по имени Солнце живет и дышит, и за переменами в ее жизни постоянно следит космический аппарат НАСА под названием Обсерватория солнечной динамики (Solar Dynamics Observatory, SDO). Это видео демонстрирует нам один год из жизни Солнца – с 1 января 2015 г. до 28 января 2016 г.

Данное видео наглядно показывает разнообразные циклические процессы, протекающие на Солнце. Наше светило живет, «дышит», движется в пространстве и дает жизнь всему живому на Земле

На этом видео легко видеть 25-дневный цикл вращение Солнца. Можно также заметить, что видимые размеры Солнца то увеличиваются, то уменьшаются. Это связано с тем, что расстояние между космическим аппаратом SDO и Солнцем с течением времени меняется. 26 октября 2006 года два одинаковых космических аппарата были запущены на орбиты близкие к орбите движения Земли вокруг Солнца. В ходе проекта один из них постепенно отстает от Земли (Behind), а другой, наоборот, обгоняет ее (Ahead). Это дает возможность одновременно наблюдать Солнце из двух разных точек, то есть использовать стереоскопический эффект, позволяющий получать трехмерные изображения структур и явлений на Солнце.

1. Периоды обращения солнца вокруг своей оси

Солнце представляет собой медленно вращающуюся звезду, имеющую то же направление вращения, что и Земля. Основной особенностью Солнца является то, что его вращение дифференциально, то есть на низких гелиоширотах угловая скорость вращения больше, чем на высоких.

Периодические явления порождаются механическим вращением. Предполагается, что 27-суточный синодический период вращения Солнца влияет на многие климатические и геомагнитные явления на Земле. Такая взаимосвязь объясняется вращением активных областей на Солнце.

2. Периоды соединения пар планет солнечной системы

Под соединением пары планет солнечной системы понимается такое характерное взаиморасположение Солнца и этих двух планет, при котором их проекции на плоскость эклиптики находятся на одной линии.

Количественные характеристики

Периодическое соединение пар планет Солнечной системы связано с периодическим обращением планет вокруг Солнца по эллиптическим орбитам.

Порождаемые циклические явления

Энтузиаст изучения воздействия планет на погоду Е.С. Денисов считает, что периодическое соединение пар планет Солнечной системы вызывает периодическое понижение температуры воздуха на Земле.

3. Годичный ритм вариации скорости вращения Земли

На фоне характерных для угловой скорости и вращения Земли скачкообразных, нерегулярных флуктуаций существует также годичная цикличность в вариациях угловой скорости, которая проявляется в замедленном вращении Земли в одни месяцы и убыстренном – в другие.

Количественные характеристики

Механизм возникновения циклического явления

Предполагается, что такие вариации связаны с периодическими изменениями момента инерции Земли, обусловленными сезонной динамикой атмосферы и планетарным распределением атмосферных осадков.

4. Чандлеровский период движения полюса Земли

Полюсы Земли описывают на ее поверхности сложные кривые, не выходящие в течение последних десятилетий за пределы квадрата со сторонами 25 м. В 1892г. американский ученый С. Чандлер, обработав ряд наблюдений за изменениями широт на Земле установил, что движение полюсов Земли в основном складывается из двух периодических движений: по кругу с периодом, названным в дальнейшем периодом Чандлера; и по вытянутому эллипсу с годичным периодом.

Количественные характеристики

Механизм возникновения циклического явления

В 1895 г. американский астроном Ньюком доказал, что упругие деформации Земли влияют на ее вращение и порождают колебания полюса Земли с периодом 428 суток, то есть с периодом Чандлера.

5. Додекадная вариация скорости суточного вращения Земли

Анализ данных вариации скорости суточного вращения Земли, полученных по атомной шкале времени за промежуток 1955 – 1985 гг., позволил установить, что эти колебания представляют собой квазигармонический процесс, амплитуда которого постепенно затухает от 60-х к 80-м годам.

Количественные характеристики

Механизм возникновения циклического явления

6. Цикл изменения интенсивности перемещения полюсов Земли

На основании анализа данных о местоположении северного полюса за период 1892-1967гг. было установлено, что его перемещения становились более интенсивными примерно через равные промежутки времени. Вместе с тем в 1927 году перемещения полюса не наблюдалось.

Количественные характеристики

Механизм возникновения циклического явления

Предполагается, что цикл изменения интенсивности перемещения полюсов Земли порождается 6-7-летним циклом колебаний климатического режима.

Порождаемые циклические явления

Цикл изменения интенсивности вынужденных колебаний полюсов Земли порождает 6-7-летний цикл колебаний климатического режима планеты.

7. Период нутации земной оси

Земная ось с течением времени не остается в пространстве параллельной себе самой и в проекции на небесную сферу описывает эллипс, большие оси которого всегда направлены к полюсам эклиптики. Это явление называется нутацией земной оси. Оно было открыто в 1727 г. Брадлеем при наблюдении звезды Дракона.

Количественные характеристики

Механизм возникновения циклического явления

Эти колебания обусловлены периодическим изменением взаимного положения лунной и земной орбит, которое определяется периодическим движением лунных узлов.

Порождаемые циклические явления

Предполагается, что нутация земной оси обуславливает циклическое изменение климатического режима Земли.

8. Период движения лунных узлов

Видимый путь Солнца среди звезд, называемый эклиптикой, представляет собой большой круг небесной сферы, к которому наклонена плоскость земного экватора на угол 23°27". Точки пересечения лунной орбиты с эклиптикой называются узлами лунной орбиты. Лунные узлы смещаются вдоль эклиптики навстречу движения Луны и совершают оборот вдоль эклиптики за один и тот же промежуток времени.

Количественные характеристики

Механизм возникновения циклического явления

Периодическое перемещение узлов лунной орбиты создается возмущающим воздействием Солнца на движение Луны.

Порождаемые циклические явления

Перемещение узлов лунной орбиты вносит основной вклад в явление нутации оси вращения Земли посредством периодического изменения приливного момента. С движением узлов лунной орбиты связаны также периодические изменения наклона лунной орбиты к плоскости земного экватора от 18°10" до 28°45".

9. Декадные вариации скорости суточного вращения Земли

Анализ данных Л. Моррисона о среднегодовых вариациях скорости суточного вращения Земли за промежуток времени с 1664 по 1974 гг. позволил Ю.Р. Ривину сделать вывод о том, что этим вариациям свойственна цикличность с периодами колебаний менее 50 лет. Особенно отчетливо эта цикличность проявляется на промежутке 1824 – 1974 гг. и представляет собой наложение двух квазигармонических колебаний, у которых амплитуда первого колебания несколько затухает на границах интервала времени, а амплитуда второго несколько усиливалась в 60-70-х годах прошлого столетия.

Количественные характеристики

Механизм возникновения циклического явления

10. Шестидесятилетний цикл вариации скорости вращения Земли

Л. Моррисоном были вычислены среднегодовые вариации скорости суточного вращения Земли за период с 1664 по 1974 гг. Спектральный анализ этих данных позволил Ю.Р. Ривину сделать вывод о том, что реально существуют 60-летние циклы вариаций скорости суточного вращения Земли.

Установлено, что вариации с таким периодом представляют собой нестационарный колебательный процесс. С середины XVII века по 20-е годы XIX века они могут быть представлены как квазигармонические колебания с постоянной амплитудой. После 20-х годов XIX столетия амплитуда колебаний практически мгновенно увеличилась и в течение XX века медленно уменьшается.

Количественные характеристики

Механизм возникновения циклического явления

11. Периоды обращения планет, их спутников и комет солнечной системы

Солнечная система включает в себя центральное светило – Солнце, девять больших планет с их 31 спутником, более 1600 обозначенных малых планет (астероидов), около 100 известных короткопериодических комет, около 50 известных метеорных роев. В настоящее время установлены четыре основные закономерности Солнечной системы, имеющие космогоническое значение:

1. Все планеты обращаются вокруг Солнца практически по круговым орбитам – эллипсам с небольшим эксцентриситетом.

2. Все планеты обращаются вокруг Солнца в одном и том же направлении – против часовой стрелки.

3. Солнечная система компланарна, то есть плоскости орбит всех планет расположены вблизи плоскости экватора Солнца

4. В Солнце сосредоточено 99,87% всей массы солнечной системы, а в планетах – только 0,13%. На долю Солнца приходится 2% момента количества движения, а на долю планет – 98%.

Синодический период обращения – промежуток времени между двумя последовательными соединениями Луны (или какой-нибудь планеты Солнечной системы) с Солнцем при наблюдении за ними с Земли. При этом соединения планет с Солнцем должны происходить в фиксированном линейном порядке, что существенно для внутренних планет: например, это будут последовательные верхние соединения, когда планета проходит за Солнцем.

Синодический период Луны равен промежутку времени между двумя новолуниями или двумя любыми другими одинаковыми последовательными фазами.

Сидерический период обращения – промежуток времени, в течение которого какое-либо небесное тело-спутник совершает вокруг главного тела полный оборот относительно звёзд. Понятие «сидерический период обращения» применяется к обращающимся вокруг Земли телам – Луне (сидерический месяц) и искусственным спутникам, а также к обращающимся вокруг Солнца планетам, кометам и др. Сидерический период также называют годом.

Под наклонением орбиты понимают угол между плоскостью орбиты небесного тела и плоскостью эклиптики, совпадающей с плоскостью обращения Земли вокруг Солнца.

Количественные характеристики

Периоды обращения больших планет вокруг Солнца и своей оси
Планета Сидерический период, суток (лет) Синодический период, суток (лет) Период вращения вокруг оси, суток
Меркурий 87,97 115,88 (0,317) 58,646
Венера 224,701 583,92 (1,599) 243,0187
Земля 365,256 0,9972
Марс 686,980 (1,88) 779,94 (2,135) 1,0259
Юпитер 4332,585 (11,86) 398,88 (1,092) 0,4135
Сатурн 10759,197 (29,46) 378,09 (1,035) 0,4440
Уран 30685,807 (84,02) 369,66 (1,012) 0,7183
Нептун 60187,604 (164,78) 367,49 (1,006) 0,6713
Плутон 90469,274 (248,09) 366,74 (1,004) 6,3872

Элементы орбит больших планет Солнечной системы
Планета Среднее расстояние от Солнца, млн. км Эксцентриситет орбиты Наклонение орбиты, градус Масса, в массах Земли
Меркурий 57,87 0,20562 7,004 0,0543
Венера 108,14 0,00680 3,394 0,8136
Земля 149,50 0,01673 1,0
Марс 227,79 0,09336 1,850 0,1069
Юпитер 777,80 0,04842 1,306 317,37
Сатурн 1426,10 0,05572 2,491 95,08
Уран 2869,10 0,04718 0,773 14,61
Нептун 4495,70 0,00857 1,774 17,23
Плутон 5905,00 0,24864 17,144 0,11

Периоды обращения некоторых малых планет Солнечной системы
Планета Сидерический период обращения, суток Синодический период обращения, суток
Церера 1680,11 466,66
Паллада 1683,77 466,50
Юнона 1692,45 473,90
Веста 1325,83 504,22
Астрея 1512,10 481,71
Геба 1380,61 496,78
Ирис 1344,09 501,32
Флора 1194,34 526,41
Метида 1347,74 501,19
Виктория 1300,26 507,70
Эвномия 1570,54 475,97
Meльпомена 1271,04 512,64
Массалия 1366,00 498,66
Навзикая 1358,70 499,37
Бамберга 1607,06 472,78
Аквитания 1654,55 468,62
Эрот 642,83 845,37
Папагена 1793,34 458,71
Давида 2078,23 443,20
Гильдаго 5087,82 393,50
Ганимед 1585,15 474,60
Амур 975,20 584,00
Икар 409,07 5047,64
Аполлон 661,09 816,20
Адонис 1008,07 572,80

Элементы некоторых малых планет
Планета Большая полуось орбиты, млн. км Эксцентриситет Наклонение, градус Диаметр, км
Церера 413,83 0,076 10,60 768
Паллада 414,43 0,234 34,82 492
Юнона 398,88 0,258 13,00 190
Веста 353,13 0,089 7,13 392
Астрея 385,27 0,190 5,33 100
Геба 362,40 0,204 14,76 170
Ирис 356,72 0,231 5,50 170
Флора 329,21 0,157 5,90 100
Метида 006,87 0,124 5,60 130
Виктория 348,79 0,221 8,38 90
Эвномия 395,44 0,187 11,76 228
Meльпомена 343,26 0,218 10,13 95
Массалия 360,01 0,143 0,68 106
Навзикая 359,11 0,246 6,85 75
Бамберга 401,27 0,337 11,26 95
Аквитания 409,49 0,238 17,97 107
Эрот 217,98 0,223 10,83 6x32
Папагена 431,77 0,234 14,91 210
Давида 475,72 0,176 15,74 230
Гильдаго 866,23 0,656 42,53 25-50
Ганимед 397,33 0,542 26,30 48
Амур 287,35 0,436 11,93 1-2
Икар 161,16 0,827 22,98 1-2
Аполлон 222,16 0,566 6,42 1-2
Адонис 294,37 0,779 1,48 1-2

Элементы орбит некоторых периодических комет
Название Период обращения, суток Эксцентриситет Наклонение, градус
Энке-Бэклунда 1204,57 0,847 12,37
Григга-скьелле рупа 1790,78 0,704 17,64
Темпеля 21923,36 0,548 12,47
Брорзена 11995,32 0,810 29,39
Темпеля-Л. Свифта 2074,94 0,638 5,44
Понса-Виннеке 2237,11 0,654 21,69
Копфа 2256,83 0,556 7,22
Цвассмана-Бахмана 2 2384,67 0,385 3,73
Джакобини-Циннера 2347,05 0,728 30, 89
Биелы 2418,27 0,756 12,55
Даниэла 2433,61 0,586 19,71
Д’Арреста 2446,03 0,612 18,05
Финлея 2487,30 0,708 3,44
Брукса 2 2531,49 0,487 5,55
Борелли 1 2559,98 0,605 31,10
Файе 2704,98 0,565 10,55
Уиппла 2708,99 0,356 10,25
Рейнмута 1 2794,83 0,478 8,40
Шимасса 2984,76 0,706 12,03
Вольфа 1 3073,88 0,396 27,32
Комас Сола 3124,28 0,578 13,46
Тутля 4969,48 0,821 54,65
Кроммелина 10180,39 0,919 28,87
Галлея 27769,35 0,967 162,21

Элементы некоторых спутников планет солнечной системы
Планета Спутник Сидерический период
обращения, суток
Эксцентриситет Диаметр, км
Земля Луна 27,322 0,0549 3476
Марс Фобос 0,319 0,019 16
Деймос 1,262 0,003 8
Юпитер Амальтея 0,498 0,0032 250×146×128
Ио 1,769 0,0041 3642 Европа 3,561 0,0094 3122 Ганимед 7,15 0,0011 5260 Каллисто 16,689 0,0074 4820
Сатурн Мимас 0,940 0,0190 397
Энцелад 1,370 0,0030 499 Тефия 1,890 0,0000 1060 Диона 2,740 0,0020 1118 Рея 4,518 0,0009 1528 Титан 15,950 0,0289 5150 Гиперион 21,280 0,023 266 Япет 79,330 0,029 1436
Уран Ариэль 2,520 0,007 1157,8
Умбриэль 4,144 0,008 1169,4 Титания 8,706 0,0023 1577,8 Оберон 13,463 0,0010 1522,8 Миранда 1,4135 0,0013 471,6
Нептун Тритон 5,877 0,0000 2707
Нереида 360,14 0,7512 340

Механизм возникновения циклического явления

Основной силой, управляющей движением планет и связывающей воедино солнечную систему, является солнечная гравитация, описываемая законом всемирного тяготения, открытым И. Ньютоном в середине XVII века.

Порождаемые циклические явления

Гравитационное взаимодействие планет и Солнца, а также периодическое изменение их взаиморасположения приводят к возникновению периодического изменения величины сил гравитации, действующих на материальные тела Солнечной системы. Это приводит к образованию периодических приливных явлений в Солнечной системе.

12. Период предварения равноденствия

Узлы земной орбиты (точки осеннего и весеннего равноденствия) перемещаются по эклиптике навстречу движению Солнца, так что оно вступает в эти точки немного раньше, чем если бы они были неподвижными. Это явление называется прецессией или предварением равноденствия. Оно проявляется в том, что на небесной сфере северный полюс мира движется вокруг полюса эклиптики по малому кругу.

Количественные характеристики

В настоящее время полюс мира находился вблизи Полярной звезды.

Механизм возникновения циклического явления

Поскольку ось вращения Земли не перпендикулярна плоскостям орбит Земли и Луны, Луна и Солнце создают момент сил, стремящийся выровнять ось Земли, что приводит к явлению прецессии.

Порождаемые циклические явления

13. Цикл колебаний угла наклона плоскости земного экватора к плоскости эклиптики

В 1930 г. сербский астрофизик М. Миланкович на основании теоретических расчетов показал, что вариациям угла наклона плоскости земного экватора к плоскости эклиптики свойственна цикличность. Результаты М. Миланковича были уточнены Ш. Г. Шарафом и Н. А. Будниковой, которые установили что эта цикличность представляет собой суперпозицию пяти периодических колебаний.

Количественные характеристики

Ввиду соизмеримости частот периодических колебаний угла наклона существует также период в 200 тыс. лет.
Амплитуда колебаний с «большим» периодом – 1,259°

Механизм возникновения циклического явления

Предполагается, что гравитационное взаимодействие Земли с другими небесными телами Солнечной системы является основной причиной циклических вариаций угла наклона плоскости земного экватора к плоскости эклиптики.

Порождаемые циклические явления

Эти колебания порождают циклическое изменение летней и зимней инсоляции на Земле.

14. Цикл колебания эксцентриситета земной орбиты

Земля движется в мировом пространстве вокруг Солнца по эллиптической орбите. Отношение расстояния фокуса от центра эллипса к его большой полуоси называется эксцентриситетом. Сербским астрофизиком Миланковичем в 1930 г. на основании строгих физических соотношений было показано, что эксцентриситету земной орбиты свойственны циклические колебания. В дальнейшем Ш.Г. Шараф и Н.А. Будникова подтвердили выводы Миланковича, установив, что цикл колебаний эксцентриситета в целом складывается из шести периодических колебаний.

Количественные характеристики

Ввиду соизмеримости пяти частот колебаний эксцентриситета существует большой период продолжительностью 1200 –1300 тыс. лет.

Амплитуда большого периода колебаний – 0,035.

Механизм возникновения циклического явления

Предполагается, что вековой цикл колебания эксцентриситета земной орбиты порождается гравитационным взаимодействием Земля – другие тела Солнечной системы.

Порождаемые циклические явления

Колебания эксцентриситета вносят основной вклад в циклические колебания амплитуды вариации летней инсоляции (суммы солнечной радиации, получаемой единицей площади на выбранной широте в течение летнего калорического полугодия).

15. Период колебаний Солнечной системы относительно плоскости галактики

В 1954 г. на основании теоретических выкладок советский астроном П. П. Паренаго пришел к выводу, что в процессе движения Солнечной системы вокруг центра масс Галактики она совершает плавные волнообразные колебания, направленные перпендикулярно к плоскости Галактики. Период этих колебаний иногда называют «драконическим годом».

Количественные характеристики

Механизм возникновения циклического явления

Предполагается, что эти колебания возникают в результате гравитационного взаимодействия Солнечная система – Галактика.

Порождаемые циклические явления

Колебания Солнечной системы относительно плоскости Галактики порождают цикл горообразования, период которого вдвое меньше драконического года. Горообразующие силы наиболее интенсивно проявляются в те отрезки времени, когда Солнечная система пересекает плоскость Галактики.

16. Период изменения абсолютной скорости Солнца

В 1952 г. советский астроном П.П. Паренаго вычислил и построил приближенную орбиту движения Солнца, показав, что Солнце обращается вокруг центра масс Галактики почти по эллиптической орбите. Одним из основных выводов Паренаго было то, что движение Солнца происходит неравномерно, то есть абсолютная скорость его движения относительно фонового излучения не является постоянной, а изменяется периодически. Оказалось, что период изменения абсолютной скорости движения Солнца совпадает с аномалистическим периодом – временем между двумя последовательными прохождениями Солнцем через перигалактий и апогалактий.

Количественные характеристики

Механизм возникновения циклического явления

Периодические изменения абсолютной скорости движения Солнца обусловлены его движением вокруг центра масс Галактики.

Порождаемые циклические явления

Периодичность в наступлении морей на сушу (трансгрессия) и горизонтальных движений земной коры имеют наибольшую интенсивность при максимальной абсолютной скорости Солнца.

Периодичность в наступлении морей и вертикальных движений земной коры имеют наибольшую интенсивность при минимальной абсолютной скорости движения Солнца.

17. Космический год

Под космическим годом понимается время полного обращения Солнца вокруг центра Галактики.

Количественные характеристики

Период 212 млн. лет
Аномалистический период движения Солнца
(время между двумя последовательными прохождениями
через перигалактий или апогалактий)
176 млн. лет
Момент ближайшего прохождения через перигалактий
наступит через
12 млн. лет
Момент последнего прохождения через апогапактий был 76 млн. лет
тому назад
Эксцентриситет орбиты 0,09
Расстояние Солнца от центра Галактики:
  • в перигалактие
  • 7,12 кпс
  • в апогалактие
  • 7.86 кпс
  • современное
  • 7,20 кпс
    Линейная скорости Солнца:
  • в перигалактие
  • 250 км/сек
  • в апогалактие
  • 207 км/сек
  • современное
  • 247 км/сек
    Галактическая долгота восходящего узла -4,1°
    Наклон орбиты в настоящее время +1,37°

    Механизм возникновения циклического явления

    Космический год обуславливается гравитационным взаимодействием материальных тел Галактики.

    Порождаемые циклические явления

    Предполагается, что обращение Солнца вокруг центра Галактики приводит к периодическому изменению галактических приливных сил, что, в свою очередь, порождает цикличность в вулканической и тектонической деятельности на Земле.

    18. Период прецессии оси вращения Солнца

    Теоретические расчеты показывают, что ось вращения Солнца испытывает периодические колебания, описывая в космическом пространстве круговую коническую поверхность. Такое циклическое движение принято называть прецессией оси вращения Солнца.

    Количественные характеристики

    Период – 1-2 млрд. лет

    Механизм возникновения циклического явления

    Гравитационное взаимодействие Солнце – Земля, Солнце – Меркурий и Солнце – Венера является причиной прецессии оси вращения Солнца. Около половины этого эффекта связано с притяжением Венеры, а вторая половина – с притяжением Меркурия и Земли.

    Вращается ли Солнце вокруг своей оси?

    Земля совершает один оборот вокруг своей оси за неполных 24 часа. За время одного оборота проходят день и ночь. А как бы мог установить длительность одного оборота нашей планеты вокруг своей оси наблюдатель на Луне? Он посчитал бы, например, сколько раз за неделю мимо его взора пройдет Америка. Мы можем поступить точно так же, если хотим определить время вращения Солнца вокруг своей оси. Для этого мы должны определить время обращения большого долгоживущего солнечного пятна. Если каждый день наблюдать группу пятен, то можно заметить, что она движется с востока на запад. Значит, Солнце вращается в эту сторону вокруг своей оси. Кроме того, во вращении Солнца есть одна особенность. На экваторе оборот Солнца завершается быстрее, чем на высоких широтах. Это происходит потому, что Солнце - газовый шар. Земля, например, не может так вращаться: ее твердое тело на всех широтах вращается с одинаковой угловой скоростью.

    На экваторе Солнце совершает один оборот за 25 земных суток, на 30-м градусе северной или южной широты - уже за 26,5 суток, на широте 40 градусов - более чем за 27 суток, а в полярных областях один оборот Солнца вокруг своей оси продолжается 30 суток. Если бы Земля вращалась, как Солнце, то в Индонезии сутки длились бы 22 часа, в Берлине - 23, а в Гренландии - 24 часа.

    Солнце поворачивается вокруг своей оси за время, примерно равное месяцу. Скорости его оборота на разных широтах отличаются. Такое явление называют дифференциальным движением. С Земли движение Солнца кажется немного замедленным, так как за месяц наша планета проходит часть пути по своей орбите и Солнце должно еще немного повернуться, чтобы «догнать» ее.

    Читайте также: