Функции нейронов: как работают и какую задачу выполняют. Влияние алкоголя на головной мозг. Теория Чай Куо

Человеческий мозг – это центральная часть нервной системы. Здесь осуществляется управление всеми процессами, происходящими в организме, на основе информации, поступающей от внешнего мира.

Нейроны головного мозга – это структурные функциональные единицы нервной ткани, обеспечивающие способность живых организмов приспосабливаться к изменениям внешней среды. Человеческий мозг состоит из нейронов.

Функции нейронов головного мозга:

  • передача информации об изменениях внешней среды;
  • запоминание информации на длительный срок;
  • создание образа внешнего мира на основе полученных сведений;
  • организация оптимального поведения человека.

Все эти задачи подчинены одной цели – обеспечению живому организму успеха в борьбе за существование.

В этой статье будут рассмотрены следующие особенности нейронов:

  • строение;
  • взаимосвязь между собой;
  • виды;
  • развитие в разные периоды жизни человека.

В левом полушарии мозга содержится на 200 000 000 нейронов больше, чем в правом.

Строение нервной клетки

Нейроны в мозге имеют неправильную форму, они могут быть похожи на листик или цветок, обладать различными бороздами и извилинами. Цветовая палитра также разнообразна. Ученые полагают, что существует взаимосвязь между цветом и формой клетки и ее назначением.

Например, рецептивные поля клеток проекционной области зрительной коры имеют вытянутую форму, это помогает им избирательно реагировать на отдельные фрагменты линий с различной ориентацией в пространстве.

Каждая клетка имеет тело и отростки. В мозговой ткани принято выделять серое и белое вещество. Тела нейронов вместе с глиальными клетками, обеспечивающими защиту, изоляцию и сохранение структуры нервной ткани, составляют серое вещество. Отростки, организованные в пучки в соответствии с функциональным назначением, – это белое вещество.

Соотношение нейронов и глии у человека равно 1:10.

Виды отростков:

  • аксоны – имеют удлиненный вид, на конце ветвятся на терминали – нервные окончания, которые необходимы для передачи импульса к другим клеткам;
  • дендриты – более короткие, чем аксоны, также имеют разветвленную структуру; через них нейрон получает информацию.

Благодаря такому строению нейроны в головном мозге «общаются» между собой и объединяются в нейронные сети, которые и образуют мозговую ткань. И дендриты, и аксоны постоянно растут. Эта пластичность нервной системы лежит в основе развития интеллекта.

Нерв – это скопление многочисленных аксонов, принадлежащих разным нервным клеткам.

Синаптические связи

В основе формирования нейронных сетей лежит электрическое возбуждение, которое состоит из двух процессов:

  • запуск электрического возбуждения от энергии внешних воздействий – происходит за счет особой чувствительности мембран, расположенных на дендритах;
  • запуск клеточной активности на основании полученного сигнала и воздействие на другие структурные единицы нервной системы.

Быстродействие нейронов исчисляется несколькими миллисекундами.

Нейроны связаны между собой посредством специальных структур – синапсов. Они состоят из пресинаптической и постсинаптической мембран, между которыми находится синаптическая щель, заполненная жидкостью.

По характеру действия синапсы могут быть возбуждающими и тормозными. Передача сигналов может быть химической и электрической.

В первом случае на пресинаптической мембране синтезируются нейромедиаторы, которые поступают на рецепторы постсинаптической мембраны другой клетки из специальных пузырьков – везикул. После их воздействия в соседний нейрон могут массированно поступать ионы определенного вида. Это происходит через калийные и натриевые каналы. В обычном состоянии они закрыты, внутри клетки находятся отрицательно заряженные ионы, а снаружи – положительно. Следовательно, на оболочке образуется разница напряжений. Это потенциал покоя. После попадания положительно заряженных ионов внутрь возникает потенциал действия – нервный импульс.

Баланс клетки восстанавливается с помощью специализированных белков – калиево-натриевых насосов.

Свойства химических синапсов:

  • возбуждение осуществляется только в одном направлении;
  • наличие задержки от 0,5 до 2 мс при передаче сигнала, связанной с длительностью процессов выделения медиатора, его передачи, взаимодействия с рецептором и образования потенциала действия;
  • может возникать утомление, вызванное истощением запаса медиатора или появлением стойкой деполяризации мембраны;
  • высокая чувствительность к ядам, лекарственным препаратам и другим биологически активным веществам.

В настоящее время известно более 100 нейромедиаторов. Примеры этих веществ – дофамин, норадреналин, ацетилхолин.

Для электрической передачи характерна узкая синаптическая щель и пониженное сопротивление между мембранами. В таком случае потенциал, созданный на пресинаптической мембране, вызывает распространение возбуждения на постсинаптической мембране.

Свойства электрических синапсов:

  • скорость передачи информации выше, чем в химических синапсах;
  • возможна как односторонняя, так и двусторонняя передача сигнала (в обратную сторону).

Также существуют смешанные синапсы, в них возбуждение может передаваться как с помощью нейромедиаторов, так и с помощью электрических импульсов.

Память включает в себя хранение и воспроизведение полученной информации. В результате обучения остаются так называемые следы памяти, а их наборы образуют энграммы – «записи». Нейронный механизм заключается в следующем: по цепи много раз проходят определенные импульсы, формируются структурные и биохимические изменения в синапсах. Этот процесс называется консолидацией. Многократное использование одних и тех же контактов создает специфические белки – это и есть следы памяти.

Особенности развития мозговой ткани

Структуры мозга продолжают формироваться до 3 лет. Масса мозга удваивается к концу первого года жизни ребенка.

Зрелость нервной ткани определяется степенью развития двух процессов:

  • миелинизация – образование изолирующих оболочек;
  • синаптогенез – формирование синаптических связей.

Миелинизация начинается на 4 месяце внутриутробной жизни с эволюционно более «старых» структур мозга, отвечающих за сенсорные и моторные функции. В системах, контролирующих скелетную мускулатуру, — незадолго до появления на свет младенца, и активно продолжается в течение первого года жизни. А в областях, связанных с высшими психическими функциями, такими как обучение, речь, мышление, миелинизация начинается лишь после рождения.

Именно поэтому в этот период особенно опасны инфекции и вирусы, оказывающие вредное воздействие на мозг. Это можно сравнить с автомобильной аварией: столкновение на маленькой скорости принесет меньший урон, чем на большой. Так и здесь – вмешательство в активный процесс созревания может нанести огромный вред и привести к печальным последствиям – ДЦП, олигофрении или задержке психического развития.

Стабилизация психофизиологических характеристик индивида происходит в 20 – 25 лет.

Процесс развития отдельной нервной клетки начинается с образования, имеющего специфическую электрическую активность. Его отростки, вытягиваясь, проникают в окружающие ткани и устанавливают синаптические контакты. Таким образом происходит иннервация (управление) всеми органами и системами организма. Данный процесс контролируется более чем половиной генов человека.

Клетки объединяются в особые связанные структуры – нейросети, которые выполняют конкретные функции.

Одно из научных предположений гласит, что иерархия структуры нейронов в головном мозге напоминает устройство Вселенной.

Развитие нейронов, их специализация, продолжается в течение всей жизни человека. У взрослого и младенца число нейронов приблизительно совпадает, но длина отростков и их количество отличается во много раз. Это связано с обучением и формированием новых связей.

Продолжительность существования нервных клеток и их хозяина чаще всего совпадает.

Виды нервных клеток

Каждый элемент в нейронной системе мозга выполняет определенную функцию. Рассмотрим, за что отвечают определенные виды нейронов.

Рецепторы

Большая часть рецепторных нейронов располагается в , их функция – передавать сигнал от рецепторов органов чувств в центральную нервную систему.

Командные нейроны

Здесь сходятся пути от клеток-детекторов, кратковременной и долговременной памяти и осуществляется принятие решения в ответ на входящий сигнал. Далее поступает команда в премоторные зоны, и формируется реакция.

Эффекторы

Они транслируют сигнал к органам и тканям. Эти нейроны имеют длинные аксоны. Мотонейроны – это эффекторные клетки, аксоны которых образуют нервные волокна, ведущие к мышцам. Эффекторные нейроны, регулирующие деятельность вегетативной нервной системы (к ней относятся обмен веществ, управление внутренними органами, дыхание, сердцебиение – все, что происходит без сознательного контроля), находятся за пределами головного мозга.

Промежуточные

Еще их называют контактными или вставочными – эти клетки являются связующим звеном между рецепторами и эффекторами.

Зеркальные нейроны

Данные нейроны обнаружены в различных участках центральной нервной системы. Считается, что эволюционно они появились для того, чтобы детеныши лучше и быстрее устраивались в окружающем мире.

Клетки были обнаружены в результате опыта с обезьянами. Животное доставало еду из кормушки специальными инструментами. Когда ученый делал то же самое, было выявлено, что у подопытной особи активируются определенные участки коры, как будто бы это делала она сама.

На работе зеркальных нейронов базируются эмпатия, социальные навыки, обучение, повторение, имитация. Способность прогнозировать тоже относится к этим клеткам.

Ученые установили: отчетливо представлять и делать – почти одно и то же. Такой метод психотерапии как визуализация построен на этом постулате.

Зеркальный нейроны – основа передачи культурного пласта от поколения к поколению и его наращивания. Например, обучаясь живописи, сначала мы повторяем уже существующие способы, то есть имитируем. А потом, на основе этого опыта, создаются оригинальные работы.

Нейроны новизны и тождества

Нейроны новизны впервые были обнаружены при исследовании лягушек, впоследствии были найдены и у человека. Эти клетки перестают отвечать на повторяющийся стимул. Изменение же сигнала, наоборот, провоцирует их активацию.

Клетки тождества определяют повторяющийся сигнал, что позволяет выдать ранее использовавшуюся реакцию, иногда даже опережая стимул – экстраполярный ответ.

Их совместное действие подчеркивает новизну, ослабляет влияние привычных стимулов и оптимизирует время формирования ответного поведения.

Заболевания, связанные с дефектами нервной ткани

В основе многих расстройств здоровья человека могут лежать различные нарушения нейронных связей головного мозга.

Аутизм

Ученые полагают, что аутизм связан с неразвитостью или дисфункцией зеркальных нейронов. Малыш, смотря на взрослого, не может понять поведение и эмоции другого человека и спрогнозировать его действия. Зарождается страх. Защитная реакция – замыкание в себе.

Болезнь Паркинсона

Причина нарушения двигательных функции при данном недуге – повреждение и гибель нейронов, продуцирующих дофамин.

Болезнь Альцгеймера

Одной из возможных причин является снижение производства нейромедиатора ацетилхолина. Второй вариант – накопление в нервной ткани амилоидных бляшек – патологического белкового налета.

Шизофрения

Одна из теорий гласит, что между клетками мозга шизофреника имеется нарушение контактов. Исследования показали, что у таких людей неправильно работают гены, отвечающие за выделение нейромедиаторов в синапсах. Еще одна версия – излишняя выработка дофамина. Третья теория происхождения заболевания – снижение скорости прохождения нервных импульсов вследствие повреждения миелиновых оболочек.

Нейродегеративные заболевания (связанные с гибелью нейронов) дают о себе знать тогда, когда большая часть клеток погибла, поэтому лечение начинается на поздних стадиях. Человек выглядит здоровым, признаков болезни нет, а опасный процесс уже запущен. Это происходит от того, что человеческий мозг очень пластичен и имеет мощные компенсаторные механизмы. Пример: когда умирают нейроны-производители дофамина при , оставшиеся клетки продуцируют большее количество вещества. Также увеличивается чувствительность к нейромедиатору клеток, принимающих сигнал. Какое-то время эти процессы не дают проявляться симптомам болезни.

При недугах, вызванных аномалиями хромосом (синдром Дауна, синдром Вильямса), обнаруживаются патологические виды нервных клеток.

Человеческий организм представляет собой довольно сложную и сбалансированную систему, функционирующую в соответствии с четкими правилами. Причем внешне кажется, что все довольно просто, но на самом деле наш организм - это удивительное взаимодействие каждой клеточки и органа. Дирижирует всем этим "оркестром" нервная система, состоящая из нейронов. Сегодня мы расскажем, что такое нейроны и насколько важную роль они играют в теле человека. Ведь именно они отвечают за наше психическое и физическое здоровье.

Каждый школьник знает, что руководит нами мозг и нервная система. Эти два блока нашего организма представлены клетками, каждая из которых называется нервный нейрон. Данные клетки отвечают за принятие и передачу импульсов от нейрона к нейрону и другим клетками человеческих органов.

Чтобы лучше понять, что такое нейроны, их можно представить в виде самого важного элемента нервной системы, который выполняет не только проводящую роль, но и функциональную. Удивительно, но до сих пор нейрофизиологи продолжают изучать нейроны и их работу по передаче информации. Конечно, они добились больших успехов в своих научных изысканиях и сумели раскрыть множество тайн нашего организма, но до сих пор не могут раз и навсегда ответить на вопрос, что такое нейроны.

Нервные клетки: особенности

Нейроны являются клетками и во многом похожи на других своих "собратьев", из которых состоит наше тело. Но они имеют ряд особенностей. Благодаря своей структуре такие клетки в организме человека, соединяясь, создают нервный центр.

Нейрон имеет ядро и окружен защитной оболочкой. Это роднит его со всеми остальными клетками, но на этом сходство и заканчивается. Остальные характеристики нервной клетки делают ее действительно уникальной:

  • Нейроны не делятся

Нейроны мозга (головного и спинного) не делятся. Это удивительно, но они останавливаются в развитии практически сразу же после своего возникновения. Ученые считают, что некая клетка-предшественница заканчивает деление еще до полного развития нейрона. В дальнейшем он наращивает только связи, но не свое количество в организме. С этим фактом связывают множество болезней мозга и центральной нервной системы. С возрастом часть нейронов отмирает, а оставшиеся клетки, в связи с малой активностью самого человека, не могут наращивать связи и заменить своих "собратьев". Все это приводит к разбалансировке организма и в некоторых случаях - к смертельному исходу.

  • Нервные клетки передают информацию

Нейроны могут передавать и получать информацию с помощью отростков - дендритов и аксонов. Они способны воспринимать определенные данные с помощью химических реакций и преобразовывать ее в электрический импульс, который, в свою очередь, по синапсам (связям) переходит до нужных клеток организма.

Уникальность нервных клеток учеными доказана, но на самом деле они сейчас знают о нейронах всего лишь 20% из того, что те на самом деле скрывают. Потенциал нейронов еще не раскрыт, в научном мире бытует мнение о том, что раскрытие одной тайны функционирования нервных клеток становится началом другой тайны. И этот процесс в настоящий момент представляется бесконечным.

Сколько нейронов в организме?

Эта информация доподлинно неизвестна, но нейрофизиологи предполагают, что нервных клеток в теле человека более ста миллиардов. При этом одна клетка имеет возможность образовывать до десяти тысяч синапсов, позволяющих быстро и эффективно связываться с другими клетками и нейронами.

Строение нейронов

Каждая нервная клетка состоит из трех частей:

  • тело нейрона (сома);
  • дендриты;
  • аксоны.

До сих пор неизвестно, какие из отростков развиваются в теле клетки первыми, но распределение обязанностей между ними вполне очевидно. Отросток нейрона аксон обычно формируется в единственном экземпляре, а вот дендритов может быть очень много. Их количество иногда доходит до нескольких сотен, чем больше дендритов у нервной клетки, тем с большим количеством клеток она может быть связана. К тому же, разветвленная сеть отростков позволяет передавать массу информации в кратчайшие сроки.

Ученые считают, что до формирования отростков нейрон расселяется по телу, и с момента их появления находится уже на одном месте без изменения.

Передача информации нервными клетками

Чтобы понять, насколько важны нейроны, необходимо понять, каким образом они выполняют свою функцию по передаче информации. Импульсы нейронов способны передвигаться в химическом и электрическом виде. Отросток нейрона дендрит получает информацию в качестве раздражителя и передает ее в тело нейрона, аксон передает ее в качестве электронного импульса к другим клеткам. Дендриты другого нейрона воспринимают электронный импульс сразу же или с помощью нейромедиаторов (химических передатчиков). Нейромедиаторы захватываются нейронами и в дальнейшем используются как свои собственные.

Виды нейронов по количеству отростков

Ученые, наблюдая за работой нервных клеток, разработали несколько видов их классификации. Одна из них делит нейроны по количеству отростков:

  • униполярные;
  • псевдоуниполярные;
  • биполярные;
  • мультиполярные;
  • безаксонные.

Классическим считается нейрон мультиполярный, он имеет один короткий аксон и сеть дендритов. Самыми малоизученными являются безаксонные нервные клетки, ученые знают только их местоположение - спинной мозг.

Рефлекторная дуга: определение и краткая характеристика

В нейрофизике существует такой термин, как "нейроны рефлекторной дуги". Без него довольно сложно получить полное представление о работе и значении нервных клеток. Раздражители, влияющие на нервную систему, называются рефлексами. Это основная деятельность нашей ЦНС, осуществляется она с помощью рефлекторной дуги. Ее можно представить своеобразной дорогой, по которой проходит импульс от нейрона до осуществления действия (рефлекса).

Этот путь можно разделить на несколько этапов:

  • восприятие раздражения дендритами;
  • передача импульса в тело клетки;
  • трансформация информации в электрический импульс;
  • передача импульса в орган;
  • изменение деятельности органа (физическая реакция на раздражитель).

Рефлекторные дуги могут быть разными и состоять из нескольких нейронов. К примеру, простая рефлекторная дуга образуется из двух нервных клеток. Одна из них получает информацию, а другая заставляет органы человека совершать определенные действия. Обычно такие действия называют безусловным рефлексом. Он возникает, когда человека ударяют, например, по коленной чашечке, и в случае прикосновения к горячей поверхности.

В основном, простая рефлекторная дуга проводит импульсы через отростки спинного мозга, сложносоставная рефлекторная дуга проводит импульс непосредственно в головной мозг, который, в свою очередь, обрабатывает ее и может откладывать на хранение. В дальнейшем при получении схожего импульса мозг отправляет нужную команду к органам для совершения определенной совокупности действий.

Классификация нейронов по функционалу

Классифицировать нейроны можно по их непосредственному назначению, ведь каждая группа нервных клеток предназначена для определенных действий. Виды нейронов представлены следующим образом:

  1. Чувствительные

Данные нервные клетки предназначены для восприятия раздражения и трансформации его в импульс, перенаправляющийся в мозг.

Воспринимают информацию и передают импульс к мышцам, приводящим в движение части тела и органы человека.

3. Вставочные

Данные нейроны осуществляют сложную работу, они находятся в центре цепочки между чувствительными и двигательными нервными клетками. Подобные нейроны принимают информацию, проводят предварительную обработку и передают импульс-команду.

4. Секреторные

Секреторные нервные клетки синтезируют нейрогормоны и имеют особенное строение с большим количеством мембранных мешочков.

Двигательные нейроны: характеристика

Эфферентные нейроны (двигательные) имеют строение, идентичное другим нервным клеткам. Их сеть дендритов является наиболее разветвленной, а аксоны протягиваются к мышечным волокнам. Они заставляют мышцу сокращаться и распрямляться. Самым длинным в теле человека как раз является аксон двигательного нейрона, идущий до большого пальца ноги от поясничного отдела. В среднем его длина составляет около одного метра.

Практически все эфферентные нейроны располагаются в спинном мозге, ведь именно он отвечает за большинство наших бессознательных движений. Это касается не только безусловных рефлексов (к примеру, моргания), но и любых действий, о которых мы не задумываемся. Когда мы всматриваемся в какой-то предмет, то импульсы посылает к глазному нерву головной мозг. А вот передвижение глазного яблока влево и вправо осуществляется посредством команд спинного мозга, это бессознательные движения. Поэтому с течением возраста, когда увеличивается совокупность бессознательных привычных действий, важность двигательных нейронов представляется в новом свете.

Виды двигательных нейронов

В свою очередь, эфферентные клетки имеют определенную классификацию. Они делятся на два следующих вида:

  • а-мотонейроны;
  • у-мотонейроны.

Первый вид нейронов имеет более плотную структуру волокна и присоединяется к различным мышечным волокнам. Один такой нейрон может задействовать различное количество мышц.

У-мотонейроны немного слабее своих "собратьев", они не могут задействовать несколько мышечных волокон одновременно и отвечают за натяжение мышцы. Можно сказать, что оба вида нейронов являются контролирующим органом двигательной активности.

К каким мышцам присоединяются двигательные нейроны?

Аксоны нейронов связаны с несколькими видами мышц (они являются рабочими), которые классифицируются как:

  • анимальные;
  • вегетативные.

Первая группа мышц представлена скелетными, а вторая относится к категории гладких мышц. Разными являются и способы прикрепления к мышечному волокну. Скелетные мышцы в месте соприкосновения с нейронами образуют своеобразные бляшки. Вегетативные нейроны связываются с гладкими мышцами посредством небольших вздутий или пузырьков.

Заключение

Невозможно представить, как функционировал бы наш организм в отсутствие нервных клеток. Они ежесекундно выполняют невероятно сложную работу, отвечая за наше эмоциональное состояние, вкусовые пристрастия и физическую активность. Многие свои тайны нейроны еще не раскрывают. Ведь даже самая простая теория о невосстановлении нейронов у некоторых ученых вызывает множество споров и вопросов. Они готовы доказать, что в некоторых случаях нервные клетки способны не только образовывать новые связи, но и самовоспроизводиться. Конечно, пока это всего лишь теория, но она вполне может оказаться жизнеспособной.

Работа по изучению функционирования центральной нервной системы крайне важна. Ведь благодаря открытиям в этой области фармацевты смогут разрабатывать новые препараты для активации деятельности головного мозга, а психиатры будут лучше понимать природу многих заболеваний, которые сейчас кажутся неизлечимыми.


Тело человека является невероятно сложной и запутанной системой, которая до сих пор сбивает с толку врачей, исследователей, несмотря на тысячи лет медицинских знаний. В результате появляются причудливые и порой невероятные факты нашего организма.

Мозг является наиболее сложной и наименее понятной частью человеческой анатомии. О нем, может быть, мы многого не знаем, но вот несколько очень интересных фактов, о которых известно.

Факты о скорости импульсов в мозге

Нервные импульсы путешествуют по мозгу со скоростью 273 км в час.

Вы никогда не задумывались, почему реагируете так быстро на происходящее вокруг Вас? Почему пораненный палец болит сразу? Это связано с чрезвычайно быстрым движением нервных импульсов от мозга к частям Вашего тела и наоборот. В результате чего скорость реакции нервных импульсов сравнима со скоростью мощного роскошного спортивного автомобиля.

Факты об энергии головного мозга

Мозг вырабатывает энергию эквивалентную лампочке 10 Ватт. Мультфильмы, где над героями весит лампочка над головой во время мыслительного процесса, не слишком далеки от истины. Ваш мозг генерирует столько энергии, сколько употребляет небольшая лампочка, даже когда Вы спите.

Между тем мозг является органом с самым большим потреблением энергии. Он забирает из организма около 20% энергии, при этом составляет 2% от общего веса тела. Большая часть этой энергии тратится на обмен информацией между нейронами, а также между нейронами и астроцитами (тип клеток).

Факты о памяти мозга

Человеческие клетки мозга могут хранить в 5 раз больше информации, нежели Британская или другая энциклопедии.

Ученым еще предстоит узнать окончательные цифры, однако предположительно емкость мозга в электронных терминах составляет около 1000 терабайт.

К примеру, национальный архив Великобритании, содержащий исторические летописи за 900 лет занимает всего 70 терабайт. Это делает человеческую память впечатляюще вместительной.

Факты о кислороде в головном мозге

Ваш мозг использует 20% кислорода, которым Вы дышите. Несмотря на маленькую массу мозга, он употребляет больше кислорода, чем какой-либо другой орган в теле человека.

Это делает мозг очень чувствительным к повреждениям, связанным с лишением кислорода. Поэтому ему нравится, когда Вы дышите глубоко.

Если приток кислорода к мозгу увеличить, то начнут активизироваться те области мозга, которые не функционировали при слабом кровяном течении и процесс старения, отмирания клеток замедлится.

Интересный факт! Сонные артерии имеют разветвления в мельчайшие сосуды внутри черепа, образуя запутанную и удивительную сеть капилляров. Это очень тонкие кровеносные тоннели, которые обеспечивают доступ крови к малейшим участкам мозга, обеспечивая необходимым количеством нейронов и кислорода.

Факты о работе мозга во сне

Мозг более активен ночью, чем днем. Логически можно предположить, что мыслительные процессы, сложные расчеты и задачи мы совершаем в течение рабочего дня, для чего потребовалось бы большей деятельности мозга, чем, скажем лежа в постели.

Оказывается верно и обратное. Как только Вы засыпаете, мозг продолжает работать. Ученые до конца пока не знают, почему так, но за все сны Мы должны быть признательны именно этому органу.

Интересный факт! В раннем детстве нет разницы между сном и бодрствованием. Объясняют это местом мышления в мозге. Именно в детстве почти все мыслительные процессы происходят в правом полушарии. Ребенок познает мир образами. Поэтому воспоминания у ребенка похожи на сны по своей структуре.

Повзрослевшего ребенка учат уже готовыми и определенными понятиями, чем «забивают» наш мозг. Поэтому происходит ассиметрия нашего мозга. Левое полушарие перегружается за время дневной работы. Ситуация как бы выравнивается во время сна, когда левое полушарие «засыпает», а правое начинает активно действовать, погружая нас в мир образного мышления.

Факты о работа мозга во время мечтаний

Ученые утверждают, что чем выше I.Q. человека, тем больше он мечтает.

Это конечно может быть правдой, но не стоит воспринимать такое утверждение как нехватку мыслей, если Вы не можете вспомнить свои мечты. Большинство из нас не помнят многих мечтаний. Ведь время большинства мечтаний, о которых мы думаем всего 2-3 секунды, а этого едва хватает, чтобы мозг их зафиксировал.

Интересный факт! Ученые провели эксперимент, в результате которого было обнаружено, что мозг намного активнее у человека, когда он мечтает, а не сосредоточен на однотонной работе.

В момент начала процесса мечтания большая часть отделов головного мозга начинает работать усиленно. Поэтому можно сделать заключение, что мечты помогают в разрешении всех важных проблем.

Факты о количестве нейронов в мозге

Количество нейроны в мозге продолжают расти на протяжении всей человеческой жизни.

В течение многих лет ученые и врачи считали, что мозг и нервная ткань не может расти или восстанавливаться. Но оказалось, что мозг работает так же, как и ткани многих других частей тела. Поэтому количество нейронов может расти постоянно.

К сведению! Нейроны — это основа любой нервной системы. Это специальные клетки, у которых древовидные отростки расходятся во все стороны, соприкасаясь с соседними клетками, у которых такие же отростки. Все это формирует огромную химическую и электрическую сеть, что и является нашим мозгом.

Именно нейроны позволяют мозгу совершать разные действия намного эффективнее и быстрее, чем любая созданная машина.

Факты о боли: Мозг не чувствует боль!

Сам мозг не может чувствовать боль. В то время как мозг является центром обработки боли, когда вы порезали палец, или обожглись, сам он не имеет болевых рецепторов и не чувствует боль.

Однако мозг окружен множеством тканей, нервов и кровеносных сосудов, которые очень восприимчивы к боли и могут создать Вам головную боль.

Тем не менее, головные боли имеют различные виды, и точные причины возникновения многих остаются неясными.

Человеческий мозг и вода

80% мозга состоит из воды. Ваш мозг – это не сплошная серая масса, которую показывают по телевизору. Он представляет собой мягкую и розовую ткань благодаря пульсирующей там крови и высокому содержанию воды.

Так, что когда Вы чувствуете жажду это, то в том числе, потому что мозг требует воды.

Интересный факт! В среднем мозг человека весит 1,4 кг и он чрезвычайно чувствителен к потере воды. Если мозг будет обезвожен продолжительное время, то его правильное существование прекратится.

Возможно, Вы видели в кино или слышали о том, что мозг человека используется им лишь на 10%. Кстати, данное утверждение приписывается даже Альберту Эйнштейну, который указывал на якобы малую деятельность нашего мозга. Но на самом деле это не соответствует действительности (если бы Эйнштейн знал, что на него наговаривают, то наверняка бы очень удивился).

Вот если эта цифра была бы 100%, то тогда люди обладали бы сверхспособностями. Так уверяют нас непонятно откуда взявшиеся слухи.

Почему же этот миф так долго живет и продолжает распространяться?

Мифы и заблуждения людей о мозге

Результаты исследований показывают, что 65% опрошенных людей считают этот миф правдой; а 5% думают, что эта цифра увеличивается, веря в эволюцию.

Даже телешоу «Разрушители мифов» несколько лет назад ошибочно исправило миф о 10% задействованного мозга на 35%.

Как и большинство легенд, происхождение этого вымысла не ясно, хотя есть некоторые догадки. Истоки идут от нейробиолога Сэма Вана (Sam Van) из Пристона автора книги «Добро пожаловать в Ваш мозг».

Возможно, это был Уильям Джеймс (William James), который вначале 20 века считался одним из самых влиятельных мыслителей психологии. Он говорил: «У людей есть неиспользовавшийся интеллектуальный потенциал».

Это вполне разумное утверждение позже возродилось в искаженной форме писателем Лоуэллом Томасом (Lowell Thomas) в 1936 году в своем предисловии к книге «Как завоевывать друзей и оказывать влияние на людей».

«Профессор Уильям Джеймс из Гарварда говорил, что средний человек развивает только 10 процентов его скрытой психической способности», пишет Томас. Похоже на то, что он или кто-то еще в свое время упомянул просто понравившееся ему число.

Указание на 10% явно является ложным по нескольким причинам.

На сколько процентов работает мозг человека?

Всем известен тот факт , что весь мозг активен все время . Мозг является органом. Его живые нейроны и клетки, которые в свою очередь поддерживаются этими нейронами, всегда вызывают активность. Вы когда-нибудь слышали про то, что селезенка используется лишь на 10%? Наверняка нет.

Вот как объясняет работу головного мозга человека профессор неврологии и психологии в Университете Нью-Йорка Джо Лед. Допустим, Вы смотрите видео изображение в сканере магнитно-резонансной томографии.

Некоторые участки мозга, отвечающие за слух или визуализацию, к примеру, сейчас активны больше чем другие участки. Их деятельность будет изображена в виде цветных пятен.

Эти сгустки значимой деятельности, как правило, занимают небольшие части мозга, даже меньше 10%. Поэтому может показаться не знающему человеку, что остальная часть мозга работает на «холостом ходу».

Однако Джо Лед утверждает, что мозг при небольших действиях определенных функций все равно работает на все 100%.

На самом деле утверждения «только определенная часть мозга» являются ошибочными. Когда наш мозг работает над обработкой информации, поступающей из глаз, ушей, органов обоняния, то сначала он думает каким участком обрабатывать эту информацию.

Все это говорит о том, что у мозга множество участков, отвечающих за определенную специализацию. Работать эти участки могут, в том числе и одновременно, что вполне может составлять до 100% работы мозга. Мозг — это сложная, многозадачная сеть ткани.

Разговоры о том, что в мозгу постоянно работает только одна часть, а остальные являются застоявшейся желейной массой, глупы.

Факты обмана: Мозг можно обмануть!

Хотелось бы вам изменить ваше видение мира или испытать галлюцинации? Люди, как правило, ассоциируют такие явления с приемом наркотиков, таких как ЛСД. Однако есть способы расширить свои границы восприятия и без того чтобы прибегать к запрещенным веществам. Все что нужно — это понять, как работает наш мозг.

Наш разум — это не зеркало того, что происходит вокруг. Большая часть того, что мы видим во внешнем мире исходит изнутри и является побочным продуктом того, как мозг обрабатывает ощущения. За последние годы ученые нашли несколько способов, которые раскрывают обманчивость наших органов чувств, и вот некоторые из них.

1. Процедура Ганцфелда

На первый взгляд это может показаться плохим розыгрышем. Процедура Ганцфелда является мягкой техникой сенсорной изоляции, которая впервые была предложена в экспериментальной психологии в 1930-х годах. Для этого эксперимента нужно настроить радио на помехи, лечь на диван и с помощью лейкопластыря прикрепить на глаза по половинке шариков от настольного тенниса . В течение минуты человек начинает испытывать галлюцинации. Некоторые люди видят лошадей, бегущих в облаках, другие слышат голос умершего родственника.

Все дело в том, что наш разум зависим от ощущений и когда их становится очень мало, наш мозг начинает изобретать свои собственные .

2. Уменьшение боли

Если вы вдруг слегка поранились, посмотрите на поврежденную часть с помощью перевернутого бинокля . В этом случае, боль должна уменьшиться.

Ученые из Оксфордского университета в эксперименте продемонстрировали, что если смотреть на раненную руку через дальний конец бинокля, это визуально уменьшает размер руки, а также боль и припухлость.

Это говорит о том, что даже основные ощущения такие как боль зависят от нашего видения.

3. Иллюзия Пиноккио

Для этого опыта нужно два стула и повязка на глаза. Человек с повязкой садится на заднем сидении, направив взгляд в направлении впереди сидящего человека. Затем тот, у кого завязаны глаза, протягивает руку и помещает ее на нос того, кто сидит впереди.

В то же время другой рукой он касается своего носа и начинает слегка поглаживать оба носа. Примерно через минуту, больше 50 процентов людей заявляют, что их нос удлиняется . Это называется эффект Пиноккио или проприорецепция.

4. Обман мышления

Поднимите правую ногу на несколько сантиметров от пола и начните двигать ее в направлении часовой стрелки. Пока вы это делаете, используйте указательный палец правой руки, чтобы нарисовать в воздухе цифру 6. Ваша нога начнет поворачиваться против часовой стрелки, и вы ничего не сможете с этим поделать.

Левая половина мозга, которая контролирует правую часть тела, отвечает за ритм и синхронность. Она не может справиться с работой двух противоположных движений в одно и то же время и сочетает их в одно движение .

5. Обман слуха

Этот трюк можно проделать с тремя людьми, один из которых будет подопытным, а другие два – наблюдателями. Также вам нужны будут наушники, присоединенные к двум пластиковым трубкам с двух сторон. Попросите испытуемого сесть на стул на равном удалении между двумя наблюдателями. Каждый наблюдатель по очереди говорит в трубку с соответствующей стороны. Слушатель в этом случае правильно определяет направление звука.

Если же поменяться трубками и начать говорить, то слушатель запутается, и будет указывать противоположное от звука направление .

Слуховая локализация — это способность человека определять направление на источник звука. Слуховая система человека наделена ограниченными возможностями определять расстояние источника звука, и основывается на межзвуковой разнице во времени. Когда вы меняете трубки, то задействуется восприятие нейронов с противоположной стороны мозга и человек не может определить источник звука.

6. Иллюзия резиновой руки

Больше десяти лет назад психологи обнаружили иллюзию, которая позволяет убедить человека в том, что резиновая рука является его собственной. Для этого опыта нужна резиновая рука или надутая резиновая перчатка, кусок картона и две кисточки. Поместите резиновую руку на стол перед собой, а свою руку спрячьте за картон. Попросите кого-то одновременно поглаживать настоящую и резиновую руку, используя одни и те же движения кисточками.

Через несколько минут у вас появится ощущение, будто искусственная рука стала вашей плотью . Если попросить другого человека ударить резиновую руку, человек почувствует беспокойство и боль, так как мозг убежден, что резиновая рука настоящая.

7. Звук, который слышен тем, кому до 20-ти

Этот звук – синусоида частотой 18 000 Герц слышна тем, кому еще нет 20-ти лет. Он используется некоторыми подростками в качестве рингтона на мобильном телефоне, чтобы другие люди не смогли услышать, звонит ли телефон.

По мере того, как человек становится старше, он теряет способность слышать звуки более высоких тонов и поэтому только молодые люди младше 20 способны его уловить.

8. Эффект Пуркинье

Ян Пуркинье – основатель современной нейронауки, будучи еще ребенком, обнаружил интересную галлюцинацию. Он закрыл глаза, повернул голову в сторону солнца и начал быстро водить рукой вперед-назад перед закрытыми глазами .

Через несколько минут, Пуркинье заметил разноцветные фигуры, которые становились все более замысловатыми.

Впоследствии ученые создали специальные очки, на которых загорался свет в определенной частоте. Такая стимуляция создает короткое замыкание в визуальной коре мозга, и клетки начинают «загораться» непредсказуемым образом, что ведет к появлению выдуманных изображений.

9. Обман восприятия света

Посмотрите в центральную точку (знак плюса) черно-белого изображения в течение, по крайней мере, 30-ти секунд, а затем отведите взгляд на стену , и вы увидите яркое пятно. Поморгайте несколько раз. Что вы видите?

Посмотрите на глаз красного попугая, пока медленно считаете до 20-ти, и затем быстро посмотрите в одну точку в пустой клетке. У вас перед глазами должно появиться туманное изображение сине-зеленой птицы в клетке. То же самое можно проделать с зеленым кардиналом и в клетке появится неотчетливый силуэт птицы пурпурного цвета.

Когда мы смотрим на изображение на протяжении какого-то времени, а затем заменяем его белым фоном, то появляется остаточный образ . Это объясняется тем, что фоторецепторы (палочки и колбочки) глаз устают, возникает дисбаланс информации и появляется послеобраз.

10. Иллюзия вращающегося силуэта

Посмотрите на вращающийся силуэт девушки. Вы видите, как он вращается по часовой или против часовой стрелки? Как правило, если вы видите как силуэт вращается в одном направлении, скажем против часовой стрелки, то вам сложно увидеть его в противоположном направлении.

На самом деле, это двухмерное изображение не вращается в каком-либо направлении, а сдвигается вперед — назад . Но наш мозг воспринимает его как трехмерное изображение и интерпретирует соответственно.

Если вы посмотрите вокруг изображения, сфокусировавшись на тени или другой части, вы сможете заставить свою визуальную систему перестроиться на другое направление.


Новые статьи и фотографии в рубрике "

14 Декабря 2017

Нейроны – особая группа клеток организма, распространяющих информацию по всему телу. Используя электрические и химические сигналы, они помогают мозгу координировать все жизненно необходимые функции.

Если упростить, задачи нервной системы – собрать сигналы, поступающие из окружающей среды или из организма, оценить ситуацию, принять решение, как на них отреагировать (например, изменить частоту сердечных сокращений), а также подумать о происходящем и запомнить это. Основной инструмент для выполнения этих задач – нейроны, сплетенные по всему организму сложной сетью.

По средним оценкам, количество нейронов в головном мозге составляет 86 миллиардов, каждый из них связан еще с 1000 нейронов. Это создает невероятную сеть взаимодействия. Нейрон – основная единица нервной системы.

Нейроны (нервные клетки) составляют около 10% мозга, остальное – глиальные клетки и астроциты, функция которых заключается в поддержании и питании нейронов.

Как выглядит нейрон?

В строении нейрона можно выделить три части:

· Тело нейрона (сома) – получает информацию. Содержит ядро клетки.

· Дендриты – короткие отростки, принимающие информацию от других нейронов.

· Аксон – длинный отросток, несет информацию от тела нейрона в другие клетки. Чаще всего аксон оканчивается синапсом (контактом) с дендритами других нейронов.

Дендриты и аксоны называют нервными волокнами.

Аксоны сильно варьируют по длине, от нескольких миллиметров до метра и более. Самыми длинными являются аксоны спинномозговых ганглиев.

Типы нейронов

Классификацию нейронов можно провести по нескольким параметрам, например, по строению или выполняемой функции.

Типы нейронов в зависимости от функции:

· Эфферентные (двигательные) нейроны – несут информацию от центральной нервной системы (головного и спинного мозга) к клеткам других частей тела.

· Афферентные (чувствительные) нейроны – собирают информацию от всего организма и несут ее в центральную нервную систему.

· Вставочные нейроны – передают информацию между нейронами, чаще в пределах центральной нервной системы.

Как нейроны передают информацию?

Нейрон, получая информацию от других клеток, накапливает ее до тех пор, пока она не превысит определенный порог. После этого нейрон посылает по аксону электрический импульс – потенциал действия.

Потенциал действия формируется движением электрически заряженных частиц через мембрану аксона.

В состоянии покоя электрический заряд внутри нейрона отрицательный относительно окружающей его межклеточной жидкости. Эта разница называется мембранным потенциалом. Обычно он составляет 70 милливольт.

Когда тело нейрона получает достаточно заряда, и он «выстреливает», в соседнем участке аксона происходит деполяризация – мембранный потенциал быстро растет, а затем падает примерно за 1/1000 секунды. Этот процесс запускает деполяризацию соседнего участка аксона, и так далее, пока импульс не пройдет по всей длине аксона. После процесса деполяризации наступает гиперполяризация – кратковременное состояние отдыха, в этот момент передача импульса невозможна.


Потенциал действия чаще всего генерируют ионы калия (К+) и натрия (Na+), которые по ионным каналам перемещаются из межклеточной жидкости внутрь клетки и обратно, меняя заряд нейрона и делая его сначала положительным, а затем снижая его.

Потенциал действия обеспечивает работу клетки по принципу «все или ничего», то есть импульс или передается, или нет. Слабые сигналы будут накапливаться в теле нейрона до тех пор, пока их заряда не будет достаточно для передачи по отросткам.

Миелин

Миелин – это белое густое вещество, покрывающее большинство аксонов. Это покрытие обеспечивает электроизоляцию волокна и повышает скорость прохождения импульса по нему.


Миелинизированное волокно в сравнении с немиелинизированным.

Миелин вырабатывается шванновскими клетками на периферии и олигодендроцитами в центральной нервной системе. По ходу волокна миелиновая оболочка прерывается – это перехваты Ранвье. Потенциал действия перемещается от перехвата к перехвату, что обеспечивает быструю передачу импульса.

Такое распространенное и серьезное заболевание, как рассеянный склероз, вызвано разрушением миелиновой оболочки.

Как работают синапсы

Нейроны и ткани, которым они передают импульс, физически не соприкасаются, между клетками всегда существует пространство – синапс.

В зависимости от способа передачи информации, синапсы могут быть химическими и электрическими.

Химический синапс

После того как сигнал, передвигаясь по отростку нейрона, достигает синапса, происходит высвобождение химических веществ – нейромедиаторов (нейротрансмиттеров) в пространство между двумя нейронами. Это пространство называют синаптической щелью.


Схема строения химического синапса.

Нейромедиатор из передающего (пресинаптического) нейрона, попадая в синаптическую щель, взаимодействует с рецепторами на мембране принимающего (постсинаптического) нейрона, запуская целую цепь процессов.

Виды химических синапсов:

· глютаматэргический – медиатором является глютаминовая кислота, обладает возбуждающим эффектом на синапс;

· ГАМК-эргический – медиатором является гамма-аминомасляная кислота (ГАМК), обладает тормозящим эффектом на синапс;

· холинергический – медиатором является ацетилхолин, осуществляет нервно-мышечную передачу информации;

· адренергический – медиатором является адреналин.

Электрические синапсы

Электрические синапсы встречаются реже, распространены в центральной нервной системе. Клетки сообщаются посредством особых белковых каналов. Пресинаптическая и постсинаптическая мембраны в электрических синапсах расположены близко друг к другу, поэтому импульс способен проходить непосредственно от клетки к клетке.

Скорость передачи импульса по электрическим синапсам гораздо выше, чем по химическим, поэтому они расположены преимущественно в тех отделах, где необходима быстрая реакция, например, отвечающих за защитные рефлексы.

Еще одно отличие двух типов синапсов в направлении передачи информации: если химические синапсы могут передавать импульс только в одном направлении, то электрические в этом смысле универсальны.

Заключение

Нейроны – это, пожалуй, самые необычные клетки организма. Каждое действие, которое осуществляет тело человека, обеспечивается работой нейронов. Сложная нейронная сеть формирует личность и сознание. Они отвечают как за самые примитивные рефлексы, так и за самые сложные процессы, связанные с мышлением.

Способность клеток реагировать на раздражители внешнего мира - основной критерий живого организма. Структурные элементы нервной ткани - нейроны млекопитающих и человека - способны трансформировать раздражители (свет, запах, звуковые волны) в процесс возбуждения. Его конечный результат - адекватная реакция организма в ответ на различные воздействия внешней среды. В данной статье мы изучим, какую функцию выполняют нейроны головного мозга и периферические отделы нервной системы, а также рассмотрим классификацию нейронов в связи с особенностями их функционирования в живых организмах.

Образование нервной ткани

Прежде чем изучать функции нейрона, давайте разберемся, каким образом формируются клетки-нейроциты. На стадии нейрулы у зародыша закладывается нервная трубка. Она формируется из эктодермального листка, имеющего утолщение - нервной пластинки. Расширенный конец трубки в дальнейшем сформирует пять частей в виде мозговых пузырей. Из них образуются Основная часть нервной трубки в процессе зародышевого развития сформировывает от которого отходит 31 пара нервов.

Нейроны головного мозга объединяются, образуя ядра. Из них выходит 12 пар черепно-мозговых нервов. В организме человека нервная система дифференцируется на центральный отдел - головной и спинной мозг, состоящий из клеток-нейроцитов, и опорную ткань - нейроглию. Периферический отдел состоит из соматической и вегетативной части. Их нервные окончания иннервируют все органы и ткани организма.

Нейроны - структурные единицы нервной системы

Они имеют различные размеры, форму и свойства. Функции нейрона многообразны: участие в образовании рефлекторных дуг, восприятие раздражения из внешней среды, передача возникшего возбуждения к другим клеткам. От нейрона отходит несколько отростков. Длинный - аксон, короткие ветвятся и называются дендритами.

Цитологические исследования выявили в теле нервной клетки ядро с одним - двумя ядрышками, хорошо сформированную эндоплазматическую сеть, множество митохондрий и мощный белоксинтезирующий аппарат. Он представлен рибосомами и молекулами РНК и иРНК. Эти вещества образуют специфическую структуру нейроцитов - субстанцию Ниссля. Особенность нервных клеток - большое количество отростков способствует тому, что основная функция нейрона - передача Она обеспечивается как дендритами, так и аксоном. Первые воспринимают сигналы и передают их в тело нейроцита, а аксон - единственный очень длинный отросток, проводит возбуждение к другим нервным клеткам.Продолжая находить ответ на вопрос: какую функцию выполняют нейроны обратимся к строению такого вещества, как нейроглия.

Структуры нервной ткани

Нейроциты окружены особым веществом, которому присущи опорные и защитные свойства. Для него также характерная способность к делению. Это соединение называется нейроглия.

Эта структура находится в тесной связи с нервными клетками. Так как главные функции нейрона - это генерация и проведение нервных импульсов, то глиальные клетки оказываются под воздействием процесса возбуждения и изменяют свои электрические характеристики. Кроме трофической и защитной функций, глия обеспечивает метаболические реакции в нейроцитах и способствует пластичность нервной ткани.

Механизм проведения возбуждения в нейронах

Каждая нервная клетка образует несколько тысяч контактов с другими нейроцитами. Электрические импульсы, являющиеся основой процессов возбуждения, передаются от тела нейрона по аксону, а он контактирует с другими структурными элементами нервной ткани или входит непосредственно в рабочий орган, например, в мышцу. Чтобы установить, какую функцию выполняют нейроны, нужно изучить механизм передачи возбуждения. Он осуществляется аксонами. В двигательных нервах они покрыты и называются мякотными. В находятся безмиелиновые отростки. По ним возбуждение должно поступить в соседний нейроцит.

Что такое синапс

Место контакта двух клеток называется синапсом. Передача возбуждения в нем происходит или с помощью химических веществ - медиаторов, или путем прохождения ионов из одного нейрона в другой, то есть электрическими импульсами.

Благодаря образованию синапсов нейроны создают сетчатую структуру стволовой части головного и отделов спинного мозга. Она называется начинается из нижней части продолговатого мозга и захватывает ядра мозгового ствола, или нейроны головного мозга. Сетчатая структура поддерживает активное состояние коры больших полушарий и руководит рефлекторными актами спинного мозга.

Искусственный интеллект

Идея о синаптических связях между нейронами центральной нервной системы и изучение функций ретикулярной информации в настоящее время воплощена наукой в виде искусственной нейронной сети. В ней выходы одной искусственной нервной клетки соединены со входами другой специальными связями, дублирующими своими функциями реальные синапсы. Функция активации нейрона искусственного нейрокомпьютера - это суммация всех входных сигналов, поступающих в искусственную нервную клетку, преобразованная в нелинейную функцию от линейной составляющей. Её еще называют функцией срабатывания (передаточной). При создании искусственного интеллекта наибольшее распространение получили линейная, полулинейная и шаговая активационные функции нейрона.

Афферентные нейроциты

Они еще называются чувствительными и имеют короткие отростки, которые входят в клетки кожи и всех внутренних органов (рецепторы). Воспринимая раздражение внешней среды, рецепторы трансформируют их в процесс возбуждения. В зависимости от типа раздражителя, нервные окончания делятся на: терморецепторы, механорецепторы, ноцицепторы. Таким образом, функции чувствительного нейрона - это восприятие раздражителей, их различение, генерация возбуждения и передача его в центральную нервную систему. Сенсорные нейроны входят в задние рога спинного мозга. Их тела располагаются в узлах (ганглиях), находящихся вне центральной нервной системы. Так образуются ганглии черепно-мозговых и спинномозговых нервов. Афферентные нейроны имеют большое количество дендритов, вместе с аксоном и телом они являются обязательным компонентом всех рефлекторных дуг. Поэтому функции заключаются как в передаче процесса возбуждения в головной и спинной мозг, так и в участии в образовании рефлексов.

Особенности интернейрона

Продолжая изучать свойства структурных элементов нервной ткани, выясним, какую функцию выполняют вставочные нейроны. Этот вид нервных клеток принимает биоэлектрические импульсы от сенсорного нейроцита и передает их:

а) другим интернейронами;

б) двигательным нейроцитам.

Большинство интернейронов имеют аксоны, концевые участки которых - терминали, связаны с нейроцитами одного центра.

Вставочный нейрон, функции которого - интеграция возбуждения и распространения его далее в отделы центральной нервной системы, являются обязательным компонентом большинства безусловно-рефлекторных и условно-рефлекторных нервных дуг. Возбуждающие интернейроны способствуют передаче сигнала между функциональными группами нейроцитов. Тормозные вставочные нервные клетки получают возбуждение из собственного центра по обратным связям. Это способствует тому, что вставочный нейрон, функции которого - передача и длительное сохранение нервных импульсов, обеспечивает активацию сенсорных спинномозговых нервов.

Функция двигательного нейрона

Мотонейрон является заключительной структурной единицей рефлекторной дуги. Он имеет большое тело, заключенное в передние рога спинного мозга. Те нервные клетки, которые иннервируют имеют названия этих двигательных элементов. Другие эфферентные нейроциты входят в секретирующие клетки желез и вызывают выделение соответствующих веществ: секретов, гормонов. В непроизвольных, то есть безусловно-рефлекторных актах (глотание, слюноотделение, дефекация) эфферентные нейроны отходят от спинного мозга или от стволовой части головного мозга. Для выполнения сложных действий и движений организм использует два вида центробежных нейроцитов: центральный двигательный и периферический двигательный. Тело центрального мотонейрона находится в коре головного мозга, вблизи от роландовой борозды.

Тела периферических двигательных нейроцитов, иннервирующих мышцы конечностей, туловища, шеи, расположены в передних рогах спинного мозга, а их длинные отростки - аксоны - выходят из передних корешков. Они образуют моторные волокна 31 пары спинномозговых нервов. Периферические двигательные нейроциты, иннервирующие мышцы лица, глотки, гортани, языка располагаются в ядрах блуждающего, подъязычного и языкоглоточного черепно-мозговых нервов. Следовательно, главная функция двигательного нейрона - беспрепятственное проведение возбуждения к мышцам, секретирующим клеткам и другим рабочим органам.

Обмен веществ в нейроцитах

Главные функции нейрона - образование биоэлектрического и передача его другим нервным клеткам, мышцам, секретирующим клеткам - обусловлены особенностями строения нейроцита, а также специфическими реакциями обмена веществ. Цитологические исследования доказали, что нейроны содержат большое количество митохондрий, синтезирующих молекулы АТФ, развитый гранулярный ретикулум со множеством рибосомных частиц. Они активно синтезируют клеточные белки. Мембрана нервной клетки и его отростков - аксона и дендритов выполняет функцию избирательного транспорта молекул и ионов. Метаболические реакции в нейроцитах протекают с участием разнообразных ферментов и характеризуются высокой интенсивностью.

Передача возбуждения в синапсах

Рассматривая механизм проведения возбуждения в нейронах, мы ознакомились с синапсами - образованиями, возникающими в месте контакта двух нейроцитов. Возбуждения в первой нервной клетке вызывает образование в коллатералях её аксона молекул химических веществ - медиаторов. К ним относятся аминокислоты, ацетилхолин, норадреналин. Выделяясь из пузырьков синоптических окончаний в синоптическою щель, он может влиять как на собственную постсинаптическую мембрану, так и воздействовать на оболочки соседних нейронов.

Молекулы нейромедиаторов служат раздражителем для другой нервной клетки, вызывая в её мембране изменения зарядов - потенциал действия. Таким образом, возбуждение быстро распространяется по нервным волокнам и достигает отделов центральной нервной системы или же поступает в мышцы и железы, вызывая их адекватное действие.

Пластичность нейронов

Учеными установлено, что в процессе эмбриогенеза, а именно в стадии нейруляции, из эктодермы развивается очень большое количество первичных нейронов. Около 65% из них погибают еще до момента рождения человека. В течение онтогенеза некоторые клетки головного мозга продолжают элиминировать. Это естественный запрограммированный процесс. Нейроциты, в отличие от эпителиальных или соединительных клеток, неспособны к делению и регенерации, так как гены, отвечающие за эти процессы, инактивированы в хромосомах человека. Тем не менее мозг и умственная работоспособность могут сохраняться многие годы, существенно не снижаясь. Это объясняется тем, что функции нейрона, утраченные в процессе онтогенеза, берут на себя другие нервные клетки. Им приходится усиливать свой обмен веществ и создавать новые дополнительные нервные связи, компенсирующие утраченные функции. Это явление называется пластичностью нейроцитов.

Что отражается в нейронах

В конце ХХ века группа итальянских нейрофизиологов установила интересный факт: в нервных клетках возможно зеркальное отражение сознания. Это значит, что в коре головного мозга формируется фантом сознания людей, с которыми мы общаемся. Входящие в зеркальную систему нейроны выполняют функции резонаторов мыслительной активности окружающих людей. Поэтому человек способен предугадывать намерения собеседника. Структура таких нейроцитов также обеспечивает особый психологический феномен, называемый эмпатией. Он характеризуется способностью проникать в мир эмоций другого человека и сопереживать его чувствам.

Читайте также: