Тема: Движение света в глазе. Главное - сколько мегапикселей? Юстировка – близорукость и дальнозоркость

Отдельные части глаза (роговица, хрусталик, стекловидное тело) обладают способностью преломлять проходящие через них лучи. С точки зрения физики глаз представляет собой оптическую систему, способную собирать и преломлять лучи.

Преломляющую силу отдельных частей (линз в прибо ре) и всей оптической системы глаза измеряют в диоптриях.

Под одной диоптрией понимают преломляющую силу линзы, фокусное расстояние которой составляет 1 м. Если преломляющая сила увеличивается, фокусное расстояние уко рачивается. Отсюда следует, что линза, у которой фокусное расстояние равно 50 см, будет обладать преломляющей силой, равной 2 диоптриям (2 D).

Оптическая система глаза является весьма сложной. Достаточно указать, что только преломляющих сред имеется несколько, причем каждая среда имеет свою преломляющую силу и особенности строения. Все это крайне усложняет изучение оптической системы глаза.

Рис. Построение изображения в глазу (объяснение в тексте)

Глаз часто сравнивают с фотоаппаратом. Роль камеры играет полость глаза, затемненная сосудистой оболочкой; светочувствительным элементом является сетчатка. В камере имеется отверстие, в которое вставлена линза. Лучи света, попадая в отверстие, проходят через линзу, преломляются и падают на противоположную стенку.

Оптическая система глаза представляет собой преломляющую собирательную систему. Она преломляет проходящие через нее лучи и опять собирает их в одну точку. Таким образом возникает действительное изображение реального предмета. Однако изображение предмета на сетчатке получается обратное и уменьшенное.

Чтобы понять это явление, обратимся к схематическому глазу. Рис. дает представление о ходе лучей в глазу и получении обратного изображения предмета на сетчатке. Луч, отходящий от верхней точки предмета, обозначенной буквой а, проходя через линзу, преломляется, меняет направление и занимает на сетчатке положение нижней точки, обозначенной на рисунке а 1 Луч от нижней точки предмета в, преломляясь, падает на сетчатку как верхняя точка в 1 . Соответствующим же образом падают лучи от всех точек. Следовательно, на сетчатке получается действительное изображение предмета, но оно обратное и уменьшенное.

Так, расчеты показывают, что размер букв данной книги, если при чтении она находится на расстоянии 20 см от глаза, на сетчатке будет равен 0,2 мм. обстоятельство, что мы видим предметы не в их перевернутом изображении (вверх ногами), а в их естественном виде, вероятно, объясняется накопленным жизненным опытом.

Ребенок в первые месяцы после рождения путает верхнюю и нижнюю сторону предмета. Если такому ребенку показать горящую свечку, ребенок, стараясь схватить пламя, протянет руку не к верхнему, а к нижнему концу свечи. Контролируя в течение дальнейшей жизни показания глаза руками и другими органами чувств, человек начинает видеть предметы так, как они есть, несмотря на их обратное изображение на сетчатке.

Аккомодация глаза. Человек не может одновременно одинаково четко видеть предметы, находящиеся на разных расстояниях от глаза.

Для того чтобы хорошо видеть предмет, надо, чтобы лучи, отходящие от этого предмета, собирались на сетчатке. Только в том случае, когда лучи падают на сетчатку, мы видим ясное изображение предмета.

Приспособление глаза к получению отчетливых изображений предметов, находящихся на разных расстояниях, называется аккомодацией.

Для того чтобы в каждом случае получить четкое изобра жение, необходимо изменять расстояние между светопреломляющей линзой и задней стенкой камеры. Так устроен фотоаппарат. Чтобы получить четкое изображение на задней стенке камеры, отодвигают или приближают объектив. По такому принципу происходит аккомодация у рыб. У них хрусталик при помощи специального приспособления отодвигается или приближается к задней стенке глаза.

Рис. 2 ИЗМЕНЕНИЕ КРИВИЗНЫ ХРУСТАЛИКА ПРИ АККОМОДАЦИИ 1 - хрусталик; 2 - сумка хрусталика; 3 - ресничные отростки. Верхний рисунок - увеличение кривизны хрусталика. Ресничная связка расслаблена. Нижний рисунок - кривизна хрусталика уменьшена, ресничные связки натянуты.

Однако четкое изображение можно получить и в том случае, если изменяется преломляющая сила линзы, а это возможно при изменении ее кривизны.

По этому принципу происходит аккомодация у человека. При видении предметов, находящихся на разных расстояниях, кривизна хрусталика изменяется и благодаря этому точка, где сходятся лучи, приближается или удаляется, попадая каждый раз на сетчатку. Когда человек рассматривает близкие предметы, хрусталик делается более выпуклым, а при рассмотрении дальних предметов - более плоским.

Как же происходит изменение кривизны хрусталика? Хрусталик находится в специальной прозрачной сумке. От степени натяжения сумки зависит кривизна хрусталика. Хрусталик обладает эластичностью, поэтому, когда сумка натягивается, он становится плоским. При расслаблении же сумки хрусталик в силу своей -эластичности приобретает более выпуклую форму (рис.2). Изменение натяжения сумки происходит при помощи специальной круговой аккомодационной мышцы, к которой прикреплены связки капсулы.

При сокращении аккомодационных мышц связки сумки хрусталика ослабевают и хрусталик приобретает более выпуклую форму.

От степени сокращения этой мышцы зависит и степень изменения кривизны хрусталика.

Если находящийся на далеком расстоянии предмет постепенно приближать к глазу, то на расстоянии 65 м начинается аккомодация. По мере дальнейшего приближения предмета к глазу аккомодационные усилия возрастают и на расстоянии 10 см оказываются исчерпанными. Таким образом, точка ближнего видения будет находиться на расстоянии 10 см. С возрастом эластичность хрусталика постепенно уменьшается, а следовательно, меняется и способность к аккомодации. Ближайшая точка ясного видения у 10-летнего находится на расстоянии 7 см, у 20-летнего - на расстоянии 10 см, у 25-летнего - 12,5 см, у 35-летнего - 17 см, у 45-летнего - 33 см, у 60-летнего - 1 м, у 70-летнего - 5 м, у 75-летнего способность к аккомодации почти теряется и ближайшая точка ясного видения отодвигается в бесконечность.

В повседневной жизни мы с вами часто используем устройство, которое по своему строению очень похоже на глаз и работает по такому же принципу. Это фотоаппарат. Как и во многом другом, изобретя фотографию, человек просто сымитировал то, что уже существует в природе! Сейчас вы убедитесь в этом.

Глаз человека по форме - неправильный шар диаметром примерно 2,5 см. Этот шар называют глазным яблоком. В глаз поступает свет, который отражается от окружающих нас предметов. Аппарат, который воспринимает этот свет, находится на задней стенке глазного яблока (изнутри) и называется СЕТЧАТКОЙ . Он состоит из нескольких слоев светочувствительных клеток, которые обрабатывают поступающую к ним информацию и отправляют ее в мозг по зрительному нерву.


Но для того, чтобы лучи света, поступающие в глаз со всех сторон, сфокусировались на такой небольшой площади, которую занимает сетчатка, они должны претерпеть преломление и сфокусироваться именно на сетчатке. Для этого в глазном яблоке есть естественная двояковыпуклая линза - ХРУСТАЛИК . Он находится в передней части глазного яблока.

Хрусталик способен менять свою кривизну. Разумеется, он делает это не сам, а с помощью специальной цилиарной мышцы. Чтобы настроиться на видение близко расположенных объектов, хрусталик увеличивает кривизну, становится более выпуклым и сильнее преломляет свет. Для видения удалённых предметов хрусталик становится более плоским.

Свойство хрусталика менять свою преломляющую силу, а вместе с этим и фокусную точку всего глаза, называется АККОМОДАЦИЕЙ .



Принцип аккомодации

В преломлении света участвует также вещество, которым заполнена большая часть (2/3 объема) глазного яблока - стекловидное тело. Оно состоит из прозрачного желеобразного вещества, которое не только участвует в преломлении света, но также обеспечивает форму глаза и его несжимаемость.

Свет поступает на хрусталик не по всей передней поверхности глаза, а через маленькое отверстие - зрачок (мы видим его как черный кружок в центре глаза). Размер зрачка, а значит, количество поступающего света, регулируется специальными мышцами. Эти мышцы находятся в радужной оболочке, окружающей зрачок (РАДУЖКЕ ). Радужка, помимо мышц, содержит пигментные клетки, которые определяют цвет наших глаз.



Понаблюдайте за своими глазами в зеркало, и вы увидите, что если на глаз направить яркий свет, то зрачок сужается, а в темноте он, наоборот, становится большим - расширяется. Так глазной аппарат защищает сетчатку от губительного действия яркого света.

Снаружи глазное яблоко покрыто прочной белковой оболочкой толщиной 0,3-1 мм - СКЛЕРОЙ . Она состоит из волокон, образованных белком коллагеном, и выполняет защитную и опорную функцию. Склера имеет белый цвет с молочным отливом, за исключением передней стенки, которая прозрачна. Ее называют РОГОВИЦЕЙ . В роговице происходит первичное преломление лучей света

Под белковой оболочкой находится СОСУДИСТАЯ ОБОЛОЧКА , которая богата кровеносными капиллярами и обеспечивает клетки глаза питанием. Именно в ней находится радужка со зрачком. По периферии радужка переходит в ЦИЛИАРНОЕ , или РЕСНИЧНОЕ, ТЕЛО . В его толще расположена цилиарная мышца, которая, как вы помните, изменяет кривизну хрусталика и служит для аккомодации.

Между роговицей и радужкой, а также между радужкой и хрусталиком находятся пространства – камеры глаза, заполненные прозрачной, светопреломляющей жидкостью, которая питает роговицу и хрусталик.

Защиту глаза обеспечивают также веки - верхнее и нижнее - и ресницы. В толще век находятся слезные железы. Жидкость, которую они выделяют, постоянно увлажняет слизистую оболочку глаза.

Под веками находится 3 пары мышц, которые обеспечивают подвижность глазного яблока. Одна пара поворачивает глаз влево и вправо, другая - вверх и вниз, а третья вращает его относительно оптической оси.

Мышцы обеспечивают не только повороты глазного яблока, но и изменение его формы. Дело в том, что глаз в целом тоже принимает участие в фокусировке изображения. Если фокус находится за пределами сетчатки, глаз немного вытягивается, чтобы видеть вблизи. И наоборот, округляется, когда человек рассматривает далёкие предметы.

Если в оптической системе есть изменения, то в таких глазах появляются близорукость или дальнозоркость. У людей, страдающих этими заболеваниями, фокус попадает не на сетчатку, а перед ней или за ней, и поэтому они видят все предметы размытыми.


При близорукости в глазу происходит растяжение плотной оболочки глазного яблока (склеры) в передне-заднем направлении. Глаз вместо шаровидной приобретает форму эллипсоида. Из-за такого удлинения продольной оси глаза изображения предметов фокусируются не на самой сетчатке, а перед ней, и человек стремится все приблизить к глазам или пользуется очками с рассеивающими ("минусовыми") линзами для уменьшения преломляющей силы хрусталика.

Дальнозоркость развивается, если глазное яблоко укорочено в продольном направлении. Световые лучи при этом состоянии собираются за сетчаткой. Для того чтобы такой глаз хорошо видел, перед ним нужно поместить собирающие - "плюсовые" очки.



Коррекция близорукости (А) и дальнозоркости (Б)

Суммируем всё, что было сказано выше. Свет входит в глаз через роговицу, проходит последовательно сквозь жидкость передней камеры, хрусталик и стекловидное тело, и в конечном итоге попадает на сетчатку, состоящую из светочувствительных клеток

А теперь вернемся к устройству фотоаппарата. Роль светопреломляющей системы (хрусталика) в фотоаппарате играет система линз. Диафрагма, регулирующая размер светового пучка, который поступает в объектив, играет роль зрачка. А "сетчатка" фотоаппарата - это фотопленка (в аналоговых фотоаппаратах) или светочувствительная матрица (в цифровых фотоаппаратах). Однако важное отличие сетчатки от светочувствительной матрицы фотоаппарата состоит в том, что в ее клетках происходит не только восприятие света, но и начальный анализ зрительной информации и выделение наиболее важных элементов зрительных образов, например направления и скорости движения объекта, его размеров.

Кстати...

На сетчатке глаза и светочувствительной матрице фотоаппарата формируется уменьшенное перевернутое изображение внешнего мира - результат действия законов оптики. Но вы видим мир не перевернутым, потому что в зрительном центре мозга происходит анализ полученной информации с учетом этой "поправки".

А вот новорожденные видят мир перевёрнутым примерно до трех недель. К трём неделям мозг обучается переворачивать увиденное.

Известен такой интересный эксперимент, автор которого - Джордж М. Стрэттон из Калифорийского университета. Если человеку надеть очки, которые переворачивают зрительный мир вверх ногами, то в первые дни у него происходит совершенная дезориентация в пространстве. Но уже через неделю человек привыкает к "перевернутому" миру вокруг него, и даже все меньше осознает, что окружающий мир перевернут; у него формируются новые зрительно-двигательные координации. Если после этого снять очки-перевертыши, то у человека снова происходит нарушение ориентации в пространстве, которое вскоре проходит. Этот эксперимент демонстрирует гибкость работы зрительного аппарата и мозга в целом.

Обучающий видеофильм:
Как мы видим

Этот урок нашего курса расскажет о том, как получается фотография. Объяснит природу появления снимка. Вы узнаете о выдержке. Поймете, как фотографировать, как сделать тёмную или наоборот, светлую фотографию. В общем, начнем наши фотоуроки.

Вы, наверное, уже примерно знаете, откуда берётся фотография. Ну, точнее не откуда берётся, а как получается.

Попробую ещё раз рассказать об этом без излишней (читай ненужной) въедливости, формул и кропотливости. Главное понимать принцип. В свете всего этого, начнём наше первое «на пальцах».

В фотоаппарате есть объектив, диафрагма, затвор и матрица. (Вообще-то там ещё много чего есть, но зачем нам это нужно? Сейчас нас интересует объектив, диафрагма, затвор и матрица). Диафрагма находится в объективе.

Представьте, вы нажали кнопку спуска на фотоаппарате. Затвор опустился, свет прошёл сквозь объектив и, соответственно, диафрагму, после чего попал на матрицу. Там его путь закончен. Матрица, получив свет, «запомнила» его, и получилась фотография, которую вы увидели на экране своей фотокамеры буквально через миг.

Ваш глаз устроен схожим образом. Зайдите в комнату, в которой почти нет света. Закройте глаза. Откройте буквально на миг и закройте снова. Много вы увидели? Нет. Потому что слишком темно. А теперь откройте на минуту. Видите, вы можете уже различить многие детали, увидеть общую картину. Так вот, с фотоаппаратом та же история. Вы как бы играли сейчас в фотоаппарат. Глаза - это матрица - они получают свет и «делают» из него изображение. А веки - это затвор фотоаппарата. Открывая и закрывая их, вы, тем самым даете доступ свету к «матрице». То - как долго вы даете свету попадать на матрицу (глаза) и называется выдержка. И чем темнее там, где вы делаете снимок, тем больше должна быть выдержка (дольше должны быть открыты глаза), чтобы фотография получилась достаточно светлой для того, чтобы там можно было хоть что-то разобрать.

Ремарка: Но, хорошего понемножку. Это бессмертное высказывание применимо и к свету. Потому что в отличие от глаза в фотоаппарате свет имеет свойство «накапливаться». Фотография это, как бы рисунок. Только в отличие от бумаги листы там - чёрные. Когда ничего не нарисовано лист чёрный. А если света слишком много, то он станет белым.

Вот восемь фотографий (кликабельны). Да, да! Именно восемь. Белые квадраты на месте седьмого и восьмого это тоже фотографии только с самой большой выдержкой. Умные говорят «пересвет».

Ремарка: Кстати умные говорят не самая большая, а самая ДЛИННАЯ выдержка.


В левом верхнем углу самая короткая выдержка (затвор открыт самое короткое время). В правом нижнем углу самая длинная выдержка (затвор открыт дольше всего).

Ну, теперь-то, когда всё понятно, проблема решена, верно? Если темновато, делаем больше выдержку (держим глаза открытыми дольше) и всё! А вот нечего радоваться! Точнее рано. В той же тёмной комнате возьмите какой-нибудь лист с надписью. Закрепите его. И смотрите. Смогли прочитать? Отлично! (надеюсь, вы написали, не то, что я подумал). А теперь возьмите этот же лист, и начните болтать его туда обратно. Уже ничего не видно, правильно? Надпись сливается. То же произойдёт и с фотоаппаратом. Когда матрица открыта надолго (при длинных выдержках), фотоаппарат должен быть неподвижен (равно как и то, что вы снимаете). А иначе получится «смазанный рисунок».


Длинная выдержка. Фотоаппарат не шевелиться. Шевелится только объект съёмки, в котором смутно угадывается ложка.


Длинная выдержка. Двигается фотоаппарат. Объект съёмки неподвижен.

Но это ещё не весь пармезанский сыр. В отличие от глаза, у матрицы есть возможность «видеть в темноте». Ну, или по-другому - лучше видеть в темноте. По необходимости вы берёте и регулируете этот параметр. Как бы говорите себе: хочу видеть в темноте лучше! А теперь ещё лучше! И ещё лучше! Конечно, всему есть предел. И, как и всё в этой жизни, это не проходит безнаказанно. С каждым улучшением «зрения» все четче будет видно то, что в кадре, но будет ухудшаться качество изображения. На картинке будут появляться всякие ненужные цветные точки. По-умному, эти точки называются ШУМЫ.

В фотоаппарате это «умение видеть в темноте» называется светочувствительность или ISO. Итак, какие получились «вечером деньги - утром стулья». Чем меньше ISO тем меньше ШУМОВ. Чем меньше шумов, тем лучше. Чем темнее вокруг, тем больше надо делать выдержку или увеличивать ISO.

А теперь о том, какие бывают выдержки. Когда вы в первый раз в жизни взяли в руки фотоаппарат, то поняли по тяжело понятным значкам, что люди, придумавшие его, были не только не русскими (Это святая правда!), но и со своеобразным складом ума. Поэтому вместо общепринятых и понятных обозначений они... Ну, вы видели, в общем...

На фотоаппарате есть ряд заданных выдержек (время, когда глаз открыт):

3, 2, 1, ½, ¼, 1/8, 1/15, 1/30, 1/60, 1/125, 1/250, 1/250, 1/500, 1/1000, 1/2000, 1/4000 секунды.
Это то время, в течение которого будет открыт затвор. Соответственно оно может быть очень большим (например, две минуты) и очень маленьким (одна четырёхтысячная секунды). Слева в нашем ряду находятся самые долгие выдержки. Справа - самые короткие.

На ЭТОМ ЖЕ (чудны дела твои, господи!) фотоаппарате есть ряд заданных ISO (светочувствительность):
100, 200, 400, 800, 1600...

При 100 фотоаппарат хуже всего видит в темноте, но снимок максимально «чистый». При 1600 фотоаппарат лучше всего видит в темноте, но снимок наиболее «грязный», или, как говорят очень умные люди, «шумный».

Сегодня вы узнали о двух способах изменения «количества света» на фотографии. Завтра (ну ты знаешь такой фильм «когда наступит завтра?») вы прочитаете ещё об одном. Не буду забегать вперёд.

Пока что я не буду забивать вашу голову всякими тяжело выговариваемыми и тем более сложно запоминаемыми терминами. Эту садистскую радость я оставлю на попозже...

Ну вот и наступило долгожданное попозже... Шучу.)

Надеюсь вам помогли наши уроки по фотографии!

Над созданием Фотошколы работала небольшая группа фотографов-энтузиастов своего дела.

На данный момент в свете минимизации работы сайта сайт, мы не имеем возможности развивать нашу Фотошколу. А у нас грандиозные замыслы - например создание раздела домашнего задания, где бы читатели делали фотографии или их обработку по определённому заданию, а авторы статей их проверяли и указывали на ошибки. И многое другое.

Для того, чтобы Фотошкола могла развиваться и расти, мы должны переехать на свой сайт, а создание сайта и хостинг стоят немалых денег.

Поэтому (простите, что мы, чужие старухи, к вам обращаемся:)) мы собираем деньги на новый сайт и хостинг.

Если у вас есть возможность, то мы были бы очень благодарны, если бы вы помогли делу просвещения Фотографии любой суммой!

Огромное Вам спасибо.

Яндекс деньги, номер счёта: 410011065587885

WEB Money R418922569059

В Сбербанке можно положить на карточку номер 4276 3800 2318 1675. (при этом, если будет возможность указывайте в теме платежа "Фотошкола")

Деньги класть можно в любом автомате, где есть прием денег этих платёжных систем.

Глаз является единственным органом человека, имеющим оптически прозрачные ткани, которые называются иначе оптическими средами глаза. Именно благодаря им лучи света проходят в глаз и человек получает возможность видеть. Попробуем в самом примитивном виде разобрать строение оптического аппарата органа зрения.

Глаз имеет шаровидную форму. Он окружен белочной и роговой оболочками. Белочная оболочка состоит из плотных, пучков переплетающихся волокон, она белого цвета и непрозрачна. В передней части глазного яблока в белочную оболочку «вставлена» примерно так же, как часовое стекло в оправу, роговая оболочка. Она имеет сферическую форму и, что самое важное, совершенно прозрачна. Лучи света, падающие на глаз, прежде всего проходят через роговую оболочку, которая сильно преломляет их.

После роговой оболочки световой луч проходит через переднюю камеру глаза - пространство, заполненное бесцветной прозрачной жидкостью. Глубина ее в среднем 3 миллиметра. Задней стенкой передней камеры является радужная оболочка, придающая цвет глазу, в центре ее находится круглое отверстие - зрачок. При осмотре глаза он нам кажется черным. Благодаря мышцам, заложенным в радужной оболочке, зрачок может изменять свою ширину: сужаться на свету и расширяться в темноте. Это как бы диафрагма фотоаппарата, которая автоматически ограждает глаз от поступления большого количества света при ярком освещении и, наоборот, при пониженном освещении, расширяясь, помогает глазу улавливать даже слабые световые лучи. После прохождения через зрачок луч света попадает на своеобразное образование, которое называется хрусталиком. Его легко себе представить - это чечевицеобразное тело, напоминающее обычную лупу. Свет может свободно проходить через хрусталик, но при этом он преломляется так же, как по законам физики преломляется световой луч, проходящий через призму, т. е. отклоняется к основанию.

Мы можем себе представить хрусталик, как две призмы, сложенные основаниями. Хрусталик обладает еще одной чрезвычайно интересной особенностью: может изменять свою кривизну. По краю хрусталика прикрепляются тонкие нити, называемые цинновыми связками, которые другим своим концом сращены с ресничной мышцей, находящейся за корнем радужной оболочки. Хрусталик стремится принять шарообразную форму, но этому мешают натянутые связки. При сокращении ресничной мышцы связки расслабляются, и хрусталик становится более выпуклым. Изменение кривизны хрусталика не остается бесследным для зрения, так как лучи света в связи с этим изменяют степень преломления. Это свойство хрусталика изменять свою кривизну, как мы увидим ниже, имеет очень большое значение для зрительного акта.

После хрусталика свет проходит через стекловидное тело, заполняющее всю полость глазного яблока. Стекловидное тело состоит из тонких волокон, между которыми находится бесцветная прозрачная жидкость, обладающая большой вязкостью; эта жидкость напоминает расплавленное стекло. Отсюда и произошло его название - стекловидное тело.

Лучи света, пройдя через роговую оболочку, переднюю камеру, хрусталик и стекловидное тело, попадают на чувствительную к свету сетчатую оболочку (сетчатка), которая наиболее сложно устроена из всех оболочек глаза. В наружной части сетчатки имеется слой клеток, которые под микроскопом имеют вид палочек и колбочек. В центральной части сетчатки сосредоточены преимущественно колбочки, которые играют основную роль в процессе наиболее ясного, отчетливого зрения и цветового ощущения. Дальше от центра сетчатки начинают появляться палочки, количество которых увеличивается к периферическим участкам сетчатки. Колбочек же, наоборот, чем дальше от центра, тем становится меньше. Ученые подсчитали, что в сетчатке человека находится 7 миллионов колбочек и 130 миллионов палочек. В отличие от колбочек, которые действуют на свету, палочки начинают «работать» при пониженном освещении и в темноте. Палочки очень чувствительны даже к небольшому количеству света и поэтому дают возможность человеку ориентироваться в темноте.

Как же происходит процесс зрения? Лучи света, попадая на сетчатку, вызывают сложный фотохимический процесс, в результате которого происходит раздражение палочек и колбочек. Это раздражение передается по сетчатке на слой нервных волокон, из которых составляется зрительный нерв. Зрительный нерв через специальное отверстие проходит в полость черепа. Здесь зрительные волокна проделывают длинный и сложный путь и в конечном итоге заканчиваются в затылочной части коры головного мозга. Эта область является высшим зрительным центром, в котором и воссоздается зрительный образ, точно соответствующий рассматриваемому предмету.

Человеческий глаз часто приводят в качестве примера удивительной природной инженерии - но судя по тому, что это один из 40 вариантов устройств, которые появлялись в процессе эволюции у разных организмов, нам стоит поумерить свой антропоцентризм и признать, что по строению человеческий глаз не является чем-то совершенным.

Рассказ про глаз учше всего начать с фотона. Квант электромагнитного излучения неспешно влетает строго в глаз ничего не подозревающего прохожего, который жмурится от неожиданного блика с чьих-то часов.

Первая деталь оптической системы глаза - это роговица. Она меняет направление движения света. Это возможно благодаря такому свойству света, как преломление, ответственного в том числе за радугу. Скорость света постоянна в вакууме - 300 000 000 м/с. Но при переходе из одной среды в другую (в данном случае из воздуха в глаз) свет меняет свою скорость и направление движения. У воздуха коэффициент преломления равен 1,000293, у роговицы - 1,376. Это значит, что луч света в роговице замедляет свое движение в 1,376 раз и отклоняется ближе к центру глаза.

Любимый способ раскалывать партизан - светить им яркой лампой в лицо. Это больно по двум причинам. Яркий свет - это мощное электромагнитное излучение: триллионы фотонов атакуют сетчатку, и ее нервные окончания вынуждены передавать бешеное количество сигналов в мозг. От перенапряжения нервы, как провода, перегорают. При этом мышцы радужки вынуждены сжиматься так сильно, как только могут, отчаянно пытаясь закрыть зрачок и защитить сетчатку.

И подлетает к зрачку. С ним все просто - это отверстие в радужной оболочке. За счет круговых и радиальных мышц радужная оболочка может соответственно сужать и расширять зрачок, регулируя количество света, проникающего в глаз, как диафрагма в фотоаппарате. Диаметр зрачка человека может меняться от 1 до 8 мм в зависимости от освещенности.

Пролетев сквозь зрачок, фотон попадает на хрусталик - вторую линзу, ответственную за его траекторию. Хрусталик преломляет свет слабее, чем роговица, зато он подвижен. Хрусталик висит на цилинарных мышцах, которые меняют его кривизну, тем самым позволяя нам фокусироваться на предметах на разном расстоянии от нас.

Именно с фокусом связаны нарушения зрения. Самые распространенные - близорукость и дальнозоркость. Изображение в обоих случаях фокусируется не на сетчатке, как должно, а перед ней (близорукость), или за ней (дальнозоркость). Виноват в этом глаз, который меняет форму с круглой на овальную, и тогда сетчатка удаляется от хрусталика или приближется к нему.

После хрусталика фотон пролетает сквозь стекловидное тело (прозрачный студень - 2/3 объема всего глаза, на 99% - вода) прямиком на сетчатку. Здесь регистрируются фотоны, и сообщения о прибытии отправляются по нервам в мозг.

Сетчатка устлана клетками-фоторецепторами: когда света нет, они вырабатывают специальные вещества - нейротрансмиттеры, но как только в них попадает фотон, клетки-фоторецепторы перестают их вырабатывать - и это сигнал для мозга. Есть два типа этих клеток: палочки, которые более чувствительны к свету, и колбочки, которые лучше различают движение. Палочек у нас около ста миллионов и еще 6-7 миллионов колбочек, итого больше ста миллионов светочувствительных элементов - это больше 100 мегапикселей, что никакому «хасселю» не снилось.

Слепое пятно - точка прорыва, где совсем нет светочувствительных клеток. Оно довольно большое - 1-2 мм в диаметре. К счастью, у нас бинокулярное зрение и есть мозг, который совмещает две картинки c пятнами в одну нормальную.

На моменте передачи сигнала в человеческом глазу возникает проблема с логикой. Подводный, не особо нуждающийся в зрении житель осьминог в этом смысле гораздо последовательней. У осьминогов фотон сначала врезается в слой колбочек и палочек на сетчатке, сразу за которым ждет слой нейронов и передает сигнал в мозг. У человека свет сперва продирается сквозь слои нейронов - и только потом ударяется в фоторецепторы. Из-за этого в глазу есть первое пятно - слепое.

Второе пятно - желтое, это центральная область сетчатки прямо напротив зрачка, чуть выше зрительного нерва. Этим местом глаз видит лучше всего: концентрация светочувствительных клеток здесь сильно увеличена, поэтому наше зрение по центру визуального поля значительно острее периферийного.

Изображение на сетчатке перевернуто. Мозг умеет правильно интерпретировать картинку, и восстанавливает из перевернутого оригинальное изображение. Дети первые пару дней видят все вверх ногами, пока их мозг устанавливает свой фотошоп. Если надеть очки, переворачивающие изображение (это впервые проделали еще в 1896 году), то через пару дней наш мозг научится интерпретировать и такую перевернутую картинку правильно.

Читайте также: