В чем заключается автоматизм сердечной деятельности и как он отражается на сердечном цикле? Регуляция работы сердца В чем суть автоматизма сердца биология

Автоматизм сердца имеет миогенную природу и обусловлен спонтанной активностью части клеток его атипической ткани. Субстратом автоматии в сердце является специфическая мышечная ткань, или проводящая система сердца, которая состоит из синусно-предсердного (синоатриального) (СА) узла, расположенного в стенке правого предсердия у места впадения в него верхней полой вены, предсердно-желудочкового (атриовентрикулярного узла, расположенного в межпредсердной перегородке на границе предсердий и желудочков. От атриовентрикулярного узла начинается лучок Гиса. Пройдя в толщу межжелудочковой перегородки, он делится на правую и левую ножки, заканчивающиеся конечными разветвлениями - волокнами Пуркинье. Верхушка сердца не обладает автоматией, а лишь сократимостью, так как в ней отсутствуют элементы проводящей системы сердца. В нормальных условиях водителем ритма, или пейсмекером, является синоатриальный узел. Атриовентрикулярный узел - это водитель ритма второго порядка. Он берет на себя роль водителя ритма, если по каким-либо причинам возбуждение от СА не может перейти на предсердия при атриовентрикулярной блокаде или при нарушении проводящей системы желудочков.

Клетки проводящей системы сердца и, в частности, клетки пейсмекера, обладающие автоматией, в отличие от клеток рабочего миокарда - кардиомиоцитов могут спонтанно деполяризоваться до критического уровня. В таких клетках за фазой реполяризации следует фаза медленной диастолической деполяризации (МДД), которая приводит к снижению МП до порогового уровня и возникновению ПД. МДД - это местное, нераспространяющееся возбуждение, в отличие от ПД, который является распространяющимся возбуждением. Таким образом, пейсмекерные клетки отличаются от кардио-

миоцитов: 1) низким уровнем МП - около 50 - 70 мВ, 2) наличием МДД, 3) близкой к пикообразному потенциалу формой ПД, 4) низкой амплитудой ПД - 30 - 50 мВ без явления реверсии (овершута).

Особенности электрической активности пейсмекерных клеток обусловлены целым рядом процессов, происходящих на их мембране. Во-первых, эти клетки даже в условиях «покоя» имеют повышенную проницаемость для ионов Na+, что приводит к снижению МП. Во-вторых, в период реполяризации на мембране открываются только медленные натрий-кальциевые каналы, так как быстрые натриевые каналы из-за низкого МП уже инактивированы. В клетках синоатриального узла в период реполяризации быстро инактивируются открытые калиевые каналы, но повышается натриевая проницаемость, на фоне которой и возникает МДД, а затем и ПД. Потенциал действия синоатриального узла распространяется на все остальные отделы проводящей системы сердца. Таким образом, синоатриальный узел навязывает всем «ведомым» отделам проводящей системы свой ритм. Если возбуждение не поступает от главного пейсмекера, то «латентные» водители ритма, т.е. клетки сердца, обладающие автоматией, берут на себя


функцию нового пейсмекера, в них также зарождается МДД и ПД, а сердце продолжает свою работу.

0- Фаза быстрой деполяризации, 1- фаза ранней быстрой реполяризации, 2- плато, 3- Фаза поздней быстрой реполяризации, 4 – потенциал покоя

Проявления автоматизма сердца (водитель ритма первого порядка, водитель ритма второго и третьего порядка, последствия разрушения различных участков проводящей системы, закон градиента автоматизма).

Автоматизм - способностью сердца ритмически сокращаться под влиянием импульсов, возникающих в нем самом.

В области правого предсердия, а также на границе предсердий и желудочков располагаются участки, ответственные за возбуждение сердечной мышцы. Автоматизм сердца имеет миогенную природу и обусловлен спонтанной активностью части клеток его атипической ткани.

Указанные клетки образуют скопления в определенных участках миокарда. Наиболее важным в функциональном отношении из них является синусный, или синоатриальный, узел, расположенный между местом впадения верхней полой вены и ушком правого предсердия. В нижней части межпредсердной перегородки, непосредственно над местом прикрепления септальной створки трехстворчатого клапана, располагается атриовентрикулярный узел. От него отходит пучок атипических мышечных волокон, который пронизывает фиброзную перегородку между предсердиями и переходит в узкий длинный мышечный тяж, заключенный в межжелудочковую перегородку. Он называется атриовентрикулярным пучком, или пучком Гиса. Пучок Гиса разветвляется, образуя две ножки, от которых приблизительно на уровне середины перегородки отходят волокна Пуркинье, также образованные атипической тканью и формирующие субэндокардиальную сеть в стенках обоих желудочков

Возбуждение миокарда зарождается в синоатриальном узле, который называют водителем ритма, или пейсмекером первого порядка , и далее распространяется на мускулатуру предсердий с последующим возбуждением атриовентрикулярного узла, который является водителем ритма второго порядка . Скорость распространения возбуждения в предсердиях составляет 1 м/с. При переходе возбуждения на атриовентрикулярный узел имеет место так называемая атриовентрикулярная задержка, составляющая 0,04- 0,06 с. Механизм атриовентрикулярной задержки состоит в том, что проводящие ткани синоатриального и атриовентрикулярного узлов контактируют не непосредственно, а через волокна рабочего миокарда, для которых характерна более низкая скорость проведения возбуждения. Последнее распространяется далее по ножкам пучка Гиса и волокнам Пуркинье, передаваясь на мускулатуру желудочков, которую оно охватывает со скоростью 0,75-4,0 м/с.

Атриовентрикулярный узел берет на себя роль водителя ритма, если по каким-либо причинам возбуждение от СА не может перейти на предсердия при атриовентрикулярной блокаде или при нарушении проводящей системы желудочков. Если поражены все основные водители ритма, то очень редкие импульсы 20 имп/с) могут возникать в волокнах Пуркинье - это водитель ритма 3-го порядка.

Закон градиента автоматии сердца - степень автоматии тем выше, чем ближе расположен данный участок проводящей системы к синусному узлу.

Что такое автоматизм сердца? Ответ на этот вопрос можно найти в представленной статье. Кроме этого, здесь содержится информация о нарушении здоровья человека, связанных с названным понятием.

Что такое автоматизм сердца?

Мышечные волокна в организме человека имеют способность реагировать на раздражающий импульс сокращением и затем последовательно передавать это сокращение по всей мышечной структуре. Доказано, что изолированная сердечная мышца способна самостоятельно генерировать возбуждение и осуществлять ритмические сокращения. Такая способность называется автоматизмом сердца.

Причины сердечного автоматизма

Понять, в чем заключается автоматизм сердца, можно из нижеследующего. Сердце имеет специфическую способность к генерации электрического импульса с последующим его проведением до мышечных структур. Синоатриальний узел – скопление пейсмекерских клеток первого типа (содержит около 40 % митохондрий, рыхло расположенные миофибриллы, отсутствует Т-система, содержит большое количество свободного кальция, имеет слаборазвитую саркоплазматическую сеть), располагается в правой стенке верхней полой вены в месте впадения в правое предсердие. Атриовентрикулярный узел образован переходными клетками второго типа, которые проводят импульс из синоатриального узла, однако в особых условиях могут самостоятельно генерировать электрический заряд. Переходные клетки содержат меньше митохондрий (20-30 %) и немного больше миофибрилл, чем клетки первого порядка. Атриовентрикулярный узел расположен в межпредсердной перегородке, по нему возбуждение передается к пучку и ножкам пучка Гиса (содержат 20-15 % митохондрий).
Волокна Пуркинье является следующим этапом передачи возбуждения. Они отходят примерно на уровне середины перегородки от каждой из двух ножек пучка Гиса. Их клетки содержат около 10 % митохондрий, по структуре несколько больше похожи на сердечные мышечные волокна. Самопроизвольное возникновение электрического импульса происходит в пейсмекерских клетках синоатриального узла, который потенцирует волну возбуждения, стимулирующее 60-80 сокращений в минуту. Он является водителем первого порядка. Затем возникла волна передается на ведущие структуры второго и третьего уровня. Они способны как проводить волны возбуждения, так и самостоятельно индуцировать сокращение более низкой частоты. Водителем второго уровня после синусового узла является атриовентрикулярный узел, который способен самостоятельно создавать 40-50 разрядов в минуту в отсутствии подавляющего активности синусового узла. Далее возбуждение передается на структуры пучка Гиса, который воспроизводит 30-40 сокращений в минуту, затем электрический заряд перетекает на ножки пучка Гиса (25-30 импульсов в минуту) и систему волокон Пуркинье (20 импульсов в минуту) и попадает на рабочие мышечные клетки миокарда. Обычно импульсы из синоатриального узла подавляют самостоятельную способность к электрической активности низших структур. Если нарушается функционирование водителя первого порядка, то его работу на себя берут стоящих ниже звенья проводящей системы.

Химические процессы, обеспечивающие автоматизм сердца

Что такое автоматизм сердца с точки зрения химии? На молекулярном уровне основой для самостоятельного возникновения электрического заряда (потенциала действия) на мембранах пейсмекерских клеток является наличие так называемого импульсатора. Его работа (функция автоматизма сердца) содержит три этапа. Этапы работы импульсатора:

  • 1-я фаза подготовительная (в результате взаимодействия супероксидного кислорода с положительно заряженными фосфолипидами на поверхности мембраны пейсмекерской клетки она приобретает отрицательный заряд, это нарушает потенциал покоя);
  • 2-я фаза активного транспорта калия и натрия, во время работы которого внешний заряд клетки становится равной +30 мВт;
  • 3-я фаза электрохимического прыжка – используется энергия, которая возникает при утилизации активных форм кислорода (ионизированного кислорода и перекиси водорода) с помощью ферментов супероксиддисмутазы и каталазы. Возникли кванты энергии повышают биопотенциал пейсмекера настолько, что он вызывает потенциал действия.
  • Процессы генерации импульса клетками – пейсмекерами обязательно происходят в условиях достаточного присутствия молекулярного кислорода, доставляется к ним эритроцитами крови, притекающей.
    Снижение уровня работы или частичное прекращение функционирования одного или нескольких этапов системы импульсатора нарушает слаженную работу пейсмекерских клеток, что вызывает аритмии. Блокирование одного из процессов этой системы вызывает внезапную остановку сердца. Поняв, что такое автоматизм сердца, можно осознать и этот процесс.

    Влияние автономной нервной системы на работу сердечной мышцы

    Кроме собственной возможности генерировать электрические импульсы, работа сердца контролируется сигналами с иннервируют мышцу симпатических и парасимпатических нервных окончаний, при сбое которых возможно нарушение автоматизма сердца. Влияние симпатического отдела ускоряет работу сердца, оказывает стимулирующее действие. Симпатическая иннервация оказывает положительное хронотропное, инотропное, дромотропное действие. Под преобладающим действием парасимпатической нервной системы происходит замедление процессов деполяризации пейсмекерских клеток (тормозящее действие), а значит, урежение сердечного ритма (отрицательное хронотропное действие), снижение проводимости внутри сердца (отрицательное дромотропное действие), уменьшение энергии систолического сокращения (отрицательное инотропное действие), но усиливается возбудимость сердца (положительное батмотропное действие). Последнее тоже принимается за нарушения функции автоматизма сердца.

    Причины нарушения автоматизма сердца

  • Ишемия миокарда.
  • Воспаления.
  • Интоксикация.
  • Нарушение баланса натрия, калия, магния, кальция.
  • Гормональная дисфункция.
  • Нарушения воздействия автономных симпатических и парасимпатических окончаний.
  • Типы нарушений ритма вследствие нарушения автоматизма сердца

  • Синусовая тахи - и брадикардия.
  • Дыхательная (юношеская) аритмия.
  • Экстрасистолическая аритмия (синусовая, предсердная, атриовентрикулярная, желудочковая).
  • Пароксизмальные тахикардии.
  • Различают аритмии вследствие нарушения автоматизма и проводимости с образованием циркуляции волны возбуждения (волна re-entry) в одном определенном или нескольких отделах сердца, в результате возникает фибрилляция или трепетание предсердий. Фибрилляция желудочков – одна из наиболее угрожающих для жизни аритмий, следствием которой является внезапная остановка сердца и смерть. Наиболее эффективный метод лечения – электрическая дефибрилляция.

    Заключение

    Итак, рассмотрев, в чем заключается автоматизм работы сердца, можно понять, какие нарушения возможны в случае заболевания. Это, в свою очередь, дает возможность бороться с болезнью более оптимальными и действенными методами.

    Дата публикации: 26.05.17

    По механизму ионной проницаемости мембрана кардиоцитив проводящей системы во многом отличается от таковой сократительных кардиомиоцитов. Это отражается на характере ПС и ПП. К тому же они несколько отличаются и по структурам этой системы.
    Характерной отличительной чертой является отсутствие настоящих ПС в атипичных клетках проводящей системы, которые бедны сократительные миофиламенты. После предварительного возникновения ПД возвращается к уровню -60 мВ, и сразу начинает развиваться следующая деполяризация-медленная диастолическая деполяризация, которая характеризуется плавным переходом в фазу быстрой. Кроме этого, ПД атипичных клеток характерны медленное нарастание кривой в фазу быстрой деполяризации, закругленность вершины потенциала, отсутствие овершута, мало выражено плато и низкий ПС.
    Медленная диастолическая деполяризация возникает спонтанно, при отсутствии действия какого это будет раздражителя. Механизм ее развития связан с входом в атипичные клетки Na + и Са2 + через Са2 +-каналы. Это происходит после реполяризации мембраны (при уровне ПС около -60 мВ), когда закрываются К + каналы.
    В связи с фактическим отсутствием постоянного мембранного потенциала базальный уровень мембранной поляризации клеток узлов проводящей системы называют максимальным диастолическим потенциалом (МДП). Скорость, с которой развивается деполяризация при открывании медленных каналов, намного меньше, чем при открытии быстрых.
    ПД, возникший спонтанно, в проводящей системе распространяется «а миокард, вызывая его сокращение. Указанный механизм спонтанного возбуждения получил название «автоматизм сердца».
    Градиент автоматизма. Отдельные структуры проводящей системы
    сердца имеют ризниы уровень пейсмекерного активности. Спонтанная проницаемость мембраны по Na + в клетки синусового узла высокая. В клетках предсердно-желудочкового узла она в 1,5-2 раза ниже, а еще ниже в волокнах предсердно-желудочкового пучка. Вследствие этого в клетках синусного узла деполяризация достигает критического уровня раньше, чем в других частях проводящей системы. Поэтому в сердце возбуждения сначала возникает в синусном узле и волокнами пучков Бахмана, Венкенбаха и Торели проводится до атриовентрикулярного узла, в котором спонтанная деполяризация еще не достигла критического уровня, поэтому клетки этого отдела возбуждаются импульсом, который поступил от синусового узла. От предсердно-желудочкового узла возбуждения предсердно-желудочковым пучком, а затем ветвями передается волокон Пуркинье.
    В связи с тем, что синусный узел имеет быстрый пейсмекерного ритм, он доминирует над другими структурами проводящей системы. Его называют водителем ритма первым рядом-: ку. Если возбуждение от синусового узла не поступает в атриовентрикулярного (как это бывает при формировании рубца соединительной ткани между этими образованиями), то в предсердно-желудочкового узла начинают генерироваться собственные ПД, но с меньшей частотой. Этот узел называют водителем ритма второго порядка. Еще меньшая частота произвольных ПД пучка Пса. Практически не имеют способности до автоматизма волокна Пуркинье.
    Таким образом, между различными образованиями проводящей системы сердца существует градиент автоматизма. Например, в сердце человека синусно-предсердный узел генерирует возбуждение с частотой около 70 в 1 мин, предсердно-желудочковый - 40-50, пучок Гиса - 20-30 за 1 мин. Естественно, что с соответствующим частотой будет возникать возбуждения в миокарде, сокращения которого регулируется этим отделом проводящей системы.
    В некоторых случаях в норме и при патологии возбуждения с предсердий достигает миокарда желудочков по так называемых дополнительных пучки проводящей системы (Кента, Джеймса и Махейма). Пучком Кента возбуждение проводится быстрее, чем через предсердно-желудочковое сообщения. Поэтому возбуждение достигает миокарда желудочков раньше и часть волокон активизируется преждевременно. При функционировании пучка Джеймса импульс с предсердий, минуя атриовентрикулярный узел, достигает пучка Гиса. Вследствие сказанного и в этом случае часть миокарда желудочков возбуждается преждевременно. Пучком Махейма возбуждения,
    минуя пучок Пса, вызывает сокращения миокарда желудочков. Таким образом, в ряде случаев может наблюдаться комбинированное возбуждение миокарда с участием как обязательных, так и дополнительных путей.
    возникшее в синусном узле, проводится предсердием со скоростью 0,8-1,0 м / с. При передаче возбуждения с предсердий на желудочки отмечается его задержка в атриовентрикулярном узле. Она связана как с особенностями геометрической структуры узла, так и со спецификой развития электрических потенциалов. Имеет существенное значение для последовательного сокращения предсердий, а затем желудочков. Скорость проведения возбуждения пучком Гиса и волокна Пуркинье составляет 1-1,5 м / с. Следующая задержка проведения возбуждения - в месте контакта волокон Пуркинье с сократительными кардиомиоцитами. Она является следствием суммирования ПД, которая направлена на синхронизацию процесса возбуждения миокарда. Скорость распространения возбуждения в желудочках колеблется от 0,3 до 0,9 м / с. Высокая скорость проведения возбуждения ведущей системой объясняется наличием в ней быстрых Na +-каналов. Благодаря этому скорость развития деполяризации здесь высокая.
    Из-за отсутствия быстрых ионных токов в клетках верхней части атриовентрикулярного узла скорость проведения возбуждения невысокая (0,02 м / с).
    Таким образом, возбуждение всего сократительного миокарда определяется ведущей системой, скоростью его проведения.
    Рефрактерность
    В миокарде, как и в других возбудимых тканях, период возбуждения совпадает с периодами его изменений - рефрактерностью и экзальтацией. В связи с большим значением периода рефрактерности для работы сердца целесообразно выделить его отдельно.

    Сердце живого организма — интереснейший продукт эволюции, орган, чья работа основана на взаимодействии гуморальной и нервной систем при сохранении собственной автономии. И пусть сегодня ученым известно практически все, что касается его структуры и деятельности, управлять им достаточно сложно. Однако этому необходимо научиться, что станет отправной точкой в увеличении продолжительности жизни. Автоматия сердца, его метаболизм и связь сокращения с мембранным потенциалом очень важны для медицины. Их изучение и правильное понимание позволяет подбирать более грамотное лечение своим пациентам.

    Автоматия пейсмейкеров

    Автоматия сердца - это его способность самостоятельно генерировать потенциал действия в фазу диастолы. Это основа автономности данного органа, из-за чего он не зависит от деятельности головного мозга. Причем эволюционно полноценное сердце развилось гораздо раньше головного мозга и центра сердечно-сосудистого тонуса.

    Субстрат и причина автоматии сердца заключены в самых фундаментальных механизмах, связанных с работой ионных каналов. Ими формируется разность токов на противоположных сторонах мембраны, которая меняется с течением времени, генерируя импульсный электрический ток. Его проведение по специальным клеткам к потенциал-зависимым тканям является основой сердечной деятельности.

    Структура проводящей системы сердца

    В сердце, помимо мышечной ткани, имеется собственная система генерации ритма, благодаря чему орган не зависит от контроля головного и спинного мозга. Это система автономна и зависит только от работы ионных каналов атипичных кардиомиоцитов. Они делятся на 3 вида в зависимости от особенностей структуры и функций. Первый вид — пейсмекерные клетки, атипичные Р-кардиомиоциты. Второй вид клеток — проводящие переходные клетки, третий тип — расположенные субэндокардиально клетки волокон Пуркинье и пучка Гиса.

    Р-кардиомиоциты — это овальные или округлые клетки, водители ритма, благодаря которым реализуется автоматия сердца. Они в большом количестве находятся в самом центре синусового узла. Небольшое их количество имеется в предсердно-желудочковом узле проводящей системы.

    Промежуточные кардиомиоциты имеют продолговатую форму, вытянутые, отличаются малым количеством миофибрилл, но по размеру они меньше сократительных кардиомиоцитов. Они располагаются по периферии синусового и атриовентрикулярного узла. Их задачей является проведение импульса к пучку Гиса и к лежащим между эндокардом и поверхностными слоями миокарда волокнами.

    Клетки проводящей системы, локализованные в пучке Гиса и волокнах Пуркинье, имеют особенную структуру и отличаются низкой эффективностью гликолиза за счет преобладания анаэробного его варианта. Они уплощены и длиннее промежуточных кардиомиоцитов, а по размеру чуть больше сократительных клеток. В цитоплазме имеют незначительное количество мышечных волокон. Их задача — соединить узлы автоматии сердца и сократительный миокард, то есть провести импульс от водителя ритма к сердечной мышце.

    Нормальный ритм и распространение импульса в сердце

    Сокращение сердца — это результат генерации сердечного импульса, потенциала действия пейсмекерных клеток синусового узла. Здесь располагается максимальное количество пейсмейкеров, генерирующих ритм с частотой 60-100 раз в минуту. Он передается по проводящим клеткам до предсердно-желудочкового узла, главной задачей которого является задержка ритма. До АВ-узла возбуждение доходит по пучкам из проводящих кардиомиоцитов, также обладающих автоматизмом. Однако они способны генерировать ритм с частотой 30-40 раз в минуту.

    После АВ-узла ритм в норме распространяется по проводящим атипичным кардиомиоцитам к пучку Гиса, автоматизм которого предельно низок — до 20 импульсов в минуту. Затем возбуждение доходит до конечного элемента проводящей системы — волокон Пуркинье. Их способность генерировать ритм еще ниже — до 10 в минуту. Причем основной водитель ритма, то есть синусовый узел, генерирует импульсы намного чаще. И каждое последующее распространение потенциала действия подавляет ритм нижележащих отделов.

    Уменьшение способности проводящей системы сердца генерировать ритм высокой частоты от синусового узла к волокнам Пуркинье называется градиентом автоматизма. Этот процесс объясняется уменьшением скорости деполяризации мембраны: в синусовом узле спонтанная медленная диастолическая деполяризация максимально высокая, а по ходу движения к дистальным участкам — наименьшая. Градиент автоматии направлен вниз, что является признаком нормально функционирующей проводящей системы сердца.

    Изменение мембранного потенциала пейсмейкеров

    В диастолу сердца в пейсмекерных клетках наблюдается следующая ионная картина: в клетке значительно преобладает количество катионов калия над натриевыми ионами. Снаружи клетки концентрация катионов прямо противоположная. При этом потенциал покоя пейсмекерной клетки составляет -60 мВ. Калиевые токи в покое обладают малой эффективностью, так как ионных каналов для калия на мембране очень мало. Это отличает их от сократительных миоцитов, где потенциал покоя составляет примерно -90 мВ.

    Работа HCN-каналов и запуск СМДД

    Спонтанная медленная диастолическая деполяризация (СМДД), характерная для каждого атипичного кардиомиоцита, приводит к изменению мембранного потенциала и является процессом, ответственным за автоматию сердца. СМДД начинается с работы HCN-ионных каналов. Это так называемые активируемые гиперполяризацией, управляемые циклическими нуклеотидами катионные каналы. ЦАМФ активирует их в момент гиперполяризации, то есть при потенциале покоя, равном -60 мВ. Это значит, что после каждой реполяризации, как только клетка «перезарядилась», и ее мембранный потенциал достиг значения -60 мВ, запускается открытие HCN-каналов. В клетку в результате этого поступают катионы, преимущественно через натриевые каналы.

    В результате небольшого натриевого притока мембранный потенциал повысится примерно до -57 мВ. Это является сигналом для активации кальциевых каналов Т-типа, предназначенных для поставки катионов Са2+. Они активируются слабой деполяризацией и называются подпороговыми. Это значит, что повышение мембранного потенциала до -55-57 мВ приведет к открытию транспортных каналов для дальнейшей деполяризации. Эти ионные каналы активируются ионами натрия, расположенными внутри клетки, закачивают некоторое количество кальция в цитоплазму и повышают потенциал до -50 мВ, после чего быстро закрываются.

    Работа натрий-кальциевого обменника

    Наличие кальция в цитоплазме является сигналом для открытия механизма натрий-кальциевого обменника. Смысл его работы таков: путем активного транспорта в межклеточное пространство выделяются ионы кальция с зарядом 2+, а внутрь клетки поступают Na+ ионы. На один катион кальция в цитоплазму поступает 3 натрий+ иона, что приводит к увеличению заряда мембраны и росту мембранного потенциала до -40 мВ.

    Генерация потенциала действия

    По достижении потенциала в -40 мВ происходит открытие потенциалзависимых кальциевых каналов L-типа. Они способны работать достаточно долго и приводят к быстрому нарастанию концентрации кальциевых ионов внутри клетки. Это важнейший процесс в работе ионных каналов, так как за счет него происходит лавинообразный рост заряда мембраны, что формирует потенциал действия (ПД). Этот ионный процесс повышает мембранный потенциал до пика на уровне +30 мВ, после чего клетка полностью деполяризована и сгенерировала нужный для работы сердца импульс.

    Деполяризация мембраны является активатором не только кальциевого тока, но и калиевого. Однако ионные каналы, которые выделяют ионы калия наружу, работают с задержкой. Потому их выделение происходит на пике формирования ПД. Тогда же кальциевый ток по L-каналам полностью прекращается, а мембранный потенциал снова снижается путем выведения ионов калия против градиента концентрации путем активного транспорта. Заряд мембраны снова падает до -60 мВ, запуская процесс СМДД после уравновешивания изначальных концентраций кальция и натрия.

    Природа автоматизма и ее регуляция

    Атипичный кардиомиоцит способен выполнять свою функцию благодаря кальциевому току по медленным ионным каналам, в результате чего формируется потенциал действия. Именно этот процесс лежит в основе возбудимости миокарда. В отличие от него, СМДД имеет другое предназначение. Его задача — автоматически запускать начало деполяризации с определенной частотой. Именно наличие фазы СМДД — это природа автоматии сердца, способности спонтанно генерировать возбуждение в пейсмекерных клетках.

    Скорость развития СМДД напрямую регулируется соматической вегетативной нервной системой. В покое она минимальна за счет ингибирующего действия блуждающего нерва. Однако это не означает, что автоматия сердца прекращается. Просто стадия СМДД будет длиться больше, что обеспечит более долгую диастолу. Интенсивность метаболических процессов в миокарде и проводящей системе сердца снижается, а орган испытывает меньшую нагрузку.

    Эффект ускорения спонтанной медленной диастолической деполяризации достигается влиянием симпатической нервной системы и ее медиатора адреналина. Тогда скорость СМДД повышается, что обеспечивает раннюю активацию натрий-кальциевого обменника и открытие кальциевых каналов медленного типа. Результатом является ускорение частоты ритма, учащение сердцебиения, увеличение энергетического расхода.

    Фармакологическое влияние на пейсмейкерную автоматию

    Ингибировать механизм автоматии сердца можно и фармакологическим способом. Применяя некоторые лекарственные, наркотические и ядовитые вещества можно ускорить генерацию ритма, замедлить ее или полностью заблокировать. Разумеется, по этическим соображениям ядовитые и наркотические вещества в данной публикации рассматриваться не будут.

    Замедлить скорость генерации ритма способны препараты следующих групп: адреноблокаторы и блокаторы кальциевых каналов. Это безопасные лекарственные средства, особенно селективные бета-1-адреноблокаторы. Их механизм действия сводится к инактивации рецептора, к которому в норме присоединяется адреналин.
    Блокируя рецептор, препарат устраняет активирующее действие адреналина на скорость генерации импульса, защищая миокард от перерасхода энергии и неэффективной ее растраты. Это очень тонкий и эффективный механизм, а бета-адреноблокаторы значительно увеличили продолжительность жизни многих пациентов с заболеваниями сердца.

    Блокаторы кальциевых каналов

    Вторая группа веществ отличается более тонким механизмом действия, хотя и очень эффективным. Ими блокируются медленные каналы кальциевого притока, за счет которых формируется потенциал действия. На мембране атипичного кардиомиоцита они экспрессированы в огромном количестве, а потому полная их блокада, которая обернулась бы невозможностью проявления автоматии сердца, невозможна.

    Применением препарата достигается лишь некоторое замедление скорости генерации потенциала действия, что помогает уменьшить частоту ритма. Такой механизм очень надежный и позволяет лечить аритмии, используя для этого не субстрат автоматии сердца, а сам потенциал действия. То есть блокаторы кальциевых каналов не влияют на спонтанную медленную диастолическую деполяризацию.

    Связь автоматизма сердца и жизнедеятельности

    Сердце состоит из мышечной ткани, соединительной и нервной. Последняя имеет в нем наименьшее значение, так как представлена только блуждающим нервом. Соединительная ткань обеспечивает наличие клапанов и поддерживает структуру органа, тогда как мышечная отвечает за все остальное. Именно производными мышечных клеток являются атипичные кардиомиоциты. Это означает, что автоматия сердца, проводящая система сердца и ее мышечная часть являются функциональным целым. Они формируют автономный орган, который способен регулироваться самостоятельно, но не исключает влияние других систем организма.

    Такие понятия как автоматия сердца, природа автоматии, градиент автоматии взаимосвязаны и стоят на страже здоровья. Они поддерживают жизнь в организме, обеспечивая постоянное кровоснабжение тканей. Кровь в артериях — это транспортная среда для питательных веществ и связанного кислорода. Благодаря этому реализуется процесс клеточного дыхания и обмена энергией. Это основа функционирования многоклеточного организма, при прекращении работы которой неизбежна его гибель.

    Сердце — это полый мышечный орган, который обеспечивает кровообращение. происходят вследствие периодически возникающих в сердечной мышце процессов возбуждения.

    Возбуждение в сердце возникает периодически под влиянием процессов, протекающих в нем самом. Эта способность сердца сокращаться под действием импульсов, возникающих в самой ткани без внешних воздействий, получила название автоматии.

    Показателем автоматии сердечной мышцы может быть тот факт, что изолированное сердце лягушки, удаленное из организма и помещенное в физиологический раствор, может в течение длительного времени ритмически сокращаться.

    Способностью к автоматии обладают определенные участки миокарда, состоящие из специфической (атипической) мышечной ткани, бедной миофибриллами, богатой саркоплазмой и напоминающей эмбриональную мышечную ткань. Специфическая (атипическая) мускулатура образует в сердце проводящую систему.

    Помимо специфической ткани, в миокарде сердца есть и неспецифическая (типическая) мышечная ткань. По строению она сходна с поперечно-полосатой скелетной мышечной тканью и образует рабочую часть миокарда.

    В клетках специфической ткани находится большое количество межклеточных контактов - нексусов. Эти контакты являются местом перехода возбуждения с одной клетки на другую. Такие же контакты имеются и между клетками атипической ткани и рабочего миокарда. Благодаря наличию контактов миокард, состоящий из отдельных клеток, работает как единое целое. Существование большого количества межклеточных контактов увеличивает надежность проведения возбуждения в миокарде.

    Представлена тремя узлами — водителями ритма (рис. 1): синусно-предсердный, или синоатриальный, узел расположен в стенке правого предсердия в устье полых вен; предсердно-желудочковый узел, атриовентрикулярный узел, расположенный в нижней трети правого предсердия и межжелудочковой перегородке; от этого узла берет начало предсердно-желудочковый пучок (пучок Гиса ), прободающий предсердно-желудочковую перегородку и делящийся на правую и левую ножки, следующие в межжелудочковой перегородке. В области верхушки сердца ножки пучка Гиса загибаются вверх и переходят в сеть сердечных проводящих миоцитов (волокна Пуркинье), погруженных в рабочий (сократительный) миокард желудочков. Проводящая система сердца, как уже говорилось, обладает автоматиеи.

    Особенностью проводящей системы сердца является способность каждой клетки самостоятельно генерировать возбуждение. Существует так называемый градиент автоматии , выражающийся в убывающей способности к автоматии различных участков проводящей системы по мере их удаления от синусно-предсердного узла, генерирующего импульсы с частотой до 60-80 в минуту.

    Рис. 1. Строение проводящей системы сердца и хронотопография распространения возбуждения: SA — синоатриальный узел. AV- атриовентрикулярный узел. Цифры обозначают охват возбуждением отделов сердца в секундах от момента зарождения импульса в синоатриальном узле

    В обычных условиях автоматия всех ниже расположенных участков проводящей системы подавляется более частыми импульсами, поступающими из синусно-предсердного узла. В случае поражения и выхода из строя этого узла водителем ритма может стать предсердно-желудочковый узел. Импульсы при этом будут возникать с частотой 40-50 в минуту. Если окажется выключенным и этот узел, водителем ритма могут стать волокна пучка Гиса. Частота сердечных сокращений в этом случае не превысит 30-40 в минуту. Если выйдут из строя и эти водители ритма, то процесс возбуждения спонтанно может возникнуть в клетках волокон Пуркинье. Ритм сердца при этом будет очень редким — примерно 20 в минуту.

    Доказательством разной активности водителей ритма является опыт Станниуса с наложением лигатур — перевязок (рис. 2). В опыте на лягушке с помощью лигатуры отделяется часть предсердия вместе с синоатриальным узлом от остальной части сердца. После этого все сердце перестает сокращаться, а отделенный участок предсердия продолжает сокращаться в том же ритме, что и до наложения лигатуры. Это свидетельствует о том, что синоатриальный узел является ведущим, от него зависит частота сердечных сокращений. Станниус назвал этот узел водителем ритма 1-го порядка.

    Рис. 2. Лигатуры Станниуса: А — работа сердца без лигатур; Б — лигатура отделяет синусный узел, предсердия и желудочки не сокращаются; В — вторая лигатура, желудочки сокращаются медленно; Г — третья лигатура, верхушка сердца не сокращается, в ней нет атипической ткани

    Через 20-30 мин после наложения лигатуры на сердце лягушки проявляется автоматия атриовентрикулярного узла: сердце начинает сокращаться, но в более редком ритме, чем до наложения лигатуры, причем предсердия и желудочки сокращаются одновременно. Атриовентрикулярный узел был назван водителем ритма 2-го порядка. Иногда для включения атриовентрикулярного узла требуется наложить вторую лигатуру, вызвав таким образом механическое раздражение водителя ритма 2-го порядка.

    Если на сердце теплокровного животного создать блок между атриовентрикулярным узлов и пучком Гиса, то верхушка сердца будет сокращаться в еще более редком ритме, который зависит от автоматам пучка Гиса или волокон Пуркинье. Наложение третьей лигатуры на верхушку сердца показывает, что в ней отсутствует атипическая ткань, следовательно, она не сокращается, не обладает автоматией.

    Читайте также: