Определение и оценка функционального состояния. Пробы с задержкой дыхания. Функциональные пробы в оценке внешнего дыхания Пробы дыхательной системы

Муниципальное бюджетное общеобразовательное учреждение

«Северо-Енисейская средняя школа №2»

Исследовательская работа

Изучение и оценка функциональных проб дыхательной системы у подростков.

Выполнили ученики 8а класса

Александрова Светлана

Ярушина Дарья

Руководитель:

Носкова Е.М.

учитель биологии

гп Северо-Енисейский 2015г

Оглавление

I . Введение…………………………………………………………………………………… 4 стр

II . Основная часть

Теоретическое исследование:

1.Строение и значение дыхательной системы человека………………… 5 стр

Практическое исследование:

    Повышение уровня заболеваемости дыхательной системы за

последние годы учащихся МБОУ « Северо-Енисейская средняя школа №2»… 9 стр

    Определение максимального времени задержки дыхания на

глубоком вдохе и выдохе (проба Генчи-Штанге)..……………………… 10 стр

    Определение времени максимальной задержки дыхания

после дозированной нагрузки (проба Серкина)………………………… 12 стр

III . Выводы…………………………………………………………………………………… 15 стр.

IV . Список литературы……………………………………………………………………… 15 стр

Аннотация

Александрова Светлана Андреевна Ярушина Дарья Игоревна

МБОУ «Северо-Енисейская средняя школа №2», 8а класс

Изучение и оценка функциональных проб дыхательной системы у подростков

Руководитель: Носкова Елена Михайловна, МБОУ ССШ№2 , учитель биологии

Цель научной работы:

Методы исследования :

Основные результаты научного исследования: Человек в состоянии оценить состояние своего здоровья и оптимизировать свою деятельность. Для этого подростки, могут овладеть необходимыми знаниями и умениями, обеспечивающими возможность ведения здорового образа жизни.

Введение

Процесс дыхания, возникший ещё в докембрийскую эпоху развития жизни, то есть 2 млрд. 300 лет назад, до сих пор обеспечивает всё живое на Земле кислородом. Кислород достаточно агрессивный газ, при его участии происходит расщепление всех органических веществ и образование энергии необходимой для процессов жизнедеятельности любого организма.

Дыхание – это основа жизни любого организма. В ходе дыхательных процессов кислород поступает ко всем клеткам тела и используется для энергетического обмена – расщепления пищевых веществ и синтеза АТФ. Сам процесс дыхания состоит из трех этапов: 1 -внешнее дыхание (вдох и выдох), 2 -газообмен между альвеолами легких и эритроцитами, транспорт кислород а и углекислого газа кровью, 3- клеточное дыхание – синтез АТФ при участии кислорода в митохондриях. Дыхательные пути (носовая полость, гортань, трахея, бронхи и бронхиолы) служат для проведения воздуха, а газообмен происходит между клетками легких и капиллярами и между капиллярами и тканями организма.

Вдох и выдох происходят за счет сокращений дыхательной мускулатуры – межреберных мышц и диафрагмы. Если при дыхании преобладает работа межреберных мышц, то такое дыхание называется грудным, а если диафрагмы – то брюшным.

Регулирует дыхательные движения дыхательный центр, который находится в продолговатом мозге. Его нейроны реагируют на импульсы, приходящие от мышц и легких, а также на повышение концентрации углекислого газа в крови.

Существуют различные показатели, с помощью которых можно оценить состояние дыхательной системы и ее функциональные резервы.

Актуальность работы. Физическое развитие детей и подростков является одним из важных показателей здоровья и благополучия. Но дети часто болеют простудными заболеваниями, не занимаются спортом, курят.

Цель работы научиться объективно оценивать состояние дыхательной системы подростка и организма в целом и выявить зависимость её состояния от занятий спортом.

Для достижения цели поставлены следующие задачи :

- изучить литературу о строении и возрастных особенностях дыхательной системы у подростков, о влиянии загрязнений воздуха на работу дыхательной системы;

На основе результатов ежегодного медицинского осмотра учащихся нашего класса выявить динамику уровня заболеваемости дыхательной системы;

Провести комплексную оценку состояния дыхательной системы двух групп подростков: активно занимающихся спортом и не занимающихся спортом.

Объект исследования : учащиеся школы

Предмет исследования исследование состояния дыхательной системы двух групп подростков: активно занимающихся спортом и не занимающихся спортом.

Методы исследования: анкетирование, эксперимент, сравнение, наблюдение, беседа, анализ продуктов деятельности.

Практическая значимость . Полученные результаты можно использовать в качестве пропаганды здорового образа жизни и активных занятий такими видами спорта: легкая атлетика, лыжи, хоккей, волейбол

Гипотеза исследования:

Считаем, что если мне в ходе исследования удастся выявить определённое положительное влияние занятий спортом на состояние дыхательной системы, то можно будет пропагандировать их как одно из средств укрепления здоровья.

Теоретическая часть

1. Строение и значение дыхательной системы человека.

Дыхательная система человека состоит из тканей и органов, обеспечивающих легочную вентиляцию и легочное дыхание. К воздухоносным путям относятся: нос, полость носа, носоглотка, гортань, трахея, бронхи и бронхиолы. Легкие состоят из бронхиол и альвеолярных мешочков, а также из артерий, капилляров и вен легочного круга кровообращения. К элементам костно-мышечной системы, связанным с дыханием, относятся ребра, межреберные мышцы, диафрагма и вспомогательные дыхательные мышцы.

Нос и полость носа служат проводящими каналами для воздуха, в которых он нагревается, увлажняется и фильтруется. В полости носа заключены также обонятельные рецепторы. Наружная часть носа образована треугольным костно-хрящевым остовом, который покрыт кожей; два овальных отверстия на нижней поверхности – ноздри, которые открываются каждое в клиновидную полость носа. Эти полости разделены перегородкой. Три легких губчатых завитка (раковины) выдаются из боковых стенок ноздрей, частично разделяя полости на четыре незамкнутых прохода (носовые ходы). Полость носа богато выстлана слизистой оболочкой. Многочисленные жесткие волоски, а также снабженные ресничками эпителиальные и бокаловидные клетки служат для очистки вдыхаемого воздуха от твердых частиц. В верхней части полости лежат обонятельные клетки.

Гортань лежит между трахеей и корнем языка. Полость гортани разделена двумя складками слизистой оболочки, не полностью сходящимися по средней линии. Пространство между этими складками – голосовая щель защищено пластинкой волокнистого хряща – надгортанником. По краям голосовой щели в слизистой оболочке лежат фиброзные эластичные связки, которые называются нижними, или истинными, голосовыми складками (связками). Над ними находятся ложные голосовые складки, которые защищают истинные голосовые складки и сохраняют их влажными; они помогают также задерживать дыхание, а при глотании препятствуют попаданию пищи в гортань. Специализированные мышцы натягивают и расслабляют истинные и ложные голосовые складки. Эти мышцы играют важную роль при фонации, а также препятствуют попаданию каких-либо частиц в дыхательные пути. Трахея начинается у нижнего конца гортани и спускается в грудную полость, где делится на правый и левый бронхи; стенка ее образована соединительной тканью и хрящом. У большинства млекопитающих, в том числе и у человека хрящи образуют неполные кольца. Части, примыкающие к пищеводу, замещены фиброзной связкой. Правый бронх обычно короче и шире левого. Войдя в легкие, главные бронхи постепенно делятся на все более мелкие трубки (бронхиолы), самые мелкие из которых – конечные бронхиолы являются последним элементом воздухоносных путей. От гортани до конечных бронхиол трубки выстланы мерцательным эпителием. Главным органом дыхательной системы являются лёгкие.
В целом легкие имеют вид губчатых, пористых конусовидных образований, лежащих в обеих половинах грудной полости. Наименьший структурный элемент легкого – долька состоит из конечной бронхиолы, ведущей в легочную бронхиолу и альвеолярный мешок. Стенки легочной бронхиолы и альвеолярного мешка образуют углубления – альвеолы. Такая структура легких увеличивает их дыхательную поверхность, которая в 50-100 раз превышает поверхность тела. Относительная величина поверхности, через которую в легких происходит газообмен, больше у животных с высокой активностью и подвижностью. Стенки альвеол состоят из одного слоя эпителиальных клеток и окружены легочными капиллярами. Внутренняя поверхность альвеолы покрыта поверхностно-активным веществом. Отдельная альвеола, тесно соприкасающаяся с соседними структурами, имеет форму неправильного многогранника и приблизительные размеры до 250 мкм. Принято считать, что общая поверхность альвеол, через которую осуществляется газообмен, экспоненциально зависит от веса тела. С возрастом отмечается уменьшение площади поверхности альвеол. Каждое легкое окружено мешком-плеврой. Наружный листок плевры примыкает к внутренней поверхности грудной стенки и диафрагме, внутренний покрывает легкое. Щель между листками называется плевральной полостью. При движении грудной клетки внутренний листок обычно легко скользит по наружному. Давление в плевральной полости всегда меньше атмосферного (отрицательное). В условиях покоя внутриплевральное давление у человека в среднем на 4,5 торр ниже атмосферного (-4,5 торр). Межплевральное пространство между легкими называется средостением; в нем находятся трахея, зобная железа (тимус) и сердце с большими сосудами, лимфатические узлы и пищевод.

У человека легкие занимают около 6% объема тела независимо от его веса. Объем легкого меняется при вдохе за счет работы дыхательных мышц, но не всюду одинаково. Для этого имеются три главные причины, во-первых, грудная полость увеличивается неравномерно во всех направлениях, во-вторых, не асе части легкого одинаково растяжимы. В-третьих, предполагается существование гравитационного эффекта, который способствует смещению легкого книзу.

Какие же мышцы относят к дыхательным? Дыхательные мышцы – это те мышцы, сокращения которых изменяют объем грудной клетки. Мышцы, направляющиеся от головы, шеи, рук и некоторых верхних грудных и нижних шейных позвонков, а также наружные межреберные мышцы, соединяющие ребро с ребром, приподнимают ребра и увеличивают объем грудной клетки. Диафрагма – мышечно-сухожильная пластина, прикрепленная к позвонкам, ребрам и грудине, отделяет грудную полость от брюшной. Это главная мышца, участвующая в нормальном вдохе. При усиленном вдохе сокращаются дополнительные группы мышц. При усиленном выдохе действуют мышцы, прикрепленные между ребрами (внутренние межреберные мышцы), к ребрам и нижним грудным и верхним поясничным позвонкам, а также мышцы брюшной полости; они опускают ребра и прижимают брюшные органы к расслабившейся диафрагме, уменьшая, таким образом, емкость грудной клетки.

Количество воздуха, поступающего в легкие при каждом спокойном вдохе и выходящего при спокойном выдохе, называется дыхательным объемом. У взрослого человека он равен 500 см 3 . Объем максимального выдоха после предшествовавшего максимального вдоха называется жизненной емкостью. В среднем у взрослого человека она равна 3500 см 3 . Но она не равна всему объему воздуха в легком (общему объему легкого), поскольку легкие полностью не спадаются. Объем воздуха, который остается в не спавшихся легких, называется остаточным воздухом (1500 см 3 ). Имеется дополнительный объем (1500 см 3 ), который можно вдохнуть при максимальном усилии после нормального вдоха. А тот воздух, который выдыхается максимальным усилием после нормального выдоха, это резервный объем выдоха (1500 см 3 ). Функциональная остаточная емкость состоит из резервного объема выдоха и остаточного объема. Это тот находящийся в легких воздух, в котором разбавляется нормальный дыхательный воздух. Вследствие этого состав газа в легких после одного дыхательного движения обычно резко не меняется.

Газ является таким состоянием вещества, при котором оно равномерно распределяется по ограниченному объему. В газовой фазе взаимодействие молекул между собой незначительно. Когда они сталкиваются со стенками замкнутого пространства, их движение создает определенную силу; эта сила, приложенная к единице площади, называется давлением газа и выражается в миллиметрах ртутного столба, или торрах; давление газа пропорционально числу молекул и их средней скорости. Газообмен в легких между альвеолами и кровью происходит путем диффузии. Диффузия возникает в силу постоянного движения молекул газа и обеспечивает перенос молекул из области более высокой их концентрации в область, где их концентрация ниже. Пока внутри плевральное давление остается ниже атмосферного, размеры легких точно следуют за размерами грудной полости. Движения легких совершаются в результате сокращения дыхательных мышц в сочетании с движением частей грудной стенки и диафрагмы. Расслабление всех связанных с дыханием мышц придает грудной клетке положение пассивного выдоха. Соответствующая мышечная активность может перевести это положение во вдох или же усилить выдох. Вдох создается расширением грудной полости и всегда является активным процессом. Благодаря своему сочленению с позвонками ребра движутся вверх и наружу, увеличивая расстояние от позвоночника до грудины, а также боковые размеры грудной полости (реберный или грудной тип дыхания). Сокращение диафрагмы меняет ее форму из куполообразной в более плоскую, это увеличивает размеры грудной полости в продольном направлении (диафрагмальный или брюшной тип дыхания). Обычно главную роль во вдохе играет диафрагмальное дыхание. Поскольку люди – существа двуногие, при каждом движении ребер и грудины меняется центр тяжести тела и возникает необходимость приспособить к этому разные мышцы.
При спокойном дыхании у человека обычно достаточно эластических свойств и веса переместившихся тканей, чтобы вернуть их в положение, предшествующее вдоху.

Таким образом, выдох в покое происходит пассивно вследствие постепенного снижения активности мышц, создающих условие для вдоха. Активный выдох может возникнуть вследствие сокращения внутренних межреберных мышц в дополнение к другим мышечным группам, которые опускают ребра, уменьшают поперечные размеры грудной полости и расстояние между грудиной и позвоночником. Активный выдох может также произойти вследствие сокращения брюшных мышц, которое прижимает внутренности к расслабленной диафрагме и уменьшает продольный размер грудной полости. Расширение легкого снижает (на время) общее внутри легочное (альвеолярное) давление. Оно равно атмосферному, когда воздух не движется, а голосовая щель открыта. Оно ниже атмосферного, пока легкие не наполнятся при вдохе, и выше атмосферного при выдохе. Внутри плевральное давление тоже меняется на протяжении дыхательного движения; но оно всегда ниже атмосферного (т. е. всегда отрицательное).

Кислород находится в окружающем нас воздухе. Он может проникнуть сквозь кожу, но лишь в небольших количествах, совершенно недостаточных для поддержания жизни. Существует легенда об итальянских детях, которых для участия в религиозной процессии покрасили золотой краской; история дальше повествует, что все они умерли от удушья, потому что «кожа не могла дышать». На основании научных данных смерть от удушья здесь совершенно исключена, так как поглощение кислорода через кожу едва измеримо, а выделение двуокиси углерода составляет менее 1% от ее выделения через легкие. Поступление в организм кислорода и удаление углекислого газа обеспечивает дыхательная система. Транспорт газов и других необходимых организму веществ осуществляется с помощью кровеносной системы. Функция дыхательной системы сводится лишь к тому, чтобы снабжать кровь достаточным количеством кислорода и удалять из нее углекислый газ. Химическое восстановление молекулярного кислорода с образованием воды служит для млекопитающих основным источником энергии. Без нее жизнь не может продолжаться дольше нескольких секунд. Восстановлению кислорода сопутствует образование CO 2 . Кислород, входящий в CO 2 не происходит непосредственно из молекулярного кислорода. Использование O 2 и образование CO 2 связаны между собой промежуточными метаболическими реакциями; теоретически каждая из них длятся некоторое время.
Обмен O
2 и CO 2 между организмом и средой называется дыханием. У высших животных процесс дыхания осуществляется благодаря ряду последовательных процессов:

    Обмен газов между средой и легкими, что обычно обозначают как «легочную вентиляцию»;

    Обмен газов между альвеолами легких и кровью (легочное дыхание);

    Обмен газов между кровью и тканями;

    И наконец, газы переходят внутри ткани к местам потребления (для O 2 ) и от мест образования (для CO 2 ) (клеточное дыхание).

Выпадение любого из этих четырех процессов приводят к нарушениям дыхания, и создает опасность для жизни человека.

Практическая часть

1. Динамика уровня заболеваемости дыхательной системы за последние три года учащихся 8а класса М Б ОУ « Северо-Енисейская средняя школа №2»

На основании результатов полученных по результатам ежегодного медицинского осмотра школьников мы выявили, что ежегодно возрастает количество таких заболеваний как: ОРЗ, ОРВИ, тонзиллит, назофарингит.

2. Определение максимального времени задержки дыхания на глубоком вдохе и выдохе (проба Генчи-Штанге)

Для проведения экспериментального исследования нами было подобрано две группы добровольцев примерно одинаковых по антропометрическим данным и возрасту, различающиеся тем, что в одной группе были учащиеся, активно занимающиеся спортом (таблица 1), а в другой равнодушные к занятиям физкультуры и спорта (таблица 2).

Таблица 1. Группа испытуемых ребят, занимающихся спортом

Вес

(кг.)

Рост (м.)

Индекс Кетле

(вес кг./рост м 2 )

N = 20-23

фактически

норма

Алексей

1 , 62

17,14 меньше нормы

19,81

Денис

14 лет 2 мясаца

1 , 44

20,25 норма

16,39

Анастасия

14 лет 7 месяцев

1 , 67

17,92 меньше нормы

20,43

Сергей

14 лет 3 месяца

1 , 67

22,59 норма

20,43

Михаил

14лет 5 месяцев

1 , 70

22,49 норма

20,76

Елизавета

14 лет 2 месяца

1 , 54

19,39 меньше нормы

18,55

Алексей

14 лет 8 месяцев

1 , 72

20,95 норма

20,95

Максим

14 лет 2 месяца

1 , 64

21,19 норма

20,07

Никита

14 лет 1 месяц

1 , 53

21,78 норма

18,36

10.

Андрей

15 лет 2 месяца

1 , 65

21,03 норма

20,20

ИМТ = m | h 2 , где m – масса тела в кг, h – рост в м. Формула идеального веса: рост - 110 (для подростков)

Таблица 2. Группа испытуемых ребят, не занимающихся спортом

Вес

(кг.)

Рост (м.)

Индекс Кетле

(вес кг./рост м 2 )

N = 20-25

фактически

норма

Алина

14 лет 7 месяцев

1 , 53

21,35 норма

18,36

Виктория

14 лет 1 месяц

1 , 54

18,13 меньше нормы

18,55

Виктория

14 лет3 месяца

1 , 5 9

19,38 меньше нормы

21,91

Нина

14 лет 8 месяцев

1 , 60

19,53 меньше нормы

19,53

Карина

14 лет 9 месяцев

163

19,19 меньше нормы

22,96

Светлана

14 лет 3 месяца

1 , 45

16,64 меньше нормы

16,64

Дарья

14 лет 8 месяцев

1 , 59

17,79 меньше нормы

19,38

Антон

14 лет 8 месяцев

1 , 68

24,80 норма

20,54

Анастасия

14 лет 3 месяца

1 , 63

17,68 меньше нормы

19,94

10.

Руслана

14 лет 10 месяцев

1 , 60

15,23 меньше нормы

19,53

Анализируя данные таблицы, мы заметили, что абсолютно у всех ребят из группы не занимающихся спортом индекс Кетле (массо-ростовой показатель) ниже нормы, а по физическому развитию ребята имеют средний уровень. Ребята из первой группы наоборот все имеют уровень физического развития выше среднего и по 50 % испытуемых по массо-ростовому индексу соответствуют норме, оставшаяся половина не значительно превышают показатели нормы. По внешнему облику ребята из первой группы сложены более атлетически.

После подбора групп и оценки их антрометрических данных им было предложено выполнить функциональные пробы Генчи - Штанге для оценки состояния дыхательной системы. Проба Генчи заключается в следующем – испытуемый задерживает дыхание на выдохе, зажав нос пальцами. У здоровых 14 -летних школьников время задержки дыхания равняется у мальчиков 25, девочек 24 секунд . При пробе Штанге испытуемый задерживает дыхание на вдохе, прижав нос пальцами. У здоровых 14 – летних школьников время задержки дыхания равняется у мальчиков 64, девочек – 54 секунд . Все пробы проводились в трёх повторностях.

На основе полученных результатов было найдено среднее арифметическое и данные были занесены в таблицу № 3.

Таблица 3. Результаты функциональной пробы Генчи-Штанге

п/п

Имя испытуемого

Проба Штанге (сек.)

Оценка результата

Проба Генчи

(сек.)

Оценка результата

Группа, занимающихся спортом

1.

Алексей

76

Выше нормы

56

Выше нормы

2.

Денис

66

Выше нормы

57

Выше нормы

3.

Анастасия

55

Выше нормы

34

Выше нормы

4.

Сергей

77

Выше нормы

60

Выше нормы

5.

Михаил

68

Выше нормы

30

Выше нормы

6.

Елизавета

56

Выше нормы

25

Выше нормы

7.

Алексей

65

Выше нормы

33

Выше нормы

8.

Максим

67

Выше нормы

64

Выше нормы

9.

Никита

65

Выше нормы

30

Выше нормы

10.

Андрей

63

Выше нормы

30

Выше нормы

1.

Алина

22

Ниже нормы

48

Ниже нормы

2.

Виктория

37

Ниже нормы

26

Ниже нормы

3.

Виктория

28

Ниже норма

23

Ниже нормы

4.

Нина

41

Ниже нормы

23

Ниже нормы

5.

Карина

33

Ниже нормы

23

Ниже нормы

6.

Светлана

52

Ниже нормы

25

Норма

7.

Дарья

51

Ниже норма

30

Выше нормы

8.

Антон

53

Ниже нормы

37

Выше нормы

9.

Анастасия

54

Норма

25

Норма

10.

Руслана

55

Норма

25

Норма

C пробой Генчи в первой группе все справились успешно: 100 % ребят показали результат выше нормы, а во второй группе только 20 % показали результат выше нормы, 30% соответствует норме,а 50 % – наоборот ниже нормы.

С пробой Штанге в первой группе 100 % ребят дали результат выше нормы, а во второй группе с задержкой дыхания на вдохе в пределах нормы справились 20%, а оставшаяся группа показала результаты ниже нормы. 80%

5. Определение времени максимальной задержки дыхания после дозированной нагрузки (проба Серкина)

Для более объективной оценки состояния дыхательной системы испытуемых мы провела с ними ещё одну функциональную пробу – пробу Серкина. Она заключается в следующем:

    Фаза 1 - испытуемый задерживает дыхание на максимальный срок на спокойном вдохе в положении сидя, время фиксируется.

    Фаза 2 - через 2 минуты испытуемый делает 20 приседаний

Испытуемый садится на стул и задерживает дыхание на вдохе, время вновь фиксируется.

    Фаза 3 - после отдыха в течение 1 минуты испытуемый задерживает дыхание на максимальный срок на спокойном вдохе в положении сидя, время фиксируется.

После проведенных испытаний результаты оцениваются по данным таблицы 4:

Таблица 4. Данные результаты для оценки пробы Серкина

Задержка дыхания после 20 приседаний, t сек.

Б –после работы

Б/А 100%

Задержка дыхания после отдыха в течение 1 мин, t сек

С- после отдыха

В/А 100%

Здоров, тренирован

50 – 70

Более 50 % от фазы 1

Более 100 % от фазы 1

Здоров, не тренирован

45 – 50

30 – 50 % от фазы 1

70 – 100 % от фазы 1

Скрытая недостаточность кровообращения

30 – 45

Менее 30 % от фазы 1

Менее 70 % от фазы 1

Полученные результаты всех участников эксперимента занесены в таблицу 5:

Таблица 5. Результаты пробы Серкина

76

40

52

76

100

Здоров не тренирован

2.

Денис

66

35

53

66

100

Здоров тренирован

3.

Анастасия

55

25

45

45

81

Здорова не тренирован

4.

Сергей

78

45

57

80

102

Здоров тренирован

5.

Михаил

60

29

48

55

91

Здоров не тренирован

6.

Елизавета

50

28

50

50

100

Здорова тренирована

7.

Алексей

60

38

63

60

100

Здоров тренирован

8.

Максим

67

45

67

67

100

Здоров тренирован

9.

Никита

65

30

46

54

83

Здоров не тренирован

10.

Андрей

63

32

51

58

92

Здоров не тренирован

Группа, не занимающихся спортом

1.

Алина

37

16

43

29

78

Здорова не тренирована

2.

Виктория

37

18

48

34

91

Здорова не тренирована

3.

Виктория

35

7

50

18

51

Здорова не тренирована

4.

Нина

40

20

50

30

75

Здорова не тренирована

5.

Карина

33

11

33

20

61

Здорова не тренирована

6.

Светлана

56

20

35

47

84

Здорова не тренирована

7.

Дарья

51

25

49

48

94

Здорова не тренирована

8.

Антон

66

29

44

50

76

Здоров не тренирован

9.

Анастасия

52

23

44

42

81

Здорова не тренирована

10.

Руслана

55

25

45

53

96

Здоров не тренирован

1 ряд - задержка дыхания в покое, сек

2 ряд - задержки дыхания после 20 приседаний

3 ряд - задержка дыхания после отдыха в течение 1 мин

Проанализировав результаты обеих групп, могу сказать следующее:

-во-первых, ни в первой, ни во второй группе не выявлено детей со скрытой недостаточностью кровообращения;

-во-вторых, все ребята второй группы относятся к категории «здоровые не тренированные», что в принципе и следовало ожидать.

-в-третьих, в группе ребят, активно занимающихся спортом, только 50 % относится к категории «здоровые, тренированные», а об остальных пока такового не скажешь. Хотя этому есть разумное объяснение. Алексей участвовал в эксперименте после перенесенного ОРЗ.

в – четвертых, отклонение от нормальных результатов при задержки дыхания после дозированной нагрузки, можно объяснить общей гиподинамией 2 группы, что отражается на развитии дыхательной системы

Таблица №6 Сравнительная характеристика ЖЕЛ у детей разных возрастов и пристрастием к вредным привычкам

Жизненная емкость легких у 1 класса

см 3

Жизненная емкость легких у 8 класса

см 3

Жизненная емкость легких у 10 класса

см 3

Жизненная емкость легких у курящих 8-11 кл

1

500

2000

3400

2900

2

200

2000

4400

2900

3

100

1600

4200

2500

4

800

2300

4100

2000

5

200

2800

2500

2200

6

500

3600

2800

2800

7

400

2100

3000

2900

8

300

1600

2400

3000

9

600

1900

2300

3200

10

300

1800

2200

3500

Ср ЖЕЛ

520

2500

3200

2790

Из таблицы видно, что с возрастом увеличивается ЖЕЛ

Выводы

Подводя итоги своего исследования, хотим отметить следующее:

    экспериментальным путем нам удалось доказать, что занятия спортом способствуют развитию дыхательной системы, так как по результатам пробы Серкина можно сказать что у 60 % детей из группы 1 время задержки дыхания возросло, а это значит, что у них дыхательный аппарат более подготовлен к нагрузкам;

    функциональные пробы Генчи-Штанге также показали, что ребята из группы 1 находятся в более выгодном положении. Их показатели выше нормы по обеим пробам соответственно 100 % и 100 %.

Хорошо развитый дыхательный аппарат - надежная гарантия полноценной жизнедеятельности клеток. Ведь известно, что гибель клеток организма в конечном итоге связана с недостатком в них кислорода. И напротив, многочисленными исследованиями установлено, что чем больше способность организма усваивать кислород, тем выше физическая работоспособность человека. Тренированный аппарат внешнего дыхания (легкие, бронхи, дыхательные мышцы) - это первый этап на пути к улучшению здоровья.

При использовании регулярных физических нагрузок максимальное потребление кислорода, как отмечают спортивные физиологи, повышается в среднем на 20-30%.

У тренированного человека система внешнего дыхания в покое работает более экономно: частота дыхания снижается но, при этом несколько возрастает его глубина. Из одного и того же объема воздуха, пропущенного через легкие, извлекается большее количество кислорода.

Возрастающая при мышечной активности потребность организма в кислороде «подключает» к решению энергетических задач незадействованные до этого резервы легочных альвеол. Это сопровождается усилением кровообращения во вступившей в работу ткани и повышением аэрации (насыщенность кислородом) легких. Физиологи считают, что этот механизм повышенной вентиляции легких укрепляет их. Кроме того, хорошо «проветриваемая» при физических усилиях легочная ткань менее подвержена заболеваниям, чем те ее участки, которые аэрированы слабее и потому хуже снабжаются кровью. Известно, что при поверхностном дыхании нижние доли легких в малой степени участвуют в газообмене. Именно в местах, где легочная ткань обескровлена, чаще всего возникают воспалительные очаги. И напротив, повышенная вентиляция легких оказывает целительное действие при некоторых хронических легочных заболеваниях.

Значит, для укрепления и развития дыхательной системы необходимо заниматься спортом регулярно.

Список литературы

1. Даценко И.И. Воздушная среда и здоровье. – Львов, 1997

2. Колесов Д.В.., Маш Р.Д. Беляев И.Н.Биология: человек. – Москва, 2008

3. Степанчук Н. А. Практикум по экологии человека. – Волгоград, 2009

18700 0

Функциональные пробы, оценивающие состояние нервной системы

Проба Ромберга

Предлагают встать с сомкнутыми стопами, приподнятой головой, вытянутыми вперед руками и закрытыми глазами.

Пробу можно усложнить, поставив ноги одну за другой по одной линии, или проверить эту позу, стоя на одной ноге.

Пальце-носовая проба

Из положения вытянутой руки обследуемый попадает пальцем в кончик носа с закрытыми глазами.

Пяточно-коленная проба

Попасть пяткой в колено противоположной ноги и провести вдоль голени в положении лежа с закрытыми глазами.

Проба Воячека

Испытуемый сидит в кресле с наклоном головы 90 0 и закрытыми глазами. Выполняет 5 вращений за 10 сек.

После пятисекундной паузы испытуемому предлагают поднять голову. До и после вращения считают пульс и измеряют АД.

Оценка: три степени выраженности реакции на вращение:

1 - слабая (тяга туловища в сторону вращения);

2 - средняя (явный наклон туловища);

3 - сильная (наклонность к падению).

Одновременно оцениваются вегетативные симптомы: побледнение лица, холодный пот, тошнота, рвота, учащение сердечных сокращений, изменение АД.

Проба ВНИИФК

Измерив АД и пульс, испытуемому предлагают выполнить задание на точность и координацию, затем он наклоняет туловище на 90 0 кпереди, закрывает глаза и вращается с помощью врача вокруг своей оси.

Скорость вращения 1 оборот за 2 с. После 5 оборотов спортсмен сохраняет 5 с положение наклона, затем выпрямляется и открывает глаза. После подсчета пульса, измерения АД и исследования нистагма, вновь предлагают выполнить тот же комплекс движений, что и до вращения. Чем меньше при этом нарушается точность заданных движений, изменяются величины пульса и АД, тем выше тренированность вестибулярного аппарата.

Проба Яроцкого

Испытуемый занимает положение основной стойки, выполняет вращение головой в одну сторону со скоростью 2 вращения в 1 сек. Засекается время, в течение которого испытуемый сохраняет равновесие.

Норма у нетренированных - не менее 27 сек, у спортсменов выше.

Ортостатическая проба

Применяется для исследования функционального состояния вегетативной нервной системы, симпатического ее отдела. После 5-ти минутного пребывания в горизонтальном положении у обследуемого определяется пульс по 10-секундным интервалам, измеряют АД. Затем исследуемый встает, и в положении стоя считают пульс за 10 секунд и измеряют АД. При нормальной возбудимости симпатического отдела происходит увеличение ЧСС на 20-25% от исходного. Более высокие цифры говорят о повышенной (неблагоприятной) возбудимости симпатического отдела вегетативной нервной системы. АД в норме при вставании, по сравнению с данными в горизонтальном положении, изменяется мало. Систолическое давление колеблется в пределах ±10 мм рт. ст., диастолическое - ±5 мм рт. ст.

Клиностатическая проба

Применяется для исследования парасимпатического отдела вегетативной нервной системы. После 5-ти минут адаптации в положении стоя измеряется АД и пульс, затем обследуемый ложится. Вновь регистрируется пульс и АД. В норме урежение пульса при переходе в горизонтальное положение не более 6-12 уд. в мин., в то время, как более уреженный пульс указывает на преобладание парасимпатических влияний. АД ±10 мм рт. ст. - систолическое, ±5 мм рт. ст. - диастолическое.

Проба Ашнера

В положении испытуемого лежа, надавливаем на глазные яблоки 15-20 с. Пульс в норме урежается на 6-12 уд. в 1 мин от исходного, что свидетельствует о нормальной возбудимости вегетативной нервной системы.

Пробы для оценки функционального состояния дыхательной системы

Проба Штанге

Исследуемый в положении сидя, после кратковременного отдыха (3-5 мин.), делает глубокий вдох и выдох, а затем снова вдох (но не максимальный) и задерживает дыхание. По секундомеру регистрируем время задержки дыхания. У мужчин оно не менее 50с, у женщин - не менее 40с. У спортсменов это время от 60 с до нескольких минут. У детей 6-ти лет: мальчики - 20с, девочки - 15с, 10-ти лет: мальчики -35с, девочки - 20с.

Проба Генчи

В положении сидя после отдыха исследуемый делает несколько глубоких дыханий и на выдохе (не максимальном) задерживает дыхание. У здоровых нетренированных лиц время задержки дыхания составляет 25-30с, у спортсменов - 30-90 секунд.

Пробы Штанге, Генчи позволяют оценить способность организма переносить гипоксию и применяются для врачебного контроля в КТ, оздоровительной физической тренировке, в массовом спорте. При заболеваниях сердечно-сосудистой системы, органов дыхания, анемии время задержки дыхания уменьшается.

Проба Розенталя

Пятикратное измерение ЖЕЛ с помощью спирометра через 15-и секундные интервалы.

Оценка:

  • ЖЕЛ увеличивается - хорошо;
  • ЖЕЛ не изменяется от измерения к измерению - удовлетворительно;
  • ЖЕЛ уменьшается - неудовлетворительно.

Комбинированная проба Серкина

Состоит из 3 фаз.

  • 1-я фаза - задержка дыхания на вдохе (сидя),
  • 2-я фаза - задержка дыхания на вдохе сразу же после 20 приседаний за 30 сек,
  • 3-я фаза - задержка дыхания на вдохе через 1 мин отдыха.
Результаты оцениваются по таблице.

Показатели времени задержки дыхания в норме (проба Серкина)

Пирогова Л.А., Улащик В.С.

Функциональное состояние кардиоваскулярной и дыхательной системы определяет возможность человеческого организма адаптироваться к изменчивым условиям внешней среды. Воздействие экологических факторов, наследственность, спортивные нагрузки, а также острые и хронические заболевания оказывают влияние на структуру органов и течение физиологических процессов. Отсутствие выраженной клинической симптоматики не говорит о полном здоровье, поэтому для оценки резервов человеческого организма, готовности к повышенным нагрузкам и с целью ранней диагностики нарушений применяются функциональные пробы дыхательной системы.

Пробы для оценки функционального состояния дыхательной системы

Патологии бронхолегочной системы чаще всего развиваются на фоне инфекционных процессов (пневмонии, бронхиты) и сопровождаются характерными клиническими признаками:

  • Кашель с выделением мокроты (гнойного или серозного характера).
  • Одышка (в зависимости от фазы дыхания, утрудненного вдоха или выдоха).
  • Боль в грудной клетке.

В медицинской практике для диагностики заболеваний чаще всего применяются лабораторные анализы и инструментальные методы, которые дают оценку морфологическим изменениям (рентгенография, компьютерная томография). Хроническое течение заболеваний, которые снижают качество жизни пациента (бронхиальная астма или обструктивная болезнь легких (ХОБЛ)) требуют мониторинга процесса. Тактика лечения определяется выраженностью изменений и степенью снижения функции, которая на легких стадиях не определяется с помощью рентгенологических методов.

В спортивной медицине и функциональной диагностике широко применяются методы тестов и проб, которые проводят оценку состояния респираторной системы на разных уровнях (калибрах бронхов) и определяют «резерв» возможностей каждого человека.

Функциональной пробой (тестом) называют метод, который исследует реакцию органа или системы на дозированную нагрузку с помощью стандартизированных показателей. В практике пульмонологов чаще всего спирометрия, которая определяет:

  • Жизненную емкость легких (ЖЕЛ).
  • Скорость вдоха и выдоха.
  • Объем форсированного выдоха.
  • Скорость потока воздуха по бронхам разного калибра.

Другой метод - плетизмография легких применяется для оценки изменения обьемов респираторных органов во время дыхательного акта.

Дополнительное использование провокационных проб (запуск патологической реакции с помощью фармакологических средств), изучение эффективности лекарственных препаратов - составляющие функциональной пульмонологической диагностики.

В спортивной медицине используются тесты, направленные на изучение выносливости, реактивности и динамики тренированности человека. Например, улучшение показателей пробы Штанге и Генчи свидетельствует о позитивной динамике у пловцов.

Показания и противопоказания к проведению функциональных дыхательных проб

Введение в клиническую практику функциональных тестов обязывает формировать контингент пациентов, которым целесообразно проводить исследование.

  • Длительный стаж курения (более 10 лет) с высоким риском развития заболеваний.
  • Бронхиальная астма (для постановки клинического диагноза и подбора лечения).
  • ХОБЛ.
  • Пациентам с хронической одышкой (для определения причины и локализации поражения).
  • Дифференциальная диагностика легочной и сердечной недостаточности (в комплексе с другими методами).
  • Спортсменам для оценки силы мышц грудной клетки, дыхательного объема.
  • Контроль эффективности лечения при легочных заболеваниях.
  • Предварительная оценка возможных осложнений перед оперативным вмешательством.
  • Экспертиза трудоспособности и военная экспертиза.

Несмотря на широкое клиническое применения, проведение тестов сопровождается усиленной нагрузкой на дыхательную систему и эмоциональным напряжением.

Функциональные дыхательные пробы не проводятся при:

  • Тяжелое состояние больного вследствие соматического заболевания (печеночная, почечная недостаточность, ранний послеоперационный период).
  • Клинические варианты ишемической болезни сердца (ИБС): прогрессирующая стенокардия напряжения, инфаркт миокарда (в течение 1 месяца), острое нарушение мозгового кровообращения (ГНМК, инсульт).
  • Гипертоническая болезнь с очень высоким риском сердечнососудистых заболеваний, злокачественная гипертензия, гипертонические кризы.
  • Гестозы (токсикозы) у беременных.
  • Сердечная недостаточность 2Б и 3 стадии.
  • Легочная недостаточность, которая не позволяет провести дыхательные манипуляции.

Важно! На результат исследования влияет вес, пол, возраст человека и наличие сопутствующих заболеваний, поэтому анализ данных спирометрии проводится с помощью специальных компьютерных программ.

Нужна ли специальная подготовка к обследованию

Функциональные дыхательные тесты с использованием пневмотахометра или спирометр проводятся в первой половине дня. Пациентам не рекомендуется есть перед процедурой, так как наполненный желудок ограничивает движение диафрагмы, что ведет к искажению результатов.

Больным, которые регулярно принимают бронходилатирующие средства (Сальбутамол, Серетид и другие), рекомендуется не использовать препараты за 12 часов до исследования. Исключение составляют пациенты с частыми обострениями.

Для объективности результатов, врачи советуют не курить минимум за 2 часа до исследования. Непосредственно перед исследованием (20-30 минут) - исключить все физические и эмоциональные нагрузки.

Виды функциональных дыхательных проб

Методика проведения различных тестов отличается из-за разнонаправленности исследований. Большинство проб используется для диагностики скрытой (латентной) стадии бронхоспазма или легочной недостаточности.

Широко используемые функциональные пробы представлены в таблице.

Функциональный тест

Методика проведения

Проба Шафранского (динамическая спирометрия) для оценки колебаний емкости легких

Определение исходного значение ЖЕЛ с помощью стандартной спирометрии.

Дозированная физическая нагрузка - бег на месте (2 минуты) или подъемы на ступеньку (6 минут).

Контрольное исследование ЖЕЛ

Положительная - увеличение значений более чем на 200 мл.

Удовлетворительная - показатели не изменяются

Неудовлетворительная - значение ЖЕЛ уменьшается

Проба Розенталя - для оценки состояния дыхательной мускулатуры (межреберных мышц, диафрагмы и других)

Проведение стандартной спирометрии 5 раз с интервалом в 15 секунд

Отличная: постепенное повышение показателей.

Хорошая: стабильное значение.

Удовлетворительное: снижение объема до 300 мл.

Неудовлетворительная: уменьшение ЖЕЛ более чем на 300 мл

Проба Генчи (Саарбазе)

Пациент делает глубокий вдох, потом - максимальный выдох и задерживает дыхание (с закрытым ртом и носом)

Нормальное значение времени задержки 20-40 секунд (у спортсменов до 60 секунд)

Проба Штанге

Оценивается время задержки дыхания после глубокого вдоха

Нормальные показатели:

  • женщин 35-50 секунд.
  • мужчин 45-55 секунд.
  • спортсменов 65-75 секунд

Проба Серкина

Трехкратное измерение времени задержки дыхания на выдохе:

  • Исходное.
  • После 20 приседаний за 30 секунд.
  • Через 1 минуту после нагрузки

Средние значения у здоровых людей (спортсменов):

  • 40-55 (60) секунд.
  • 15-25 (30) секунд.
  • 35-55 (60) секунд

Снижение показателей во всех фазах свидетельствует о скрытой легочной недостаточности

Использований функциональной диагностике в клинической практике терапевтов оправдывается ранней диагностикой и контролем эффективности лечения заболеваний. Спортивная медицина применяет пробы для оценки состояния человека перед соревнованием, для контроля адекватности подобранного режима и ответа организма на нагрузки. Динамические методы исследования более информативны для врачей, поскольку нарушение функции не всегда сопровождается структурными изменениями.

Функциональные пробы сердечно-сосудистой системы

Пульс - исключительно важный показатель. Подсчет частоты пульса и оценка его качества отражают деятельность сердечнососудистой системы. Пульс здорового нетренированного мужчины в состоянии покоя - 70-75 ударов в минуту, женщины - 75-80. Чаще всего пульс определяют нащупыванием тремя пальцами у основания кистей рук снаружи над лучевой костью (лучевая артерия), на основании височных костей (височная артерия), сонной артерии и в области сердечного толчка. Обычно пульс подсчитывают в течение 6 или 10 с и умножают соответственно на 10 и 6. При физической нагрузке здоровому человеку не рекомендуется превышать максимального числа сердечных сокращений ЧСС, рассчитываемого по следующей формуле: ЧСС макс. = 220 - возраст человека. У тренированных людей в состоянии покоя пульс реже.

Артериальное давление (АД) - один из важных практических показателей функционального состояния сердечно-сосудистой системы. Артериальное давление позволяет выявлять сдвиги, которые хорошо отражают приспособляемость организма к физическим нагрузкам. По изменениям АД судят о величине нагрузки и реакции на нее сердечно-сосудистой системы. Величина артериального давления определяется соотношением между сердечным выбросом и сопротивлением кровотоку, оказываемом на уровне артериол. АД измеряется с помощью ртутного или мембранного манометра, оно колеблется в зависимости от фаз сердечного цикла. В период систолы оно повышается (СД - систолическое, МАХ), в период диастолы - снижается (ДД - диастолическое, MIN). У здоровых людей в возрасте от 20 до 40 лет уровень СД колеблется в пределах 110-125, ДД - 60-75 мм. рт.ст. Взаимосвязь артериального давления и возраста выражается уравнением:

Для лиц от 7 до 20 лет: систолическое АД = 1,7 х возраст + 83; диастолическое АД = 1,6 х возраст + 42.

Для лиц от 20 до 80 лет: систолическое АД = 0,4 х возраст + 109; диастолическое ДА = 0,3 х возраст + 67.

Функциональная проба с приседанием (проба Мартинэ). Подсчитывается частота пульса в покое. После 20 глубоких приседаний (ноги на ширине плеч, руки вытянуты вперед), которые нужно проделать в течение 30 с, определяется процент учащения пульса от исходного. О восстановлении пульса по критериям: при хорошем функциональном состоянии сердечно-сосудистой системы пульс восстанавливается в течение 2-3 мин, артериальное давление (АД) - к концу 3-4- й мин. Нормальной реакцией на пробу 20 приседаний считается: хорошее на 25 %, удовлетворительное 50-75 %, неудовлетворительное - более чем 75 % .

Комбинированная проба Летунова. Определяется адаптация организма к скоростной работе и работе на выносливость. Данная проба состоит из 20 приседаний за 30 с, 15-секундного бега на месте в быстром темпе и 3-минутного бега на месте в темпе 180 шагов в минуту. Информация о пробе Летунова оценивается путем анализа характера изменения частоты пульса и артериального давления в восстановительном периоде. Оценка результатов ведется путем изучения типов реакций (нормотонический, гипертонический, астенический, дистонический).

Чтобы дать оценку восстановительного периода после физических нагрузок, необходимо провести анализ восстановительного периода по двум параметрам: по времени и характеру восстановительного пульса и артериальному давлению. Длительность восстановительного периода зависит от величины нагрузки, активности занимающегося при выполнении работы, функционального состояния и состояния нервной регуляции сердечно-сосудистой системы.

Ортостатическая проба - анализ реакции сердечно-сосудистой системы при изменении положения тела из горизонтального в вертикальное. При изменении положения тела происходит перераспределение крови. Это вызывает рефлекторную реакцию в системе регуляции кровообращения, обеспечивающую нормальное кровоснабжение органов, особенно головного мозга. Реакцией на ортостатическую пробу является учащение пульса при переходе из положения лежа в вертикальное. В положении лежа подсчитывается пульс, затем испытуемый спокойно встает и стоя производит измерения пульса сразу после изменения положения тела и через 1, 3, 5 мин. Переносимость пробы считается хорошей при учащении пульса не более чем на 11 ударов, удовлетворительной 12-18 ударов и неудовлетворительной - 19 и более ударов.

Клиностатическая проба - обратная ортостатической. Основана на урежении пульса при переходе из положения стоя в положение лежа. Если количество ударов уменьшилось на 4-6, пульс в норме; больше - выраженное замедление, повышен тонус нервной системы.

Для самоконтроля за функциональным состоянием дыхательной системы можно рекомендовать следующие пробы.

Одним из показателей тренированности является показатель жизненной емкости легких (ЖЕЛ), отражающий функциональные возможности системы дыхания. Измеряется с помощью сухого или водяного спирометра. Величина ЖЕЛ в среднем у юношей равна 3,8-4,5 л, а у девушек 2,5-3,2 л. Должную величину (ЖЕЛ) можно подсчитать по формуле:

юноши ДЖЕЛ = (40 х рост, см, + 30 х вес, кг) - 4 400;

девушки ДЖЕЛ = (40 х рост, см, + 10 х вес, кг) - 3 800.

Проба Штанге - задержка дыхания на вдохе. После 5-7 мин отдыха в положении сидя следует сделать полный вдох и выдох, затем снова вдох и задержка дыхания. Продолжительность задержки дыхания в большей степени зависит от волевых усилий человека. Результат можно оценить по 3-балльной системе: с задержкой дыхания менее 34 с неудовлетворительно; 35-39 с - удовлетворительно; свыше 40 с - хорошо.

Проба Генчи - задержка дыхания на выдохе. После полного выдоха и вдоха снова выдыхают и задерживают дыхание. Нетренированные люди способны задержать дыхание на 25-30 с, а занимающиеся физической культурой - 40-60 с. Результат можно подсчитать по 5-балльной системе: 50-60 с - отлично; 39-45 - хорошо; 20-34 - удовлетворительно; 10-19 - плохо; до 10 - очень плохо.

Физическая работоспособность является специальным понятием спортивной медицины и физиологии спорта и является методом объективной оценки функционального состояния и тренированности спортсменов. Физическая работоспособность пропорциональна тому количеству механической работы, которую спортсмен способен выполнять длительное время и с достаточно высокой интенсивностью. Оценка работоспособности может быть дана с помощью различных методических приемов (тестов).

ИГСТ - с его помощью оцениваются восстановительные процессы после дозированной мышечной работы. Во время тестирования испытуемый поднимается на ступеньку, высота которой подбирается соответственно возрасту и полу, и спускается с нее в темпе 30 раз в минуту в течение заданного времени. Высота ступеньки для мужчин 50,8 сантиметров, для женщин - 43 сантиметра. Время восхождения - 5 мин. При выполнении теста руки совершают те же движения, что и при ходьбе. Один цикл движений (подъем и спуск) совершается на 4 счета. Сразу после выполнения теста обследуемый садится, и у него трижды определяется ЧСС по 30-секундным отрезкам: первый раз спустя минуту в восстановительном периоде (до 1 мин 30 с), второй раз на 3-й минуте (от 2 мин до 2 мин 30 с), третий - на 4-й минуте (от 3 мин до 3 мин 30 с восстановительного периода). Расчет степ-теста (ИГСТ) осуществляется по формуле

где t - время выполнения пробы; - частота пульса за 30 с на

второй, третьей и четвертой минутах (уд/мин).

При величине ИГСТ ниже 54 физическая работоспособность оценивается как очень плохая; 54-64 - плохая; 65-79 - средняя; 80-89 - хорошая; 90 и выше - отличная. Тест представляет собой значительную физическую нагрузку. Поэтому его можно проводить лишь после медицинского осмотра, чтобы исключить лиц с выраженными проявлениями заболеваний сердца, сосудов и органов дыхания.

Двенадцатиминутный тест Купера рассчитан на определение возможностей обследуемого человека в упражнениях на выносливость. Во время выполнения теста нужно преодолеть (пробежать или пройти) как можно большее расстояние. По степени физической подготовленности занимающиеся делятся на 5 категорий по возрасту (табл. 3, 4).

Двенадцатиминутный тест для мужчин

Таблица 3

Двенадцатиминутный тесг для женщин

Таблица 4

Стремление к красоте, улучшению своей внешности вполне естественно для человека. Красивая осанка и хорошее телосложение - главные слагаемые привлекательности. Для определения телосложения используют ряд методик и тестов. Каждый человек имеет свой тип телосложения. Различают три основных типа: астенический, нормостенический, гиперстенический. Наиболее просто можно определить тип телосложения, измерив окружность запястья рабочей руки: астенический тип - меньше 16 см; нормостенический - 16-18,5 см; гиперстенический - более 18,5 см.

По росту:

низкий - 150 см и ниже; ниже среднего - 151-156 см; средний - 157-167 см; высокий - 168-175 см; очень высокий - 175 см и выше.

Весоростовой индекс Кетле определяет, сколько граммов веса должно приходиться на сантиметр роста. Для определения этого индекса нужно вес обследуемого в граммах разделить на рост в сантиметрах. Для юношей эта величина равна 350-400 г, для девушек 325-375 г на один см роста (длины тела).

Индекс Ливии отражает пропорциональность развития грудной клетки.

/ = / L) ? 100, где I - индекс Ливии; Т - окружность груди в паузе; L - длина тела (рост, см). Средний показатель для мужчин +5,8 см, для женщин +3,3 см.

Индекс Пинье (показатель крепости телосложения)Х= Р - (В + О), где Р - рост, см; В - масса тела, кг; О - окружность груди на фазе выдоха, см.

Величина оценивается по шкале: меньше 10 - крепкое телосложение; 10-20 - хорошее; 21-25 - среднее; слабое - 26-35; очень слабое - 36 и более.

Формула Брока - Бругша. Показатель оценки массы тела. У человека ростом 155-165 см вычитаем 100; при росте 165-175 см вычитаем 105; при росте 175-185 см вычитаем ПО.

Формула Купера - определение должной массы тела: юноши [(Рост, см х 1,57) -128] : 2,2; девушки [(Рост, см х 1,37) - 108] : 2,2.

Методика Анохина. Для подсчетов должных показателей по данной методике для девушек необходимо знать рост, а для юношей - окружность таза. Эти величины умножают на коэффициенты (табл. 5) и определяют окружность отдельных частей тела.

Таблица 5

Подсчет должных показателей по методике Анохина

Гибкость - это способность к выполнению движений с большой амплитудой в различных суставах. Гибкость - важное свойство опорно-двигательного аппарата. Она зависит от факторов эластичности мышц и связок, внешней температуры, времени суток. Тестирование можно проводить после соответствующей разминки.

Для определения подвижности позвоночника необходимо встать на табурет или стул и наклониться вперед (не сгибая ног в коленях), опустив руки. Измеряется расстояние от конца среднего пальца кисти до площадки. Если испытуемый достает пальцами до площадки, считается удовлетворительная подвижность. Если пальцы будут ниже нулевой отметки, подвижность хорошая и ставится знак «плюс». Если пальцы не достают горизонтальной плоскости, то подвижность позвоночника оценивается как недостаточная, в этом случае ставится знак «минус».

Тест для мышц спины и задней поверхности - не сгибая коленей, достать пол: отлично - ладонью; хорошо - фалангами пальцев; удовлетворительно - кончиками пальцев.

Тест для плечевого пояса - одна рука над плечом, другая - согнута за спиной: отлично - соединить руки ладонями; хорошо - фалангами пальцев; удовлетворительно - кончиками пальцев.

Тест для боковых мышц туловища - наклоны в сторону из положения стоя, руки по швам: отлично - ладонью ниже колена; хорошо - ладонью на уровне колена; удовлетворительно - кончиками пальцев на уровне колена.

Овладение методами самоконтроля помогает человеку вести наблюдение за состоянием здоровья и уровнем работоспособности. Систематическое самонаблюдение приучает студента сознательно относиться к занятиям физической культурой, вести здоровый образ жизни, использовать физические упражнения для укрепления и сохранения здоровья, физического самосовершенствования. Но необходимо знать, что нагрузка обязательно должна соответствовать возможностям и физической подготовленности.

Контрольные вопросы и задания

  • 1. Каковы цели и задачи самоконтроля?
  • 2. Что такое дневник самоконтроля?
  • 3. Перечислите объективные и субъективные показатели самоконтроля.
  • 4. Дайте определение жизненной емкости легких.
  • 5. Назовите оценки функциональной подготовленности по задержке дыхания на вдохе и выдохе.
  • 6. Дайте оценку физической работоспособности по результатам 12-минутного теста Купера.
  • 7. Расскажите о методике оценки гибкости.
  • 8. Назовите методы стандартов, антропометрических индексов, функциональных проб, упражнений-тестов для оценки физического развития и физической подготовленности.

Динамическая спирометрия – определение изменений ЖЕЛ под влиянием физической нагрузки (проба Шафранского). Определив исходную величину ЖЕЛ в покое, обследуемому предлагают выполнить дозированную физическую нагрузку - 2-минутный бег на месте в темпе 180 шаг/мин при подъеме бедра под углом 70-80°, после чего снова определяют ЖЕЛ. В зависимости от функционального состояния системы внешнего дыхания и кровообращения и их адаптации к нагрузке ЖЕЛ может уменьшиться (неудовлетворительная оценка), остаться неизменной (удовлетворительная оценка) или увеличиться (оценка, т.е. адаптация к нагрузке, хорошая). О достоверных изменениях ЖЕЛ можно говорить только в том случае, если она превысит 200 мл.

Проба Розенталя - пятикратное измерение ЖЕЛ, проводимое через 15-секундные интервалы времени. Результаты данной пробы позволяют оценить наличие и степень утомления дыхательной мускулатуры, что, в свою очередь, может свидетельствовать о наличии утомления других скелетных мышц.


Результаты пробы Розенталя оценивают следующим образом:

Увеличение ЖЕЛ от 1-го к 5-му измерению - отличная оценка;

Величина ЖЕЛ не изменяется - хорошая оценка;

Величина ЖЕЛ снижается на величину до 300 мл - удовлетворительная оценка;

Величина ЖЕЛ снижается более чем на 300 мл - неудовлетворительная оценка.


Проба Шафранского заключается в определении ЖЕЛ до и после стандартной физической нагрузки. В качестве последней используются подъемы на ступеньку (22,5 см высоты) в течение 6 мин в темпе 16 шаг/мин. В норме ЖЕЛ практически не изменяется. При снижении функциональных возможностей системы внешнего дыхания значения ЖЕЛ уменьшаются более чем на 300 мл.
Гипоксические пробы дают возможность оценить адаптацию человека к гипоксии и гипоксемии.
Проба Генчи - регистрация времени задержки дыхания после максимального выдоха. Исследуемому предлагают сделать глубокий вдох, затем максимальный выдох. Исследуемый задерживает дыхание при зажатом носе и рте. Регистрируется время задержки дыхания между вдохом и выдохом. норме величина пробы Генчи у здоровых мужчин и женщин составляет 20-40 с и для спортсменов – 40-60 с.
Проба Штанге - регистрируется время задержки дыхания при глубоком вдохе. Исследуемому предлагают сделать вдох, выдох, а затем вдох на уровне 85-95% от максимального. Закрывают рот, зажимают нос. После выдоха регистрируют время задержки.Средние величины пробы Штанге для женщин – 35-45 с для мужчин – 50-60 с, для спортсменок – 45-55 с и более, для спортсменов - 65-75 с и более.
Проба Штанге с гипервентиляцией
После гипервентиляции (для женщин - 30 с, для мужчин - 45 с) производится задержка дыхания на глубоком вдохе. Время произвольной задержки дыхания в норме возрастает в 1,5-2,0 раза (в среднем значения для мужчин – 130-150 с, для женщин – 90-110 с).
Проба Штанге с физической нагрузкой. После выполнения пробы Штанге в покое выполняется нагрузка - 20 приседаний за 30 с. После окончания физической нагрузки тотчас же проводится повторная проба Штанге. Время повторной пробы сокращается в 1,5-2,0 раза.По величине показателя пробы Генчи можно косвенно судить об уровне обменных процессов, степени адаптации дыхательного центра к гипоксии и гипоксемии и состояния левого желудочка сердца.Лица, имеющие высокие показатели гипоксемических проб, лучше переносят физические нагрузки. В процессе тренировки, особенно в условиях среднегорья, эти показатели увеличиваются.У детей показатели гипоксемических проб ниже, чем у взрослых.
7.2.3. Инструментальные методы исследования системы дыхания
Пневмотахометрия - определение максимально объемной скорости потока воздуха при вдохе и выдохе. Показатели пневмотахометрии (ПТМ) отражают состояние бронхиальной проходимости и силу дыхательной мускулатуры. Бронхиальная проходимость - важный показатель состояния функции внешнего дыхания. Чем шире суммарный просвет воздухоносных путей, тем меньше сопротивление, оказываемое ими потоку воздуха и тем больше его объем способен вдохнуть и выдохнуть человек при максимально форсированном дыхательном акте. От величины бронхиальной проходимости зависят энергетические траты на вентиляцию легких. При увеличении бронхиальной проходимости один и тот же объем вентиляции легких требует меньше усилий. Систематические занятия физической культурой и спортом способствуют совершенствованию регуляции бронхиальной проходимости и ее увеличению.
Объемная скорость потока воздуха на вдохе и выдохе измеряется в литрах в секунду (л/с).
У здоровых нетренированных людей соотношение объемной скорости вдоха к объемной скорости выдоха (мощность вдоха и выдоха) близко единице. У больных людей это соотношение всегда меньше единицы. У спортсменов мощность вдоха превышает мощность выдоха, и это соотношение достигает 1,2-1,4.
Для более точной оценки бронхиальной проходимости легче пользоваться расчетом должных величин. Для расчета должной величины фактическая величина ЖЕЛ умножается на 1,24. Нормальная бронхиальная проходимость равна мощности вдоха и выдоха, т.е. 100 ± 20% его от должной величины.
Показатели ПТМ колеблются у женщин от 3,5 до 4,5 л/с; у мужчин - от 4,5 до 6 л/с. У спортсменок величины ПТМ составляют 4-6 л/с, у спортсменов – 5-8 л/с.
В последние годы функцию внешнего дыхания определяют с помощью компьютера «IBM PC» на аппарате «Спироскоп ТМ» методами спирографии и петля поток - объем форсированного выхода (ППО), как наиболее приемлемых для динамического исследования дыхания. Так, самые высокие показатели ЖЕЛ, объема форсированного выдоха за 1 с (ОФВ 1), МВЛ, выявлены в группе выносливости, несколько ниже, но также высокие - в группе единоборств и игровых видов спорта, что указывает на то, что в этих видах спорта развитию качества выносливости уделяется существенное внимание (Дьякова П.С., 2000).
Спирография - метод комплексного исследования системы внешнего дыхания с регистрацией показателей частоты дыхания (ЧД), глубины дыхания (ГД), минутного объема дыхания (МОД), жизненной емкости легких с ее компонентами: резервный объем вдоха - (РОВД), резервный объем выдоха - (РОВЬШ), дыхательный объем - (ДО), форсированной ЖЕЛ (ФЖЕЛ), максимальной вентиляции легких (МВЛ) и потребление кислорода (ПО2).
ЧД в норме в условиях покоя у взрослых практически здоровых людей колеблется от 14 до 16 дыханий в минуту. У спортсменов с ростом тренированности ЧД может урежаться и составлять от 8 до 12 в минуту, у детей - несколько больше.
ГД, или дыхательный объем (ДО) также измеряется на спирограмме равномерного спокойного дыхания. ДО составляет примерно 10% емкости легких или 15-18% ЖЕЛ и равен у взрослых 500-700 мл, у спортсменов ДО возрастает и может достигать 900-1300 мл.
МОД (легочная вентиляция) представляет собой произведение ДО на ЧД в 1 мин (при равномерном дыхании равной глубины). В покое в условиях нормы эта величина колеблется от 5 до 9 л/мин. У спортсменов его величина может достигать 9-12 л/мин и более. Важно, чтобы МОД при этом возрастал за счет глубины, а не частоты дыхания, что не приводит к избыточному расходу энергии на работу дыхательной мускулатуры. Иногда увеличение МОД в покое может быть связано с недостаточным восстановлением после тренировочных нагрузок.
Резервный объем вдоха (РО ВД) - это объем воздуха, который исследуемый может вдохнуть при максимальном усилии вслед за обычным вдохом. В покое этот объем примерно равен 55-63% ЖЕЛ. Этот объем в первую очередь используется для углубления дыхания при нагрузке и определяет способность легких к дополнительному их расширению и вентиляции.
Резервный объем выдоха (РО ВЫД) - это объем воздуха, который исследуемый может выдохнуть при максимальном усилии вслед за обычным выдохом. Его величина колеблется от 25 до 345 от ЖЕЛ в зависимости от положения тела.
Форсированная ЖЕЛ (ФЖЕЛ или проба Тиффно-Вотчела) - максимальный объем воздуха, который можно выдохнуть за 1 с. При определении этой величины из положения максимального вдоха испытуемый делает максимально форсированный выдох. Рассчитывается этот показатель в мл/с и выражается в процентах к обычной ЖЕЛ. У здоровых лиц, не занимающихся спортом, этот показатель колеблется от 75 до 85%. У спортсменов этот показатель может достигать больших значений при одновременном увеличении ЖЕЛ и ФЖЕЛ: их процентные соотношения изменяются незначительно. ФЖЕЛ ниже 70% указывает на нарушение бронхиальной проходимости.
Максимальная вентиляция легких (МВЛ) - это наибольший объем воздуха, вентилируемый легкими за 1 мин при максимальном усилении дыхания за счет увеличения его частоты и глубины. МВЛ относится к числу показателей, которые наиболее полно характеризуют функциональную способность системы внешнего дыхания. На величину МВЛ влияют ЖЕЛ, сила и выносливость дыхательной мускулатуры, бронхиальная проходимость. Кроме того, МВЛ зависит от возраста, пола, физического развития, состояния здоровья, спортивной специализации, уровня тренированности и периода подготовки. В норме у женщин МВЛ – 50-77 л/мин, у мужчин – 70-90 л/мин. У спортсменов может достигать 120-140 л/мин - женщины, 190-250 л/мин - мужчины. При определении МВЛ измеряют объем вентиляции при максимально произвольном усилении дыхания в течение 15-20 с, а затем приводят полученные данные к минуте и выражают в л/мин. Более продолжительная гипервентиляция приводит к гипокапнии, что вызывает снижение артериального давления и появление у исследуемых головокружений. Оценку уровня функциональной способности системы внешнего дыхания можно получить при сопоставлении МВЛ с должной МВЛ (ДМВЛ):


ДМВЛ = (ЖЕЛ / 2Ж) х 35

МВЛ, в % ДМВЛ = (факт. МВЛ х 100) / ДМВЛ


Нормальная величина МВЛ составляет 100±10 ДМВЛ. У спортсменов МВЛ достигает 150% ДМВЛ и более.Если из МВЛ вычесть МОД в покое, получим величину, показывающую, насколько спортсмен может увеличить вентиляцию легких, так называемый резерв дыхания. В норме он составляет 91-92% МВЛ.
Дыхательный эквивалент (ДЭ) - это абстрактная величина, выражающая количество литров воздуха, которое необходимо провентилировать, чтобы использовать 100 мл кислорода.ДЭ рассчитывается по формуле:ДЭ = МОДДдолжное потребление кислорода хЮ), где должное потребление кислорода рассчитывается как частное от деления должного основного обмена (ккал) по таблице Гарриса-Бенедикта на коэффициент 7,07.

Принципы оценки. В норме в состоянии покоя дыхательный эквивалент колеблется в пределах от 1,8 до 3,0 и составляет в среднем 2,4.
Вентиляционный эквивалент (ВЭ) , по существу, является тем же показателем, что и ДЭ, но вычисляется не по отношению к должному поглощению кислорода, а по отношению к фактическому.
ВЭ рассчитывается по формуле:ВЭ = МОД/на величину потребления кислорода в литрах.Принципы оценки: чем выше величина ВЭ, тем ниже эффективность дыхания.
Коэффициент резервных возможностей дыхания (КРД) отражает резервные возможности системы внешнего дыхания.КРД = (МВЛ - МОД) х 10 / МВЛ.Принципы оценки : КРД (RHL) ниже 70% указывает на значительную степень снижения функциональных возможностей дыхания.

8. ДИФФУЗИОННАЯ СПОСОБНОСТЬ ЛЕГКИХ (ДЛ) - количество газа, проходящее через альвеол яр но-капилл яр ную мембрану за минуту i расчета на 1 мм рт. ст. разницы парциального давления газа по обе стороны мембраны. Существующие методы определения диффузионной способности легких сложны и трудоемки, Они используются лишь в некоторых специализированных клиниках. Поэтому здесь излагаются только принципы этих методов.
Методы определения. Для определения диффузионной способности легких используются газы, лучше растворимые в крови, чем в альвео-лярно-капиллярныХ мембранах. К таким газам относятся кислород, окись углерода. Поскольку используются небольшие концентрации окиси углерода (0,1-0,2%) и вдыхание газа кратковременно, то применение этого газа для определения диффузионной способности легких безопасно.
Определение диффузионной способности легких с помощью окиси углерода методом одиночного вдоха. Вдыхается газовая смесь: 0,3% СО, 10% гелия, 21% О; в азоте. После 10-секундной задержки дыхания исследуемому предлагается сделать форсированный выдох. Предварительно были определены жизненная емкость и остаточный объем. ДЛ вычисляется по формуле: где ОЕЛ - общая емкость легких; F- исходная альвеолярная концентрация окиси углерода, F -концентрация СО в выдыхаемом газе; --время задержки дыхания в секундах.

Исходная альвеолярная концентрация окиси углерода вычисляется по концентрации гелия в пробе выдыхаемого газа (Fa ,), поскольку гелий нерастворим, его разведение в альвеолярном воздухе равно разведению окиси углерода до начала се поглощения кровью. Это вычисление проводится но формуле:

Газометром определяется концентрация окиси углерода в выдыхаемом воздухе после 10-секундной задержки дыхания.

Определение диффузионной способности легких с п ом ощ ь ю окиси углерода в условиях устойчивого состояния. В течение 15 минут пациент дышит атмосферным воздухом, затем 6 минут вдыхает смесь воздуха с 0,1% окиси углерода (или делает 6 вдохов этой смеси). На 2-й и 6-й минуте измеряется концентрация окиси углерода в выдыхаемом воздухе. Альвеолярное напряжение окиси углерода определяют по пробе альвеолярного газа либо вычисляют, определив предварительно мертвое пространство. Разница количества СО во вдыхаемом и выдыхаемом газе определит количество поглощенной за период исследования окиси углерода. Диффузионная способность для окиси углерода вычисляется по формуле:

где Vco - количество поглощенной окиси углерода в минуту; РАсо~~ напряжение СО в альвеолярном воздухе.

Для получения величины диффузионной способности легких для кислорода полученную величину ДЛС0 умножают на 1,23.

Определение диффузионной способности по кислороду из-за значительной сложности методики распространения не получило. Поэтому описание метода здесь не приводится.

Нормальные величины. Величина диффузионной способности легких зависит от метода исследования, поверхности тела. У женщин она ниже, чем у мужчин. Нижняя граница ДЛ0 в покое составляет примерно 15 мл Ogминмм рт. ст.

Максимальная диффузионная способность легких наблюдается при физической нагрузке. В это время она достигает 60 мл 0.,минмм рт. ст. и более.

Отмечено снижение максимальной диффузионной способности легких с возрастом. Зависимость максимальной диффузионной способности от возраста выражается формулой:

ДЛ0(Макс = 0,67 X рост (в см) -0,55Xвозраст (в годах) -40,9.

Варианты патологии. Нарушения диффузионной способности легких наблюдаются при пневмосклерозс, саркоидозе, силикозе, эмфиземе легких, при митральном стенозе с выраженными застойными явлениями в легких.

При максимальной физической нагрузке фактическая вентиляция легких составляет всего 50% от максимального дыхательного объема. Кроме того, насыщение гемоглобина артериальной крови кислородом происходит даже во время самой тяжелой физической нагрузки. Поэтому дыхательная система не может быть фактором, ограничивающим способность здорового человека переносить физическую нагрузку. Однако для людей в плохой физической форме натренированность дыхательных мышц может стать проблемой. Фактором, ограничивающим способность переносить физическую нагрузку, является способность сердца накачивать кровь к мышцам, которая, в свою очередь, влияет на максимальную скорость переноса 02 Функциональное состояние сердечно-сосудистой системы является распространенной проблемой. Митохондрии в сокращающейся мышце - это конечные потребители кислорода и важнейший определяющий фактор выносливости.
Давление в ротовой полости. Измерение максимального инспираторного и экспираторного давления в ротовой полости - это самое распространенное исследование общей силы инспираторных и экспираторных мышц. Необходимые маневры трудно выполнять некоторым пациентам, поскольку они основываются на максимальной произвольной попытке. Имеются нормальные пределы, но они значительно различаются даже у здоровых субъектов. Минимальная величина нормального предела является следствием легкой слабости или субмаксимальной попытки у здорового субъекта. При нормальном давлении однозначно исключается слабость дыхательных мышц. Давление в полости носа. Инспираторное давление в носовой полости при быстром вдохе носом (шмыганье) основывается на маневре, более простом в исполнении, чем при максимальном инспираторном давлении, и представляет собой точное, простое и неинвазивное определение общей силы инспираторных мышц. Оно в особенности полезно, когда необходимо решить, имеются ли признаки низкого максимального инспираторного давления или же недооценивается сила инспираторных мышц при ХОБЛ, когда передача давления изнутри грудной клетки замедляется. Необходимое для этого исследования оборудование становится все более доступным. Давление во время кашля. Давление или максимальный поток во время кашля помогают определить силу экспираторных мышц. Специальные или инвазивные исследования силы дыхатыльеных мышц Неинвазивные исследования основываются на быстрой передаче давления из грудной клетки в ротовую полость, а также на хорошем понимании, взаимодействии и мотивации пациента определить общую силу инспираторных и экспираторных мышц. При введении катетеров для определения давления в пищевод и желудок можно произвести специальные измерения инспираторного, экспираторного и трансдиафрагмального давления во время быстрого вдоха носом и покашливания. Сочетая инвазивное измерение давления с электрической или магнитной стимуляцией диафрагмального нерва, осуществляют непроизвольное измерение силы диафрагмы. Эти исследования выявляют одностороннюю слабость диафрагмы или поражение диафрагмального нерва, но редко применяются вне специализированных лабораторий. Определение активности дыхательных мышц играет важную роль в понимании того, как легкие вентилируются. Ступенчатый подход к исследованию дыхательных мышц дает представление о прогрессировании различных патологических состояний и о необъяснимых дыхательных симптомах.

9. Влияние физической нагрузки на сердечно-сосудистую систему
Исследования физиологического спортивного сердца (аппарата кровообращения) путей его развития и методов оценки является важной задачей спортивной кардиологии. Правильное и рациональное использование физических упражнений вызывает существенные положительные сдвиги в морфологии и функции сердечно-сосудистой системы. Высокое функциональное состояние физиологического спортивного сердца - это результат долговременной адаптации к регулярным тренировкам. Чтобы понять природу адаптационных изменений, происходящих в физиологическом спортивном сердце, необходимо рассмотреть современные представления об основных закономерностях адаптации организма к физическим нагрузкам. Адаптация индивида - это процесс, позволяющий организму приобретать отсутствующую ранее устойчивость к определенному фактору внешней среды и таким образом получить возможность жить в условиях, считавшихся ранее неразрешимыми (Меерсон Ф.З., 1986). Стадийность процесса адаптации аппарата кровообращения к длительному непрерывному увеличению функции доказана в монографиях Ф.З. Меерсона и его сотрудников (1965-1993). Автор выделил 4 стадии адаптации сердца при его компенсаторной гиперфункции: стадии аварийной, переходной и устойчивой адаптации, четвертая стадия - изнашивания - сопровождается функциональной недостаточностью сердца. При мобилизации функции аппарата кровообращения, вызванной воздействием факторов внешней среды, и в частности воздействием физических нагрузок, столь четкой стадийности процесса адаптации выявить не удается. О стадиях адаптации аппарата кровообращения к физическим нагрузкам можно говорить весьма условно, различая в многолетнем длительном процессе становления спортивного мастерства начальный (точнее, предыдущий) этап срочной адаптации и последующий этап долговременной адаптации.
Срочный этап адаптации
к физическим нагрузкам возникает непосредственно после начала действия физической нагрузки на организм нетренированного человека и реализуется на основе готовых физиологических механизмов. Срочная адаптации включает в себя все механизмы регуляции аппарата кровообращения, которые призваны в условиях выполнения физической нагрузки поддерживать, гомеостаз. Однако выполнение нагрузки лицом неподготовленным не позволяет ему достичь быстроты двигательной реакции и выполнять нагрузку достаточно долго.Срочная адаптационная реакция, как правило, оказывается недостаточно совершенной, чтобы достичь желаемого результата.
Долговременный этап адаптации
наступает постепенно, благодаря достаточному и дробному воздействию адаптогенного фактора, т.е. путем перехода количества в качество. Именно благодаря дробному воздействию на организм физических нагрузок, используемых в современном тренировочном процессе, спортсмену удается добиться высоких спортивных результатов. С другой стороны, для спортсмена, хорошо адаптированного к определенным физическим нагрузкам, этот, уже достигнутый уровень адаптации является исходным для достижения еще более высокого результата
10. Прежде всего это касается вопроса о так называемых особенностях аппарата кровообращения спортсмена и, во-вторых, о триаде признаков, считавшихся характерными для высокого уровня функционального состояния сердечно-сосудистой системы спортсмена и даже оценивавших состояние его тренированности в целом. Речь идет о брадикардии, гипотензии и гипертрофии миокарда. Некоторые авторы называют эти 3 признака «синдромом спортивного сердца» [Кгеmer R., 1974].
Что касается особенностей физиологического «спортивного сердца», то, например, ЭКГ спортсмена, отражающую положительные физиологические сдвиги в сердце, характеризуют синусовая брадикардия, умеренно выраженная синусовая аритмия (при разнице в интервалах R-R от 0,10 до 0,15 с), вертикальная или полувертикальная электрическая позиция сердца, снижение амплитуды зубца Р, большая амплитуда зубцов R и Т, особенно в грудных отведениях, небольшой подъем сегментов ST выше изоэлектрического уровня. При повышении уровня функционального состояния отмечаются существенные положительные сдвиги, в основе которых лежит включение компенсаторно-приспособительных механизмов под влиянием повышения тонуса блуждающего нерва, что проявляется в его отрицательном инотропном и отрицательном хронотропном влиянии.
Физиологические особенности спортивного аппарата кровообращения, описанные Г. Ф. Лангом, нашли полное подтверждение в работах последних лет. Речь идет, например, о меньшем у спортсменов, чем у не занимающихся спортом, минутном объеме кровообращения, необходимом для обеспечения работающих мышц, что обусловлено лучшим использованием кислорода крови на периферии. Особое значение Г. Ф. Ланг придавал улучшению капиллярного кровообращения в сердечной мышце при занятиях физическими упражнениями. К особенностям физиологического «спортивного сердца» Г. Ф. Ланг справедливо относил также способность к увеличению минутного объема кровообращения при физической нагрузке не столько за счет учащения сердечных сокращений, сколько за счет увеличения ударного объема.
Придавая огромное значение особенностям сердечно-сосудистой системы спортсмена, Г. Ф. Ланг справедливо подчеркивал, что в цепи изменений организма в целом, отдельных его систем и органов это - только звено, правда очень важное.
Из краткого перечисления особенностей физиологического «спортивного сердца» становится очевидной невозможность дать их подробный анализ в этой книге.
Что же касается второго вопроса, а именно о трех основных признаках высокого уровня функционального состояния (брадикардия, гипотензия и гипертрофия миокарда), то в свете современных данных это представление требует пересмотра. Эти 3 признака считали, да и сейчас считают, основными признаками тренированности спортсмена.
Прежде всего представляется неправильным говорить о тренированности спортсмена на основании только медицинских данных, ибо тренированность - понятие педагогическое. Тем более не следует говорить о состоянии тренированности какой-либо отдельно взятой системы или органа (в частности, сердечно-сосудистой системы), что, к сожалению, нередко делается. Но основное заключается в том, что, с одной стороны, состояние высокой тренированности не всегда сопровождается всеми этими признаками, а с другой стороны - в ряде случаев эти признаки могут быть проявлением патологических изменений в организме.
Наиболее постоянным и обязательным признаком высокого функционального состояния сердца спортсмена является брадикардия. Действительно, при этом частота сердечных сокращений уменьшается, и резко выраженная брадикардия (ниже 40 уд/мин), которая всегда вызывает сомнения в отношении ее физиологического происхождения, встречается чаще у мастеров спорта и спортсменов I разряда, причем среди мужчин чаще, чем среди женщин. Однако все же, если частота сердечных сокращений у спортсмена меньше 30-40 уд/мин, он обязательно должен быть подвергнут тщательному врачебному обследованию, прежде всего для исключения полной блокады сердца или каких-либо других его поражений.

11. Изменения регуляции системного кровообращения под влиянием физических нагрузок динамического характера полностью укладываются в известные и обсуждавшиеся выше принципы экономизации функции систем в покое и при малых нагрузках и максимальной производительности при выполнении предельных нагрузок.

Г.Ф. Ланг (1936) отмечал отчетливое снижение артериального давления у спортсменов, которое, однако, не выходило за пределы нижних границ нормы. Позднее эти наблюдения были многократно подтверждены многими исследователями (Дембо А.Г., Левин М.Я., 1969; Граевская Н.Д., 1975; Карпман В.Л., Любина Б.Г., 1982).

Влияние систематических тренировок на уровень артериального давления в покое было подробно изучено А. Г. Дембо и М.Я. Левиным (1969). Они доказали, что снижение артериального давления у спортсменов, тренирующих выносливость, встречается тем чаще, чем выше уровень спортивного мастерства, стаж спортивных тренировок, их объем и интенсивность. Последнее обстоятельство подтверждается ростом ги-потензии от подготовительного к соревновательному периоду.

Таким образом, можно утверждать, что регулярные тренировки динамического характера сопровождаются артериальной гипотензией, в основе развития которой лежат адаптивные изменения артериальной сосудистой системы.

Действительно, трудно себе представить увеличение производительности спортивного сердца без увеличения гидравлической проводимости сосудов большого круга кровообращения (Blomgvist С, Saltin В., 1983).

Другим проявлением экономизации функции аппарата кровообращения у спортсменов являются адаптивные изменения скорости кровотока, которая существенно снижается у спортсменов по мере роста тренированности. Это, в свою очередь, создает благоприятные условия для максимального извлечения кислорода из крови в ткани (Яковлев Н.Н., 1974).

Кроме того, в процессе адаптации к физическим нагрузкам динамического характера увеличивается растяжимость артерий, снижается их упругое сопротивление и в конечном счете увеличивается емкость артериального русла. Таким образом, снижение констрикторного тонуса сосудов облегчает движение крови и способствует снижению энергетических затрат сердца.

Снижение тонуса стенок артерий, возникающее под воздействием регулярных тренировок, прежде всего на выносливость, проявляется уменьшением скорости распространения пульсовой волны (СРПВ). Интенсивность кровотока через конечности у этих спортсменов также снижена. Показано, что при стандартной физической нагрузке приток крови к работающим мышцам спортсменов меньше, чем у нетренированных лиц (Озолинь П.П., 1984).

Все эти данные подтверждают представление об экономизации функции сосудистой системы в состоянии покоя. Механизмы описанных выше изменений сосудистого тонуса при систематических тренировках в настоящее время не вполне ясны. Трудно допустить, что первоосновой снижения тонуса сосудов в состоянии покоя у спортсменов является снижение метаболической активности мышечной ткани. Этому противоречит выявляемое у спортсменов существенное повышение артериовенознои разницы по кислороду по сравнению с нетренированными лицами (Васильева В.Д., 1971; Ekblom В. et al., 1968).

Эти данные скорее указывают, что при систематических тренировках увеличивается способность мышц использовать кислород. По современным представлениям, в совершенствовании регуляции сосудов резистивного типа участвуют три вида механизмов: гуморальный, местный и рефлекторный (Озолинь П.П., 1984).

Хотя гуморальные механизмы повышения сосудистого тонуса, несомненно, принимают участие в реакции артерий на нагрузку, их роль в регуляции сосудистого тонуса не является ведущей. В ряде исследований выявлено, что регулярные тренировки динамического характера существенно снижают уровень катехоламинов крови в ответ на тестирующую нагрузку. Это дает основание полагать, что реакцию сосудов определяет не уровень катехоламинов крови, а высокая чувствительность нервных приборов сосудистой стенки.

Местные сосудистые реакции также активно участвуют в регуляции кровотока, но центральное место в регуляции сосудистого тонуса в состоянии покоя принадлежит нервно-рефлекторным механизмам регуляции.

Результаты исследований В. Saltin и соавт. (1977) свидетельствуют, что мобилизация функции сердечно-сосудистой системы при физических нагрузках осуществляется рефлекторно при помощи сигналов, исходящих из рецепторов работающих мышц. Эти рефлекторные реакции претерпевают существенные изменения под воздействием систематических физических нагрузок. Авторы высказывают вполне обоснованное предположение, что сердечно-сосудистые рефлексы, совершенствующиеся при регулярных тренировках, формируются благодаря возбуждению хеморецепторов скелетных мышц.

В заключение следует подчеркнуть, что ведущую роль в изменении сосудистых реакций под влиянием систематических физических нагрузок играют рефлекторные механизмы, поскольку только они способны обеспечить тонкое взаимодействие различных систем жизнеобеспечения и точную регуляцию регионарного кровотока в различных областях.

При физических нагрузках статического характера, описанных выше, адаптационных изменений сосудистого тонуса не происходит. Напротив, при тренировках, направленных на развитие силы, интенсивность кровотока в состоянии покоя повышается (Озолинь П.П., 1984). У штангистов, как известно, отмечается наклонность к повышению артериального давления (Вольнов Н.И., 1958; Дембо А.Г., Левин М.Я., 1969; Матиашвили К.И., 1971).

Г.Ф. Ланг считал улучшение капиллярного кровотока в мышцах главным фактором, обеспечивающим лучшее использование кислорода. Что касается сердечной мышцы, то увеличение капиллярного кровотока, по мнению Г.Ф. Ланга, является непременным условием успешной адаптации к физическим нагрузкам. Сегодня факт увеличения пропускной способности коронарного русла и его емкости в результате адаптации к физическим нагрузкам полностью подтвержден и не вызывает сомнений (Пшенникова М.Г. 1986).

В путях адаптации аппарата кровообращения к повторяющимся нагрузкам того или иного характера имеются существенные различия. Если иметь в виду выполнение упражнений динамического или статического характера с вовлечением в работу больших групп мышц, то различия гемодинамического ответа обнаруживаются при однократных нагрузках, т.е. на стадии срочных адаптационных реакций.

Величина ударного объема (УО) возрастает линейно лишь до 1/3 от МПК, далее прирост величины УО незначителен. Однако МОК растет линейно до достижения уровня МПК в основном за счет роста ЧСС.

Определение предельно допустимой ЧСС, в зависимости от возраста, можно рассчитать по формуле R.Marshall &J.Shepherd (1968):ЧССмакс = 220 - Т (уд/мин).

Скорость нарастания величины УО существенно выше скорости роста ЧСС. В результате УО приближается к своему максимальному значению при VO 2 , равному примерно 40% от МПК и ЧСС около ПО уд/мин. Рост УО во время выполнения физической нагрузки обеспечивается благодаря взаимодействию ряда вышеописанных регуляторных механизмов. Так, при увеличении нагрузки под влиянием возрастающего венозного возврата, наполнение желудочков сердца увеличивается, что в сочетании с ростом растяжимости миокарда приводит к увеличению конечно-диастолического объема. Это, в свою очередь, означает возможность увеличения УО крови за счет мобилизации базального резервного объема желудочков. Увеличение сократительной способности сердечной мышцы сопряжено также с ростом ЧСС. Другим механизмом мобилизации базального резервного объема является нейрогуморальный механизм, регулирующийся через воздействие на миокард катехоламинов.

Реализация перечисленных механизмов срочной адаптации происходит через систему внутриклеточной регуляции процессов, протекающих в миокарди-оцитах, к которым относятся их возбуждение, сопряжение возбуждения и сокращения, расслабление миокардиальных клеток, а также их энергетическое и структурное обеспечение. Само собой разумеется, что в процессе срочных адаптационных реакций на физические нагрузки происходит интенсификация всех перечисленных выше процессов жизнедеятельности миокардиальных клеток, во многом определяется характером нагрузки.

Учитывая особенности гемодинамического ответа на динамическую нагрузку, полагают, что среди кардиальных механизмов увеличение УО ведущую роль играет увеличение скорости расслабления миокарда и связанное с ней совершенствование транспорта Са 2+ . При выполнении физических нагрузок динамического характера в ответ на изменение сердечного выброса и сосудистого тонуса отмечается подъем артериального давления. Прямое измерение артериального давления с помощью катетеров, введенных в плечевую и бедренную артерии молодых здоровых людей, занимающихся различными видами спорта, показало, что при нагрузках в 150-200 Вт систолическое давление повышалось до 170-200 мм.рт.ст., в то время как диастолическое и среднее давление изменялись весьма незначительно (5-10 мм.рт.ст.). При этом закономерно падает периферическое сопротивление, снижение его является одним из самых важных экстракардиальных механизмов срочной адаптации к динамическим нагрузкам.

Другим таким механизмом является увеличение использования кислорода из единицы объема крови. Доказательством включения этого механизма является изменение артериовенозной разницы по кислороду при нагрузке. Так, по расчетам В.В. Васильевой и Н.А. Степочкиной (1986), в состоянии покоя венозная кровь уносит за 1 мин примерно 720 мл неиспользованного кислорода, в то время как на высоте максимальной физической нагрузки в оттекающей от мышц венозной крови кислорода практически не содержится (Bevegard В., Shephard J., 1967).

При динамических нагрузках наряду с повышением сердечного выброса увеличивается сосудистый тонус. Последний характеризуется скоростью распространения пульсовой волны, которая, по данным многих исследователей, при физических нагрузках существенно повышается в сосудах эластического и мышечного типа (Смирнов К.М., 1969; Васильева В.В., 1971; Озолинь П.П., 1984).

Наряду с этими общими сосудистыми реакциями в ответ на такую нагрузку может существенно изменяться региональный кровоток, как показала В.В. Васильева (1971), происходит перераспределение крови между работающими и неработающими органами.

Небольшое увеличение МОК, наблюдающееся при статических нагрузках, достигается не увеличением УО, а ростом ЧСС. В отличие от реакции аппарата кровообращения на динамическую нагрузку, при которой отмечается увеличение АДс при сохранении исходного уровня, при статической АДс повышается незначительно, а АДд существенно. При этом периферическое сопротивление сосудов не снижается, как это имеет место при динамических нагрузках, а остается практически неизмененным. Таким образом, наиболее существенным отличием в реакции аппарата кровообращения на статические нагрузки является выраженный подъем АДд, т.е. увеличение постнагрузки. Это, как известно, существенно повышает напряжение миокарда и, в свою очередь, определяет включение тех механизмов долговременной адаптации, которые обеспечивают адекватное кровоснабжение тканей в этих условиях.

12. Сопоставление работоспособности (выполненной в тесте нагрузки) и приспособляемости (реакции), т.е. цены данной работы, достаточно полно характеризует функциональную подготовленность и состояние обследуемого. Даже высокая работоспособность при чрезмерном напряжении гемодинамики, выраженном метаболическом ацидозе, невысоком МПК и кислородном пульсе менее 20 мл на удар либо высоких показателях МПК при небольшом кислородном пульсе, инверсии зубцов Т либо появлении высоких (более 6-8 мм) остроконечных зубцов, снижении сегмента более чем на 1,5 мм (особенно восходящей или корытообразной формы), снижении или резком возрастании вольтажа зубцов R, появлении различных видов нарушения ритма, особенно политопных и групповых экстрасистол, дискоординации функций свидетельствует о функциональном неблагополучии.

Неблагоприятными признаками надо также считать снижение содержания гемоглобина и эритроцитов при уменьшении средней гемоглобинизации эритроцитов, гиперлейкоцитоз с выраженным сдвигом лейкоцитарной формулы влево, падение концентрации лимфоцитов и эозинофилов, а также идентичные изменения при нарастающей лейкопении, продолжительное после нагрузки изолированное повышение гематокрита или снижение количества гемоглобина на фоне повышения числа ретикулоцитов, выраженное снижение содержания белка в крови (Макарова Г.А., 1990), резкие изменения минерального обмена, в частности падение содержания ионов калия, натрия, фосфатидов (Виру А.А. и др., 1963; Лайцберг Л.А., Калугина Г.Е., 1969; Воробьев А.В., Воробьева Э.И., 1980; Финогенов B.C., 1987, и др.), некомпенсированный метаболический ацидоз (рН в пределах 7-7,1), появление в моче белка (более 0,066 г/л) и форменных элементов, выраженное снижение ее плотности, ухудшение функции ЦНС и нервно-мышечного аппарата. Особенно неблагоприятны чрезмерное напряжение (в том числе дискоординация) функций и замедленное восстановление их при невысоких показателях работоспособности. Высокая работоспособность даже при значительной (но адекватной) реакции гемодинамики, обмена и симпатоадреналового звена регуляции при нормальном течении процессов восстановления указывает на высокие функциональные возможности и способность организма к их мобилизации при предъявлении максимальных требований. Например, у высокотренированного бегуна на длинные дистанции при предельной мощности работы 2650 кгм/мин (310 кгм/кг) и МПК 78 л/кг ЧСС достигала 210 уд/мин, систолическое артериальное давление - 220 мм.рт.ст. при нулевом диастолическом, систолический объем увеличивался до 180 м, минутный - до 36 л/мин, наблюдались выраженные сдвиги на ПКГ и ЭКГ, но без нарушения ритма и деформации конечной части кривой, кислородный долг составлял 15 л, но уже к 2-й минуте после нагрузки в основном погашался, значительная часть лактата утилизировалась, гемодинамические сдвиги восстановились в пределах 25 мин. Существенной можно считать экономизацию кислородного пульса на субкритичном уровне.Эффективность и устойчивость системы внешнего дыхания при максимальных нагрузках проявляются высокой аэробной мощностью: МПК 5-6 л/мин (70-80 мл/кг), минутный объем дыхания - 70-80 л, кислородный пульс - 25-30 мл на удар, высокий и устойчивый коэффициент использования кислорода и выделения СО2.

13. Функциональная проба - это нагрузка, задаваемая обследуемому для определения функционального состояния и возможностей какого-либо органа, системы или организма в целом. Используется преимущественно при спортивно-медицинских исследованиях. Нередко термин «функциональная проба с физической нагрузкой» заменяется термином «тестирование». Однако, хотя «проба» и «тест» - это, по существу, синонимы (от англ. teste - проба), все же «тест» - термин в большей степени педагогический и психологический, ибо подразумевает определение работоспособности, уровня развития физических качеств, особенностей личности. Физическая работоспособность тесно связана с путями ее обеспечения, т.е. с реакцией организма на данную работу, но для педагога в процессе тестирования ее определение не обязательно. Для врача же реакция организма на данную работу - показатель функционального состояния. Даже высокие показатели работоспособности при чрезмерном напряжении (а тем более срыве) адаптации не позволяют высоко оценить функциональное состояние обследуемого.

структуре движения мощности работы обследуемого - специфические неспецифические используемой аппаратуре («простые и сложные»), по («рабочие») («послерабочие») и т.п.

14. Для того чтобы функциональные пробы с физическими нагрузками обеспечивали достаточную информативность при динамических исследованиях, они должны соответствовать следующим требованиям:

Заданная нагрузка должна быть знакома обследуемому и не требовать дополнительного освоения навыка;

Вызывать общее, а не локальное утомление;

Исключать возможность риска, болезненных ощущений, негативного отношения.

Должна быть обеспечена одинаковая модель нагрузок, одинаковые внешние условия, режим дня, время суток, время приема пищи, исключение применения больших нагрузок в день и накануне обследования, исключение каких-либо заболеваний и жалоб, общего переутомления, приема каких-либо лекарственных и восстановительных средств.

При трактовке полученных данных следует учитывать:

Сопоставление работоспособности и адаптации;

Соответствие реакции выполненной работы;

Индивидуальную оценку полученных данных.

Диагностика тренированности (функциональный ее компонент) в годовом и многолетнем циклах подготовки обусловлена календарем соревнований, здоровьем и уровнем спортивного мастерства. При правильной системе подготовки уровень тренированности постепенно повышается, достигая наивысшего к периоду основных соревнований, затем постепенно снижается. Может быть (в зависимости от значимости соревнований и сроков их проведения) несколько периодов спортивной формы в течение сезона.

15. Классификация функциональных проб
В практике спортивной медицины используются различные функциональные пробы - с переменой положения тела в пространстве, задержкой дыхания на вдохе и выдохе, натуживанием, изменением барометрических условий, пищевыми и фармакологическими нагрузками и др. Но в данном разделе мы коснемся лишь основных проб с физическими нагрузками, обязательных при обследовании занимающихся физическими упражнениями. Эти пробы часто называют пробами сердечно-сосудистой системы, поскольку главным образом используются методы исследования кровообращения и дыхания (частота сердечных сокращений, артериальное давление и пр.), но это не совсем правильно, эти пробы следует рассматривать шире, поскольку они отражают функциональное состояние всего организма.

Классифицировать их можно по разным признакам: по структуре движения (приседания, бег, педалирование и пр.), по мощности работы (умеренная, субмаксимальная, максимальная), по кратности, темпу, сочетанию нагрузок (одно- и двухмоментные, комбинированные, с равномерной и переменной нагрузкой, нагрузкой нарастающей мощности), по соответствию нагрузки направленности двигательной деятельности обследуемого - специфические (например, бег для бегуна, педалирование для велосипедиста, бой с тенью для боксера и т. п.) и неспецифические (с одинаковой нагрузкой при всех видах двигательной деятельности), по используемой аппаратуре («простые и сложные»), по возможности определять функциональные сдвиги во время нагрузки («рабочие») или только в восстановительном периоде («послерабочие») и т.п.

Идеальная проба характеризуется: 1) соответствием заданной работы привычному характеру двигательной деятельности обследуемого и тем, что не требуется освоения специальных навыков; 2) достаточной нагрузкой, вызывающей преимущественно общее, а не локальное утомление, возможностью количественного учета выполненной работы, регистрации «рабочих» и «послерабочих» сдвигов; 3) возможностью применения в динамике без большой затраты времени и большого количества персонала; 4) отсутствием негативного отношения и отрицательных эмоций обследуемого; 5) отсутствием риска и болезненных ощущений.

Для сравнения результатов исследования в динамике важны: 1) стабильность и воспроизводимость (близкие показатели при повторных измерениях, если функциональное состояние обследуемого и условия обследования остаются без существенных изменений); 2) объективность (одинаковые или близкие показатели, полученные разными исследователями); 3) информативность (корреляция с истинной работоспособностью и оценкой функционального состояния в естественных условиях).

Преимущество имеют пробы с достаточной нагрузкой и количественной характеристикой выполненной работы, возможностью фиксации «рабочих» и «послерабочих» сдвигов, позволяющие охарактеризовать аэробную (отражающую транспорт кислорода) и анаэробную (способность работать в бескислородном режиме, т.е. устойчивость к гипоксии) производительность.

Противопоказанием к тестированию является любое острое, подострое заболевание либо обострение хронического, повышение температуры тела, тяжелое общее состояние.

С целью увеличения точности исследования, уменьшения доли субъективизма в оценках, возможности использования проб при массовых обследованиях важно применять современную вычислительную технику с автоматическим анализом результатов.

Для того чтобы результаты были сравнимы при динамическом наблюдении (для слежения за изменениями функционального состояния в процессе тренировки или реабилитации), необходимы одинаковые характер и модель нагрузки, одинаковые (или весьма близкие) условия внешней среды, времени суток, режима дня (сон, питание, физические нагрузки, степень общего утомления и т.п.), предварительный (до исследования) отдых не менее 30 мин, исключение дополнительных воздействий на обследуемого (интеркуррентные заболевания, прием медикаментов, нарушения режима, перевозбуждение и др.). Перечисленные условия полностью относятся и к обследованию в условиях относительного мышечного покоя.

16.Оценить реакцию испытуемого на нагрузку можно по показателям, отражающим состояние различных физиологических систем. Обязательным является определение вегетативных показателей, поскольку изменение функционального состояния организма больше отражается на менее устойчивом звене моторного акта - вегетативном его обеспечении. Как показали наши специальные исследования, вегетативные показатели при физических нагрузках менее дифференцированы в зависимости от направленности двигательной деятельности и уровня мастерства и больше обусловлены функциональным состоянием к моменту обследования. В первую очередь это относится к сердечнососудистой системе, деятельность которой теснейшим образом связана со всеми функциональными звеньями организма, во многом определяя его жизнедеятельность и механизмы адаптации, и поэтому в значительной степени отражает функциональное состояние организма в целом. Видимо, в связи с этим методы исследования кровообращения в клинике и спортивной медицине разработаны наиболее подробно и широко используются при любом обследовании занимающихся. При пробах с субмаксимальными и максимальными нагрузками на основании данных о газообмене и биохимических показателях оцениваются также обмен, аэробная и анаэробная работоспособность.

При выборе метода исследования определенное значение имеет направленность двигательной деятельности занимающегося и его преимущественное влияние на то или иное функциональное звено организма. Например, при тренировке, характеризующейся преимущественным проявлением выносливости, кроме исследования сердечно-сосудистой системы, обязательно определение показателей, отражающих функцию дыхания, кислородный обмен и состояние внутренней среды организма, при сложнотехнических и координационных видах спорта - состояние центральной нервной системы и анализаторов, при скоростно-силовых видах, а также в процессе реабилитации после травм и заболеваний опорно-двигательного аппарата, после заболеваний сердца - показателей кровоснабжения и сократительной способности миокарда и т.д.

Определение до и после нагрузки частоты и ритма сердечных сокращений, артериального давления, снятие ЭКГ обязательны во всех случаях . Получившую в последнее время широкое распространение (особенно при физиологических и спортивно-педагогических исслдованиях) оценку реакции на нагрузку только по пульсовой ее стоимости (например, в классическом варианте степ-теста и пробы PWC-170) нельзя признать достаточной, поскольку одна и та же ЧСС может отражать разное функциональное состояние обследуемого, например хорошее при сопряженных и неблагоприятное при разнонаправленных изменениях ЧСС и артериального давления. Одновременно с подсчетом пульса измерение артериального давления позволяет судить о взаимосвязи разных компонентов реакции, т.е. о регуляции кровообращения, а электрокардиография - о состоянии миокарда, в наибольшей степени страдающего при чрезмерной нагрузке.

Улучшение функционального состояния проявляется экономизацией реакции при стандартных нагрузках умереной интенсивности: кислородный запрос удовлетворяется при меньшем напряжении обеспечивающих систем, главным образом кровообращения и дыхания. При предельных, выполняемых до отказа нагрузках более тренированный организм способен к большей мобилизации функций, что и обусловливает способность выполнить эту нагрузку, т.е. более высокую работоспособность. При этом сдвиги в дыхании, кровообращении, внутренней среде организма могут быть весьма значительными. Однако способность к максимальной мобилизации функций тренированного организма, установленная еще B.C. Фарфелем в 1949 г., благодаря совершенной регуляции используется рационально - лишь тогда, когда предъявленные требования действительно являются максимальными. Во всех остальных случаях действует основной защитный механизм саморегуляции - тенденция к меньшему отклонению от физиологического равновесия при более целесообразной взаимосвязи сдвигов. С улучшением функционального состояния развивается способность к правильному функционированию в широком диапазоне временного изменения гомеостаза: между экономизацией и максимальной мобилизационной готовностью существует диалектическое единство.

Таким образом, при оценке реакции на физическую нагрузку решающим фактором должна быть не величина сдвигов (конечно, при условии, что они находятся в пределах допустимых физиологических колебаний), а их соотношение и соответствие выполненной работе . Совершенствование условно-рефлекторных связей, установление согласованной работы органов и систем, усиление взаимосвязей между разными звеньями функциональной системы (главным образом двигательных и вегетативных функций) при физических нагрузках - важный критерий оценки реакций.

Функциональный резерв организма тем выше, чем меньше при нагрузке степень напряжения регуляторных механизмов, чем выше экономичность и стабильность функционирования эффекторных органов и физиологических систем организма при определенных (заданных) действиях и чем выше уровень функционирования при экстремальных воздействиях.

П.Е. Гуминер и Р.Е. Мотылянекая (1979) различают три варианта регулирования: 1) относительную стабильность функций в большом диапазоне мощности, что отражает хорошее функциональное состояние, высокий уровень функциональных возможностей организма; 2) снижение показателей при повышении мощности работы, что указывает на ухудшение качества регулирования; 3) повышение сдвигов при увеличении мощности, что свидетельствует о мобилизации резервов в затрудненных условиях.

Важнейший и почти абсолютный показатель при оценке адаптации к нагрузке и тренированности - быстрота восстановления . Даже очень большие сдвиги при быстром восстановлении не могут оцениваться отрицательно.

Применяемые при врачебном обследовании функциональные пробы можно условно разделить на простые и сложные. К простым относятся пробы, выполнение которых не требует специальных приспособлений и большой затраты времени, поэтому применение их доступно в любых условиях (приседания, прыжки, бег на месте). Сложные пробы выполняются с помощью специальных приспособлений и аппаратов (велоэргометр, третбан, гребной станок и пр.).

Читайте также: