Какие продукты содержат дубильные вещества. Дубящие вещества и промышленность. Польза для пищеварительной системы

О существовании многих веществ среднестатистический человек даже не подозревает, несмотря на то, что они могут находиться в его организме и даже выполнять какие-то довольно важные функции. Так о витаминах и минералах слышал, наверное, уже каждый, а такие элементы, как танины знакомы не многим. Эти вещества представляют собой фенольные соединения, они довольно широко распространены в растительном мире, и в определенных случаях могут принести значительную пользу нашему организму. Танин содержится в чае и некоторых других продуктах. Поговорим о том в каких продуктах содержится танины, их свойства рассмотрим, а также узнаем, какая польза и вред могут быть нашему организму от их потребления.

Танин также частенько называют дубильной кислотой, он содержится в коре многих деревьев, а еще в листиках и плодах некоторых растений. Это вещество обладает многими полезными качествами, поэтому его широко применяют в пищевой, а также в легкой промышленности, и используют для производства разных медикаментов.

Танины в растениях

Много их содержится в следующих растениях: лиственница, каштан, дуб, ель, акация, камелия китайская, эвкалипт, гранатник, какао, хурма, квебрачо, цинхона.

Танин в чае

Чай является источником пятнадцати-тридцати процентов танина. Многие исследователи раньше считали, что в таком напитке присутствуют обычные танины, однако это не так. Чайный танин – теотанин имеет другую структуру, нежели его синтетический аналог и прочие дубильные кислоты из растений. Именно теотаин дает чаю приятную терпкость, которая создает его основной вкус. Больше всего дубильных кислот содержится в зеленом чае, они придают ему особенный аромат, помогают насытить организм витамином Р, а также . При этом такие вещества не способны оказывать дубящее воздействие на слизистые оболочки желудка.

Танины в продуктах

Значительное количество танина присутствует в хурме. Свойства танина помогают ей эффективно очищать организм, выводить из него шлаки и токсины. Также дубильные вещества способствуют оптимизации деятельности пищеварительного тракта, устраняют диспепсию и облегчают проявления гастрита.

Довольно много танинов есть также в гранате, некоторых ягодах (клюкве, землянике, чернике и винограде), благодаря чему они обладают бактериостатическими и бактерицидными качествами. Потребление таких продуктов помогает нейтрализовать инфекцию и устранить ее из организма.

Среди продуктов, богатых дубильными кислотами, можно выделить орешки, они представлены фисташками, арахисом, грецким орехом, пеканом, миндалем и лесным орехом. Танин на порядок увеличивает антиоксидантные качества таких продуктов. Значительное количество такого вещества содержится в некоторых пряностях, в гвоздике, эстрагоне, тмине, корице, тимьяне, ванили и лавровом листе. Также довольно много танина в бобах, шоколаде и качественном вине.

Чем ценны танины, польза от них нам какая?

Как на человека влияет танин, действие его чем обусловлено?

Действие танинов имеет вяжущий и дубящий характер. Первый связан со способностью вызывать свертывание белков раневого экссудата или слизи, образование пленки, защищающей нервные окончания тканей.

В результате начинается местное сужение сосудов, уплотнение мембран клеток. Воспалительная реакция спадает.

Применение танинов в медицине

В медицине дубильные кислоты синтетического происхождения применяются довольно широко. Их используют для устранения воспалительных поражений ротовой полости, гортани либо десен, а также при коррекции насморка, простуды, ларингита и пр. Такие вещества используются для устранения язвенных поражений, ожогов, некрозов и трещин сосков. Танин помогает справиться с интоксикациями многими алкалоидами, за исключением морфия, атропина, кокаина, а также никотина и эзерина салицилата.

Дубильные кислоты применяются в качестве вяжущих препаратов, их частенько используют в качестве противоядий, к примеру, при интоксикации организма солями ртути либо свинца и прочими тяжелыми металлами. Такие элементы лечат диарею, улучшают свертываемость крови, помогают справиться с геморроем. Их применение показано при коррекции многих дерматологических вирусных инфекций, представленных экземой, экзантемой, герпетическими инфекциями и пр. Танины помогают и при поражениях вирусами, например, ветрянкой, папулезным акродерматитом и пр.

Такие вещества способствуют лечению хирургических ран в гинекологической, урологической и проктологической практике. Они помогают ускорить заживление ожогов первой степени, а также трещин заднего прохода. Еще применяются хирургами перед операцией для дубления кожи своих рук. Дубильные вещества также применяются для устранения ряда детских кожных заболеваний, среди которых ягодичная эритема, потливость стоп, интертриго и импетиго.

Кроме всего прочего такие элементы затормаживают выведение витамина С из организма и на порядок улучшают его усвоение. Крема на их основе отлично снимают повышенную отечность, раздражение и зуд, помогают справиться с болями и локальными воспалениями. А нанесение их на здоровую кожу эффективно снижает выделение пота.

А вот где еще используется танин: применение его в промышленности

Танин выпускается в синтетической форме, его используют для приготовления лекарственных составов и в разной промышленности: при изготовлении кожи, меха, чернил, текстильных волокон. Также такое вещество применяется в форме пищевого красителя и для достижения терпкости и вяжущего привкуса у определенных напитков.

Опасны ли танины, вред от них может быть?

Медики не советуют потреблять танин внутрь для устранения диареи, так как он вначале вступает в реакцию с протеинами на слизистой желудка, а до кишечника почти не доходит. Потребление вовнутрь в значительном количестве чревато развитием диспепсии и нарушениями аппетита.

Введение в форме клизм противопоказано при наличии анальных трещин. Кроме того прием дубильных веществ в чрезмерном объеме может стать причиной нарушения деятельности почек, вызывать интоксикацию печени, раздражение ЖКТ и помешать нормальному усвоению витаминов и минералов.

Дубильные вещества - сложные высокомолекулярные природные растительные фенольные соединения, способные осаждать белки и алкалоиды и дубить невыделанную шкуру животных, превращая ее в прочный, неподдающийся гниению продукт - кожу.

Термин «дубильные вещества» был введен французским ученым П. Сегеном в 1796 г.

Таннины, или танниды, - синоним термина «дубильные вещества». Он происходит от латино-кельтского обозначения дуба - «тан» - и широко распространен в научной литературе.

Способность этих веществ «дубить» белки шкур животных, делать их непроницаемыми для воды и устойчивыми к микробному гниению основана на их свойстве взаимодействовать с коллагеном, приводящим к образованию стойких полимерных структур. Дубление - сложный физико-химический процесс, связанный с возникновением водородных, ковалентных и электровалентных связей между молекулами коллагена и фенольными группами дубильных веществ.

Дубящими свойствами обладают только многоядерные фенолы, содержащие более одной ОН-группы. Это крупные фенольные молекулы с молекулярной массой от 300 до 500 и иногда до 20 000. Фенолы одноядерные и не содержащие многочисленных ОН-групп лишь адсорбируются на белках, но не могут образовать перекрестные связи между собой и белковыми группами, «сшивать» мономерные белковые группы. Они в той или иной степени инактивируют ферментные белки, но не вызывают фенол-белковых сцепок в коллагене - основном белковом компоненте шкур. Поэтому низкомолекулярные фенолы имеют лишь вяжущий вкус, их еще называют пищевыми (чайными) таннинами.

Классификация

Первая попытка классификации дубильных веществ была предпринята шведским химиком И. Берцелиусом, который разделил эти вещества на две группы по их способности давать с солями Fe (III) черные соединения зеленоватого или синеватого оттенка. Впоследствии эта простая классификация дубильных веществ легла в основу более точной научной классификации, предложенной К. Фрейденбер-
гом. Он стал делить дубильные вещества в зависимости от их способности гидролизоваться под действием кислот (или ферментов) на две группы:

1) гидролизуемые дубильные вещества:

Галлотаннины;

Эллаготаннины;

Депсиды, или несахарные эфиры карбоновых кислот;

2) негидролизуемые (конденсированные) дубильные вещества, или флоба- фены, которые подразделяют на производные:

Катехинов (флаван-3-олов);

Лейкоантоцианидинов (флаван-3,4-диолов);

Гидростильбенов.

Гидролизуемые дубильные вещества. Галлотаннины - сложные эфиры гексоз (обычно D-глюкозы) и галловой кислоты. В глюкозе имеется пять ОН-групп, благодаря которым могут образовываться моно-, ди-, три-, тетра-, пента- и полигаллоильные эфиры. Представителем группы полигаллоильных эфиров является китайский таннин, который получают из листьев и образующихся на них наростов (галлов) сумаха полукрылатого (Rhus semialata Murr.). Представителем многогаллоильных эфиров является P-D-глюкогаллин, выделенный из корня ревеня и листьев эвкалипта.

Эллаготаннины - эфиры D-глюкозы и гексадифеноловой, хебуловой и других кислот, образующихся вместе c эллаговой кислотой. Эллаготаннины найдены в коре плодов граната, кожуре грецкого ореха, коре дуба, соплодиях ольхи. В растениях присутствует обычно не эллаговая, а гексагидроксидифеновая кислота. При кислотном гидролизе дубильных веществ эта кислота превращается в дилак- тон - эллаговую кислоту.


Депсиды представляют собой эфиры галловой кислоты с хинной, хлорогено- вой, кофейной, гидроксикоричной кислотами, атакже флаванами. Эфиры галловой кислоты и катехинов находятся в листьях чая. Из листьев зеленого чая выделен теогаллин.

Теогаллин (депсид)

Преимущественно гидролизуемые дубильные вещества содержат такие ЛР, как скумпия кожевенная, сумах дубильный, горец змеиный, бадан толстолистный, кровохлебка лекарственная, ольха черная и о. серая.

Преимущественно конденсированные дубильные вещества содержат дуб обыкновенный, лапчатка прямостоячая, черника обыкновенная, черемуха обыкновенная.

Негидролизуемые дубильные вещества. Представляют собой олигомеры и полимеры катехинов, лейкоантоцианидинов и гидроксистильбенов, где звенья связаны друг с другом прочными углерод-углеродными связями в положениях С2-С6, С2-С8, С4-С8, С5-С2. Кроме того, они никогда не содержат остатков сахара.

При образовании конденсированных дубильных веществ разрывается пира- новое кольцо катехина (лейкоантоцианидина) и С2-атом соединяется С-С-свя- зью с С6-атомом другой молекулы катехина (лейкоантоцианидина). Конденсированные дубильные вещества не распадаются под действием кислот; наоборот, они имеют тенденцию из олигомеров превращаться в более длинные полимеры (полимеризация в кислоте) с образованием аморфных, часто окрашенных в красный цвет соединений - флобафенов. Образование конденсированных дубильных веществ происходит в живом растении в процессе биосинтеза и после его смерти - при технологической обработке древесины.



Образование конденсированных дубильных веществ из мономеров

Физико-химические свойства

По физико-химическим свойствам дубильные вещества представляют собой аморфные соединения желтоватого или бурого цвета.

Природные дубильные вещества имеют среднюю молекулярную массу 500-5000, но отдельные соединения - до 20 000. При нагревании до 180-200 °С дубильные вещества (не плавясь) обугливаются, выделяя пирогаллол или пирокатехин. Растворяются во многих органических растворителях (ацетон, этанол, этилацетат, пиридин), но не в хлороформе, петролейном эфире, бензоле. Также хорошо растворимы в воде, лучше горячей. При растворении в воде дают коллоидные растворы слабокислой реакции. С солями тяжелых металлов образуют окрашенные комплексы. Осаждаются растворами аминокислот, белков, алкалоидов. Многие дубильные вещества - оптически активные соединения. Обладают вяжущим вкусом. Легко окисляются на воздухе, приобретая красно-бурую окраску, иногда темно-коричневую. Присутствие гидроксидов щелочных металлов сильно ускоряет процесс окисления дубильных веществ. Гидролизуемые дубильные вещества под действием кислот или ферментов распадаются на органические кислоты и глюкозу.

Выделение из ЛРС

Дубильные вещества - это смесь различных полифенолов, имеющих сложную структуру, очень лабильных, поэтому выделение и анализ отдельных компонентов дубильных веществ представляет большие трудности. Для получения суммы дубильных веществ ЛРС экстрагируют горячей водой, охлаждают, а затем экстракт обрабатывают последовательно:

1) петролейным эфиром или бензолом (для очистки от хлорофилла, терпе- ноидов, липидов);

2) диэтиловым эфиром, который извлекает катехины, оксикоричные кислоты и другие фенольные соединения;

3) этилацетатом, в который переходят лейкоантоцианидины, эфиры оксико- ричной кислоты и др.

Оставшееся водное извлечение с дубильными веществами и другими фенольными соединениями и фракциями 2 и 3 (диэтилового эфира и этилацетата) разделяют на индивидуальные компоненты с помощью различных видов хроматографии. Используют:

Адсорбционную хроматографию на колонках целлюлозы, полиамида (иногда вместо полиамида используют гольевый порошок);

Распределительную хроматографию на колонках силикагеля;

Ионообменную хроматографию;

Гель-фильтрацию на колонках сефадекса и др.

Идентификация индивидуальных дубильных веществ основана на сравнении Rf в хроматографических методах (на бумаге, в тонком слое сорбента), спектральных исследованиях, качественных реакциях и изучении продуктов расщепления (для гидролизуемых дубильных веществ).

Качественное выделение дубильных веществ

Качественные реакции определения дубильных веществ можно разделить на две группы:

1) общие (осаждения) - для обнаружения присутствия дубильных веществ;

2) групповые (цветные) - для установления принадлежности дубильных веществ к определенной группе.

Прежде всего для проведения качественных реакций готовят водное извлечение дубильных веществ из ЛРС.

Дубильные вещества обнаруживают, используя следующие реакции:

Соединяя с 1 % раствором желатина в 10 % растворе NaCl. Появляется муть, исчезающая при добавлении избытка желатина. Реакция специфична;

Осаждая солями алкалоидов (например, сульфатом хинина). Образуется белый осадок;

Соединяя с 5 % раствором дихромата калия (К2Сг2О7). Образуется коричневый осадок или муть. Эта же реакция используется и как гистохимическая для обнаружения локализации дубильных веществ в ЛРС;

Соединяя с раствором основного ацетата свинца: образуется белый осадок;

Соединяя с ванилином (в присутствии 70 % серной или концентрированной хлористо-водородной кислоты) дубильные вещества, содержащие мономеры катехинового типа, развивают красное окрашивание.

Классификацию дубильных веществ проводят с помощью следующих реакций:

С 1 % раствором железоаммонийных квасцов (или другими источниками ионов Fe3+): гидролизуемые дубильные вещества дают черно-синее окрашивание, а конденсированные - черно-зеленое;

С 10 % раствором среднего ацетата свинца в 10 % уксусной кислоте: гидролизуемые дубильные вещества выпадают в белый хлопьевидный осадок, а конденсированные остаются в растворе и их можно также затем определить (например, по зеленовато-черному окрашиванию с Fe3+);

Со смесью из 40 % раствора формальдегида и концентрированной HCl: конденсированные дубильные вещества выпадают в осадок, а гидролизуемые остаются в водном растворе (что можно установить по синевато-черному окрашиванию в дополнительном тесте с Fe3+);

С кристалликами NaNO2 и раствором 0,1 М HCl: при наличии в экстракте ЛРС дубильных веществ появляется коричневое окрашивание;

С раствором HCl и добавлении 1 % раствора (или кристалликов) ванилина гидролизуемые дубильные вещества, состоящие из мономеров катехинов, при нагревании дают ярко-красное окрашивание.

Гидролизуемые дубильные вещества, состоящие из мономеров лейкоантоцианидинов, можно обнаружить, нагревая извлечение с раствором HCl: появляется красное окрашивание (за счет образования анто- цианидинов, дающих красное окрашивание в кислых значениях рН);

При добавлении бромной воды и нагревании конденсированные дубильные вещества в экстракте из ЛРС выпадают в осадок.

При хроматографическом определении дубильных веществ этанольный экстракт из ЛРС наносят на стартовую линию хроматографической пластинки «Си- луфол», помещают в хроматографическую камеру (с соответствующими растворителями, указанными в НД), а после проведения разделения пластинку просматривают в УФ-свете и отмечают, что некоторые производные катехинов имеют голубую флуоресценцию, которая усиливается при обработке хроматограмм 1 % раствором ванилина в концентрированной HCl. После выдерживания хроматограмм в парах HCl с последующим нагреванием в сушильном шкафу при температуре 105 °С в течение 2 мин дубильные вещества лейкоантоцианидинового типа переходят в антоцианидины розового или красно-фиолетового цвета.

Количественное определение дубильных веществ

Методы количественного определения дубильных веществ в ЛРС можно разделить на гравиметрические, титриметрические и физико-химические.

Гравиметрические методы основаны на количественном осаждении дубильных веществ солями тяжелых металлов, желатиной или адсорбцией гольевым порошком. Методы осаждения дубильных веществ ацетатом меди или желатиной потеряли свое значение.

Однако весовой единый метод (ВЕМ) применяется в кожевенной промышленности. Метод основан на способности дубильных веществ давать прочные соединения с коллагеном кожи. Для этого полученное водное извлечение из ЛРС делят на две равные части. Одну часть выпаривают, высушивают и взвешивают; вторую обрабатывают гольевым (кожным) порошком, фильтруют. Фильтрат выпаривают, высушивают и взвешивают. По разности сухих остатков 1-й и 2-й частей (т. е. контроля и опыта) определяют содержание дубильных веществ в растворе.

Титриметрическийметод, включенный в ГФ РБ (вып. 2, с. 348), именуемый методом Левенталя - Нейбауэра, основан на окислении фенольных ОН-групп перманганатом калия ^MnO4) в присутствии индигосульфокислоты, являющейся регулятором и индикатором реакции. После полного окисления дубильных веществ начинает окисляться индигосульфокислота до изатина, в результате чего окраска раствора из синей переходит в золотисто-желтую.

Другой титриметрический метод определения дубильных веществ - метод осаждения таннина сульфатом цинка с последующим комплексонометрическим титрованием трилоном Б в присутствии ксиленового оранжевого (используется, в частности, для определения таннина в листьях сумаха дубильного и скумпии кожевенной).

Физико-химические методы определения дубильных веществ:

Колориметрические - связаны со способностью дубильных веществ давать окрашенные соединения с фосфорно-молибденовой или фосфорно-вольфрамовой кислотами в присутствии Na2CO3 или с реактивом Фолина - Дениса (на фенолы). ГФ РБ (т. 1; 2.8.14) предлагает фотоколометрическое определение экстрагированных из ЛРС в водный раствор дубильных веществ с раствором фосфорно-молибденового реагента в присутствии натрия карбоната при длине волны 760 нм;

Хромато-спектрофотометрические и нефелометрические методы, которые используют главным образом в научных исследованиях.

Распространение в растительном мире, условия образования и роль в растениях

Дубильные вещества широко распространены в растительном мире. Они встречаются в грибах, водорослях, папоротниках, хвощах, мхах, плаунах, у высших растений (покрыто- и голосеменных). Многие хвойные накапливают достаточно большое количество дубильных веществ. Максимальное их накопление обнаружено у отдельных представителей двудольных растений, тогда как у однодольных оно отмечено лишь у некоторых семейств. Низкое содержание дубильных веществ у злаков. У двудольных некоторые семейства (например, Розоцветные, Гречишные, Бобовые, Ивовые, Сумаховые, Буковые, Вересковые) насчитывают многие роды и виды, где содержание таннидов доходит до 20-30 % и более. Наивысшее содержание дубильных веществ выявлено в патологических образованиях - галлах (до 60-80 %). Древесные формы богаче дубильными веществами, чем травянистые. Дубильные вещества неравномерно распределены по органам и тканям растений. Они накапливаются главным образом в коре и древесине деревьев и кустарников, а также в подземных частях травянистых многолетников; зеленые части растений значительно беднее дубильными веществами. В частности, дубильные вещества накапливаются:

В подземных органах (лапчатка прямостоячая, кровохлебка лекарственная, бадан толстолистный);

Коре (дуб обыкновенный);

Траве (виды зверобоя);

Плодах (черника обыкновенная, черемуха обыкновенная, ольха клейкая и

о. серая);

Листьях (сумах дубильный, скумпия кожевенная).

Дубильные вещества аккумулируются в вакуолях, а при старении клеток адсорбируются на клеточных стенках. Чаще всего в растениях встречается смесь гидролизуемых и конденсированных дубильных веществ с преобладанием соединений той или иной группы.

Содержание дубильных веществ в растениях изменяется в зависимости от периода вегетации и возраста растений. Их накопление одновременно сопровождается резким увеличением массы корневых систем. С возрастом растений количество дубильных веществ в них уменьшается. Период вегетации влияет не только на количественный, но и на качественный состав дубильных веществ.

Растущие на солнце растения накапливают больше дубильных веществ, чем растущие в тени (так, в тропических растениях их образуется значительно больше, чем в растениях умеренных широт). На содержание дубильных веществ в растениях влияет также высота над уровнем моря, время года - особенно в областях с резко выраженной сезонностью климата. Содержание дубильных веществ зависит как от климатических, почвенных, так и от генетических (наследственных) факторов растения.

Установлено, что большинство дубильных веществ в листьях находится в клетках паренхимы, окружающих жилку, т. е. дубильные вещества образуются в листьях и оттуда проходят в клетки флоэмы проводящих пучков, по которым разносятся по всему растению. Обладая бактерицидными свойствами (благодаря своей фенольной природе), они препятствуют гниению древесины и являются веществами, защищающими растения от вредителей и возбудителей заболеваний. Дубильные вещества также участвуют в процессах метаболизма растений. Они откладываются как запасные продукты, которые могут использоваться затем при весеннем пробуждении и нарастании вегетативных органов.

Биомедицинское действие и применение

Дубильные вещества и содержащие их ЛР применяют в основном в качестве вяжущих, противовоспалительных и кровоостанавливающих средств.

Растворы таннидов связываются с белками кожи, образуя непроницаемую для воды пленку. На этом основано их медицинское применение в виде вяжущих средств, так как образующаяся на слизистых оболочках пленка препятствует дальнейшему воспалению, а нанесенные на рану, они свертывают кровь и поэтому действуют как местные кровоостанавливающие средства. Свойство образования пленки на языке обусловливает характерный вяжущий вкус дубильных веществ.

Как вяжущие средства;

Кровоостанавливающие средства;

Противовоспалительные средства;

Антимикробные средства;

а также в качестве:

P-витаминных и антисклеротических средств (гидролизуемые и конденсированные дубильные вещества);

Антиоксидантов и гипооксантов (конденсированные дубильные вещества);

Противоопухолевых средств (конденсированные дубильные вещества);

Противоядия при отравлении гликозидами, алкалоидами и солями тяжелых металлов (дубильные вещества).

Показано, что большие дозы дубильных веществ оказывают противоопухолевое действие, средние - радиосенсибилизирующее, малые - противолучевое.

Широкое применение дубильные вещества находят также в кожевенной, коньячной и пищевой промышленности.

Заготовка ЛРС, содержащего дубильные вещества

Заготовку проводят в период максимального содержания дубильных веществ. Сушат быстро при температуре 50-60 °С, так как продолжительное хранение свежего сырья ведет к гидролитическому расщеплению гидролизуемых и конденсированных дубильных веществ под влиянием ферментов. Высушенное ЛРС хранят цельным в сухом помещении в упакованном виде. При хранении измельченного ЛРС повышается скорость окисления дубильных веществ, изменяется цвет.

Животных), или же составляют (патологические дубильные вещества) более или менее значительную часть болезненных наростов, образующихся на листьях и других органах некоторых видов дуба и сумаха вследствие укола, производимого насекомыми (см. дубильные материалы).

Свойства

Дубильные вещества в основном аморфны , имеют более или менее ясно выраженный кислотный характер и обладают свойством (по преимуществу физиологические дубильные вещества) дубить кожу (шкуры), то есть отнимать у них в значительной мере способность к гниению и затвердеванию при высыхании.

Будучи веществами легко окисляющимися, они в присутствии щелочей буреют, поглощая кислород воздуха, и во многих случаях действуют восстановительно, например, на соли благородных металлов, а некоторые и на фелингову жидкость .

История изучения

Несмотря на то, что дубильные вещества стали известны уже давно (таннин был впервые получен Николя Дейе и независимо Сегеном в 1797 г. и в руках Берцелиуса в 1815 г. имелся уже в довольно чистом состоянии) и много изучались, к началу XX века они были недостаточно исследованными, и не только химическая натура и строение почти всех их оставалось невыясненными, но даже и эмпирический состав очень многих из них разными исследователями делался различно. Объясняется это легко, с одной стороны, тем, что, будучи в большинстве веществами, не способными кристаллизоваться, они трудно получаются в чистом виде, а с другой - малою их стойкостью и легкою изменяемостью. Г. Глазивец (1867), как и многие другие, считал все дубильные вещества за гликозиды или тела, им подобные; однако позднейшие исследования показали, что таннин хотя, по-видимому, и встречается в соединении с глюкозой в альгаробиллах и мироболанах (Zöllfel, 1891), но сам по себе не есть гликозид (H. Schiff 1873), также и дубильные кислоты дубовой коры (Etti 1880, 83, 89, Löwe 1881), равно как и очень многие другие дубильные вещества, ничего общего с гликозидами не имеют, а получение из некоторых из них сахаристых веществ обусловливалось исключительно нечистотою исследовавшихся препаратов. В настоящее время можно с достаточной уверенностью судить лишь о строении таннина, представляющего ангидрид галловой кислоты (см. и ниже); что же касается других, то в них пока лишь, по-видимому, возможно предполагать, судя по реакциям распадения и некоторым другим, частью ангидридные соединения многоатомных фенолокислот и фенолов, образованные либо по типу простых, либо по типу сложных эфиров, частью ароматические кетонокислоты, являющиеся продуктами конденсации производных галловой кислоты; но часть дубильных веществ всё же должно и поныне считать за глюкозиды. Ввиду неизвестности строения сама собою понятна невозможность естественной группировки дубильных веществ - собственно говоря, дубильные вещества выделяются в особую группу органических соединений, обладающих некоторой совокупностью общих признаков, лишь благодаря именно неизвестности их строения. Весьма возможно, что по выяснении последнего они распределятся со временем по различным классам органических соединений, и тогда не представится более надобности и в особом общем названии для них, а нынешнее название «дубильное вещество», согласно недавнему предложению Ф. Рейнитцера (англ.) русск. , придется, пожалуй, удержать только для тех из них, которые на самом деле способны дубить кожи. Деление их по окрашиванию, производимому с солями окиси железа, на железосинящие (Eisenblauende) и железозеленящие (Eisengrünende) ныне оставлено, потому что одно и то же дубильное вещество может давать иногда синее, а иногда зелёное окрашивание, смотря по тому, какую взять соль железа, а сверх того, окрашивание может изменяться от прибавки, например, малого количества щелочи. Деление дубильных веществ на физиологические (см. выше), дубящие кожу и вместе с тем дающие при сухой перегонке пирокатехин и не дающие галловой кислоты при кипячении с слабой серной кислотой, и патологические , для дубления менее пригодные (хотя и осаждающиеся раствором клея), при сухой перегонке дающие пирогаллол, а при кипячении со слабой серной кислотой - галловую кислоту, также не вполне отвечает фактам, ибо, как в настоящее время известно, и патологические дубильные вещества могут, хотя и не столь успешно, служить для дубления, а кроме того, таннин, например, являясь по преимуществу патологическим дубильным веществом, встречается, по-видимому, и как нормальный продукт (сумах , альгаробилла, мироболаны). Как кислоты дубильные вещества образуют металлические производные - соли, из которых свинцовые, представляющие нерастворимые в воде аморфные осадки, нередко применяются для извлечения дубильного вещества из водных экстрактов дубильных материалов, а также при анализе.

Способы получения

Для получения дубильного вещества в чистом состоянии природные дубильные материалы экстрагируют водой или другими растворителями: крепким или слабым спиртом, чистым эфиром или в смеси со спиртом, уксусным эфиром и т. п. ; экстракты выпаривают, и получаемые в остатке дубильные вещества очищают с помощью обработки их теми или другими из указанных растворителей. Чаще, приготовив водный или водно-спиртовый экстракт, извлекают из него дубильное вещество взбалтыванием с уксусным или простым эфиром или с их смесью или же осаждают (лучше фракционированно) уксуснокислым свинцом и, отфильтровав, разлагают осадки свинцовых соединений сернистым водородом . По-видимому, последний способ, практиковавшийся весьма часто прежними исследователями, не всегда даёт удовлетворительные результаты в смысле чистоты получаемых продуктов (Etti). Пользуются иногда для осаждения дубильных веществ из водных экстрактов уксуснокислым хинином , уксуснокислою медью, рвотным камнем , поваренною солью, соляной кислотой и др. Для очищения прибегают иногда к помощи диализа , дающего с таннином хорошие результаты (Löwe, Biedel).

Описание отдельных дубильных веществ

При описании дубильных веществ необходимо подробно остановиться лишь на немногих важнейших для практики и лучше исследованных.

Танин

Танин, галлодубильная кислота или просто дубильная кислота (Galläpfelgerbsäure, Gallusgerbsäure, acide gallotannique), находится в различных сортах чернильных орешков , патологических кнопперсах, сумахе , альгаробилле, мироболанах; имеет состав C 14 H 10 O 9 ; представляет вяжущего вкуса аморфный порошок, растворимый в воде, спирте и уксусном эфире, нерастворимый в эфире, бензоле и др.; оптически недеятелен; даёт с хлорным железом в водном растворе чёрно-синий осадок, что применяется как качественная реакция на соли окиси железа; легко окисляется, поглощая в присутствии щелочей кислород из воздуха и восстанавливая закись меди из солей её окиси и соли серебра; осаждается из водных растворов (в отличие от галловой кислоты) клеем, сырой кожей, алкалоидами, альбуминатами, слабыми соляной и серной кислотами и многими солями (напр., поваренной). Согласно К. Бёттингеру (1888), соединение танина с клеем содержит около 34 % танина. Танин разлагает углекислые соли, обнаруживая ясно кислотные свойства. Его соли аморфны, в основном нерастворимы и своим составом указывают на присутствие в его частице лишь одного карбоксила (H. Schiff). При нагревании до 210° танин дает пирогаллол ; при кипячении с слабой серной кислотой или едким кали превращается нацело в галловую кислоту. Различные сорта продажного танина дают при этом также изменчивые количества глюкозы, что и дало повод Штреккеру и др. рассматривать танин как глюкозид галловой кислоты. Однако вполне чистый танин, полученный, например, экстрагированием уксусным эфиром, не образует следов глюкозы (Löwe). Возможно, что в продажных сортах в виде подмеси находится глюкозид, но не галловой кислоты, а танина (H. Schiff).], при кипячении с водным аммиаком распадается на галламид и галловокислый аммиак (Etti, 1884), подобно тому, как ангидрид молочной кислоты даёт амид этой кислоты и её аммиачную соль; при кипячении с уксусным ангидридом образует пятиацетильный эфир C 14 H 5 (C 2 H 3 O)5O 9 . Эти реакции определяют строение танина как дигалловой кислоты, представляющей ангидрид галловой

С 6 H 2 (OH) 3 СО-О-С 6H 2 (ОН) 2 СОНО.

В подтверждение такого строения танина Г. Шиффом (1873) получена из галловой кислоты при нагревании её с хлорокисью фосфора, а также при выпаривании её водного раствора с мышьяковой кислотой, дигалловая кислота по уравнению

2C 6 H 2 (OH)3COHO - H 2 O = С 6H 2 (OH) 3 СО-О-С 6H 2 (OH) 2 СОНО

по своим свойствам, реакциям и производным тождественная с танином.

танин находит обширное применение в медицине, в производстве чернил, красильном деле, для получения галловой кислоты и пирогаллола, но для дубления кож не применяется). Кроме дигалловой кислоты, Шиффом получены искусственно ангидриды и других многоатомных фенолокислот, а также сульфофенолокислот, со свойствами дубильных веществ и близкие к танину. Сюда относятся: динитрогалло- и дифлороглюцинкарбоновые кислоты, полученные (1888) при действии хлорокиси фосфора на соответствующие изомеры галловой кислоты и имеющие состав C 14 H 10 O 9 .

Катехудубильные кислоты

Находятся вместе с катехинами близкого между собою состава в различных сортах катеху и в гамбире (см. также Дубильные материалы). Они представляют ангидриды катехинов, из которых могут быть получены и искусственно простым нагреванием до 130-170°, кипячением с содой или нагреванием с водой при 110°. Состав катехинов, высушенных при температуре около 100° (они содержат до 5 паев кристаллизационной воды, которую и теряют при этой температуре), выражается формулами C 21 H 20 O 9 {\displaystyle C_{21}H_{20}O_{9}} (Liebermann u. Teuchert 1880), C 19 H 18 O 8 {\displaystyle C_{19}H_{18}O_{8}} , (Etti, Hlasiwetz) и др. Катехины кристаллизуются в форме очень мелких иголочек светло-жёлтого цвета, дают с зелёное окрашивание, но клеем не осаждаются, при плавлении с КНО распадаются на флороглюцин и протокатеховую кислоту, а при сухой перегонке образуют пирокатехин. Для катехина C 21 H 21 O 9 {\displaystyle C_{21}H_{21}O_{9}} получены двуацетильный и двубензоильный эфиры (Lieb. u. Teuch.). Катехин C 18 H 18 O 8 {\displaystyle C_{18}H_{18}O_{8}} при 140° с разведенной серной кислотой распадается на флороглюцин и пирокатехин. С F e C l 3 {\displaystyle FeCl_{3}} он реагирует подобно пирокатехину, а с древесиной сосны - подобно флороглюцину, представляя как бы молекулярное соединение этих двух фенолов 2 C 6 H 3 (O H) 3 − C 6 H 4 (O H) 2 {\displaystyle 2C6H_{3}(OH)_{3}-C_{6}H_{4}(OH)_{2}} (Etti). Катеху-Д. кислоты, по Этти (1877-81), имеют состав C 38 H 34 O 15 {\displaystyle C_{38}H_{34}O_{15}} , C 38 H 32 O 14 {\displaystyle C_{38}H_{32}O_{14}} и C 36 H 34 O 15 {\displaystyle C_{36}H_{34}O_{15}} и представляют красновато-бурые аморфные порошки с характерными свойствами дубильных веществ. Нагреванием катехинов до более высокой температуры или с минеральными кислотами получены ангидриды, образованные с ещё большею потерею воды (Etti).

Маклурин

Маклурин, или моринодубильная кислота, C 13 H 10 O 6 + H 2 O {\displaystyle C_{13}H_{10}O_{6}+H_{2}O} (Hiasiwetz 1863, Benedict 1877) и морин C 15 H 10 O 7 + 2 H 2 O {\displaystyle C_{15}H_{10}O_{7}+2H_{2}O} (Löwe 1875, Benedict u. Hazura 1884) находятся в жёлтом дереве (Morus tinctoria или Maclura aurantiaca , применяется в красильном деле), откуда их извлекают кипячением с водой и разделяют, пользуясь меньшею растворимостью морина в воде. Маклурин, светло-жёлтый кристаллический порошок, из свойств, характеризующих дубильные вещества, обладает лишь способностью давать с железом (смесью закиси и окиси) чёрно-зелёный осадок и осаждаться клеем, алкалоидами и альбуминатами, но для дубления неприменим. Подобно многим дубильным веществам, он распадается на флороглюцин и протокатеховую кислоту по уравнению:

C 13 H 10 O 6 + H 2 O = C 6 H 3 (O H) 3 + C 7 H 3 (O H) 2 C O H O {\displaystyle C_{13}H_{10}O_{6}+H_{2}O=C_{6}H_{3}(OH)_{3}+C_{7}H_{3}\left(OH\right)_{2}COHO} .

Такое распадение происходит количественно при кипячении его с крепким раствором едкого кали или при 120 °C с слабою серною кислотою и указывает на эфирную натуру этого вещества. Морин, составляющий красящее начало жёлтого дерева и кристаллизующийся из водного раствора в форме длинных блестящих игл, за исключением зелёного окрашивания с хлорным железом, типических свойств дубильных веществ не представляет. При плавлении с едким кали в качестве главных продуктов распадения он даёт резорцин и флороглюцин, при восстановлении амальгамой натрия образует флороглюцин, причём сперва переходит в изоморин (пурпурно-красные призмы), легко превращающийся обратно в морин. Как морин, так и маклурин образуют с металлами частью кристаллические, частью аморфные соли, состав которых по большому счету нельзя считать установленным.

3597 2018-09-22

Что такое дубильные вещества?

Дубильные вещества - это природные высокомолекулярные фенольные соединения, широко распространенные в мире растений. Если говорить более простыми словами, то это такие вещества, которые придают разным плодам вяжущий и терпковатый вкус. В зависимости от того, какова их концентрация в определенном растении, у него будет более или менее выраженная терпкость. Терн, хурма, груша, кизил - припоминаете характерный вкус этих фруктов и ягод? Все дело именно в наличии дубильных веществ.

Какими же свойствами обладают дубильные вещества? Можно сказать большими. Фенольные соединения оказывают влияние на органическую среду и устраняют влияние микроорганизмов. Дубильные вещества растений характеризуются особым вяжущим вкусом и подразделяются на органические и минеральные. Органические бывают растительного и животного происхождения.

Какие растения содержат больше всего дубильных веществ?

Доказанной эффективностью обладают дубильные вещества в чае . Их гораздо больше в чайных листьях, чем даже во фруктах. Кстати, в зеленом чае его концентрация достигает 10-30%, в черном - 5-17% . Известно, что благодаря наличию танина напиток работает как антибиотик и активное дезинфицирующее средство, а также помогает нейтрализовать в организме радиоактивный стронций .

Танины также содержатся в натуральном кофе , которые и придают ему горький вкус и терпковатое послевкусие. Немало дубильных веществ в красном вине, которые дают организму витамины и аминокислоты . Есть они и в коньяке, благодаря которым улучшается усвоение витамина С.

Влияние дубильных веществ на организм человека

Дубильные вещества влияние на организм человека оказывают довольно заметное. В первую очередь, отмечается их вяжущее свойство. Оно проявляется в самых разных областях. Танины при правильном употреблении благополучно достигают кишечника и помогают справиться с его расстройствами, дисбактериозом , диареей.

Дубильные вещества при взаимодействии с белками, вызывают их частичное свертывание, и создают водонепроницаемую защитную альбуминатную пленку (дубление), на чем основано их бактерицидное и противовоспалительное действие на слизистых оболочках и раневых поверхностях.

Польза для пищеварения

Дубильные вещества положительно влияют на работу желудочно-кишечного тракта в целом. В частности, они подавляют деятельность болезнетворных микроорганизмов, способствуют выведению вредных отложений, помогают наилучшему усвоению полезных соединений.

Очищение организма

Активные вещества танины способствуют и общему очищению организма. Они выводят из него самые разные типы токсинов и шлаков. Эти соединения способны помочь даже при радиационном облучении.

Кровоостанавливающие свойства

Особо выделяется и кровоостанавливающее свойство дубильных веществ. Оно активно используется в самых разных случаях. Танины помогают остановить как внешние, так и внутренние кровотечения . Поэтому их применяют при обильных менструациях , геморрое, кровоточивости десен и повреждениях кожных покровов - порезах и других ранах.

Противовоспалительное действие

Обладают дубильные вещества и противовоспалительными свойствами. Они защищают ткани от инфекций, уничтожают болезнетворные бактерии , останавливают воспалительный процесс. Таким образом, их широко используют в медицине при лечении самых разных недугов. Особенно эффективны танины против воспалений в ротовой полости и горле, поскольку в данном случае происходит непосредственное воздействие путем полоскания . Когда требуется лечение кишечных или желудочных заболеваний, необходимо пить лекарственные отвары натощак и между приемами пищи, чтобы активные соединения беспрепятственно достигли того или иного органа. Конечно, дубильные вещества эффективно справляются и с воспалительными процессами на коже. В частности, они способствуют устранению угревой сыпи и некоторых дерматологических заболеваний. В этих случаях применяются специальные мази и лосьоны с танинами.

Кроме того, дубильные вещества имеют следующие полезные свойства:

  • Устраняют камни в почках .
  • Делают кровеносные сосуды более эластичными.
  • Лекарства , в составе которых имеются дубильные вещества, используются при заболеваниях носа и глаз (в виде капель) .
  • Продукты питания с данными веществами благоприятно действуют в профилактике отложения солей тяжелых металлов, при поносе, радиоактивном поражении.
  • Их применяют для полоскания ротовой полости и горла при таких болезненных воспалительных заболеваниях как стоматит, ангина , фарингит и пр.
  • За счет того, что дубильные вещества способны эффективно обеззараживать и блокировать влияние патогенной микрофлоры, растворы с этими веществами применяют в качестве компрессов при ссадинах, порезах, ожогах .
  • Если развилось отравление организма, сопровождаемое серьезной интоксикацией , они помогут связать и вывести вредные вещества. С алкалоидами и солями тяжелых металлов танины создают нерастворимые соединения, благодаря чему те перестают оказывать негативное воздействие . Дубильные вещества - эффективное противоядие при отравлении

Дубильные вещества

Дубильные вещества - группа разнообразных и сложных по составу растворимых в воде органических веществ ароматического ряда, содержащих гидроксильные радикалы фенольного характера. Дубильные вещества широко распространены в растительном царстве , обладают характерным вяжущим вкусом. Они способны осаждаться из водного или водно-спиртового раствора раствором клея, а с солями железа давать различных оттенков зелёные или синие окрашивания и осадки (чернильного свойства).

Распространение в природе

История изучения

Несмотря на то что дубильные вещества стали известны уже давно (таннин был впервые получен Дейе и независимо Сегеном в 1797 г. и в руках Берцелиуса в 1815 г. имелся уже в довольно чистом состоянии) и много изучались, к началу XX века они были недостаточно исследованными, и не только химическая натура и строение почти всех их оставалось невыясненными, но даже и эмпирический состав очень многих из них разными исследователями делался различно. Объясняется это легко, с одной стороны, тем, что, будучи в большинстве веществами, не способными кристаллизоваться, они трудно получаются в чистом виде, а с другой - малою их стойкостью и легкою изменяемостью. Глазивец (1867), как и многие другие, считал все Д. вещества за гликозиды или тела, им подобные; однако позднейшие исследования показали, что таннин хотя, по-видимому, и встречается в соединении с глюкозой в альгаробиллах и мироболанах (Zöllfel, 1891), но сам по себе не есть гликозид (H. Schiff 1873), также и Д. кислоты дубовой коры (Etti 1880, 83, 89, Löwe 1881), равно как и очень многие др. Д. вещества, ничего общего с гликозидами не имеют, а получение из некоторых из них сахаристых веществ обусловливалось исключительно нечистотою исследовавшихся препаратов. В настоящее время можно с достаточной уверенностью судить лишь о строении таннина, представляющего ангидрид галловой кислоты (см. и ниже); что же касается других, то в них пока лишь, по-видимому, возможно предполагать, судя по реакциям распадения и некоторым другим, частью ангидридные соединения многоатомных фенолокислот и фенолов, образованные либо по типу простых, либо по типу сложных эфиров, частью ароматические кетонокислоты, являющиеся продуктами конденсации производных галловой кислоты; но часть Д. вещества все же должно и поныне считать за глюкозиды. Ввиду неизвестности строения сама собою понятна невозможность естественной группировки Д. веществ [Собственно Д. вещества выделяются в особую группу органических соединений, обладающих некоторой совокупностью общих признаков, лишь благодаря именно неизвестности их строения. Весьма возможно, что по выяснении последнего они распределятся со временем по различным классам органических соединений, и тогда не представится более надобности и в особом общем названии для них, а нынешнее название "Дубильное вещество", согласно недавнему предложению Рейнитцера, придется, пожалуй, удержать только для тех из них, которые на самом деле способны дубить кожи.]. Деление их по окрашиванию, производимому с солями окиси железа, на железосинящие (Eisenblauende) и железозеленящие (Eisengrünende) ныне оставлено, потому что одно и то же Д. вещество может давать иногда синее, а иногда зелёное окрашивание, смотря по тому, какую взять соль железа, а сверх того, окрашивание может изменяться от прибавки, например, малого количества щелочи. Деление Д. веществ на физиологические (см. выше), дубящие кожу и вместе с тем дающие при сухой перегонке пирокатехин и не дающие галловой кислоты при кипячении с слабой серной кислотой, и патологические , для дубления менее пригодные (хотя и осаждающиеся раствором клея), при сухой перегонке дающие пирогаллол, а при кипячении со слабой серной кислотой - галловую кислоту, также не вполне отвечает фактам, ибо, как в настоящее время известно, и патологические Д. вещества могут, хотя и не столь успешно, служить для дубления, а кроме того, таннин, например, являясь по преимуществу патологическим Д. веществом, встречается, по-видимому, и как нормальный продукт (сумах, альгаробилла, мироболаны). Как кислоты, Д. вещества образуют металлические производные - соли, из которых свинцовые, представляющие нерастворимые в воде аморфные осадки, нередко применяются для извлечения Д. вещества из водных экстрактов Д. материалов, а также при анализе.

Способы получения

Для получения дубильного вещества в чистом состоянии природные дубильные материалы экстрагируют водой или другими растворителями: крепким или слабым спиртом, чистым эфиром или в смеси со спиртом, уксусным эфиром и т. п. ; экстракты выпаривают, и получаемые в остатке дубильные вещества очищают с помощью обработки их теми или другими из указанных растворителей. Чаще, приготовив водный или водно-спиртовый экстракт, извлекают из него дубильное вещество взбалтыванием с уксусным или простым эфиром или с их смесью или же осаждают (лучше фракционированно) уксуснокислым свинцом и, отфильтровав, разлагают осадки свинцовых соединений сернистым водородом . По-видимому, последний способ, практиковавшийся весьма часто прежними исследователями, не всегда даёт удовлетворительные результаты в смысле чистоты получаемых продуктов (Etti). Пользуются иногда для осаждения дубильных веществ из водных экстрактов уксуснокислым хинином , уксуснокислою медью, рвотным камнем , поваренною солью, соляной кислотой и др. Для очищения прибегают иногда к помощи диализа , дающего с таннином хорошие результаты (Löwe, Biedel).

Описание отдельных Дубильных веществ

При описании Дубильных веществ необходимо подробно остановиться лишь на немногих важнейших для практики и лучше исследованных.

Танин

Танин, галлодубильная кислота или просто дубильная кислота (Galläpfelgerbsäure, Gallusgerbsäure, acide gallotannique), находится в различных сортах чернильных орешков, патологических кнопперсах, сумахе , альгаробилле, мироболанах; имеет состав C 14 H 10 O 9 ; представляет вяжущего вкуса аморфный порошок, растворимый в воде, спирте и уксусном эфире, нерастворимый в эфире, бензоле и др.; оптически недеятелен; даёт с хлорным железом в водном растворе чёрно-синий осадок, что применяется как качественная реакция на соли окиси железа; легко окисляется, поглощая в присутствии щелочей кислород из воздуха и восстанавливая закись меди из солей её окиси и соли серебра; осаждается из водных растворов (в отличие от галловой кислоты) клеем, сырой кожей, алкалоидами, альбуминатами, слабыми соляной и серной кислотами и многими солями (напр., поваренной). По Бёттингеру (1888), соединение танина с клеем содержит около 34 % танина. Танин разлагает углекислые соли, обнаруживая ясно кислотные свойства. Его соли аморфны, в основном нерастворимы и своим составом указывают на присутствие в его частице лишь одного карбоксила (H. Schiff). При нагревании до 210° танин дает пирогаллол ; при кипячении с слабой серной кислотой или едким кали превращается нацело в галловую кислоту [Различные сорта продажного танина дают при этом также изменчивые количества глюкозы, что и дало повод Штреккеру и др. рассматривать танин как глюкозид галловой кислоты. Однако вполне чистый танин, полученный, например, экстрагированием уксусным эфиром, не образует ни следов глюкозы (Löwe). Возможно, что в продажных сортах в виде подмеси находится глюкозид, но не галловой кислоты, а танина (H. Schiff).], при кипячении с водным аммиаком распадается на галламид и галловокислый аммиак (Etti, 1884), подобно тому как ангидрид молочной кислоты даёт амид этой кислоты и её аммиачную соль; при кипячении с уксусным ангидридом образует пятиацетильный эфир C 14 H 5 (C 2 H 3 O)5O 9 . Эти реакции определяют строение танина как дигалловой кислоты, представляющей ангидрид галловой

С 6 H 2 (OH) 3 СО-О-С 6H 2 (ОН) 2 СОНО.

В подтверждение такого строения танина Г. Шиффом (1873) получена из галловой кислоты при нагревании её с хлорокисью фосфора, а также при выпаривании её водного раствора с мышьяковой кислотой, дигалловая кислота по уравнению

2C 6 H 2 (OH)3COHO - H 2 O = С 6H 2 (OH) 3 СО-О-С 6H 2 (OH) 2 СОНО

по своим свойствам, реакциям и производным тождественная с танином.

танин находит обширное применение в медицине, в производстве чернил, красильном деле, для получения галловой кислоты и пирогаллола, но для дубления кож не применяется). Кроме дигалловой кислоты, Шиффом получены искусственно ангидриды и других многоатомных фенолокислот, а также сульфофенолокислот, со свойствами дубильных веществ и близкие к танину. Сюда относятся: динитрогалло- и дифлороглюцинкарбоновые кислоты, полученные (1888) при действии хлорокиси фосфора на соответствующие изомеры галловой кислоты и имеющие состав C 14 H 10 O 9 .

При кипячении протокатеховой кислоты с мышьяковой получена (1882) дипротокатеховая кислота C 14 H 10 O 7 = 2C 7 H 6 O 4 - H 2 O, показывающая все реакции, свойственные танину, также при кипячении с минеральными кислотами дающая обратно протокатеховую кислоту, с аммиаком её амид и аммиачную соль, но с хлорным железом в отличие от танина дающая зелёное окрашивание. При действии хлорокиси фосфора протокатеховая кислота образует ещё тетрапротокатеховую кислоту C 28 H 18 O 13 = 4С 7 H 6 O 4 - 3Н 2 O, по окрашиванию с хлорным железом и др. свойствам сходную с предыдущей.

Эллагогендубильная кислота

Стоит в близком отношении к таннину, являясь, как и он, производным галловой кислоты, и часто встречается вместе с ним в растениях. Она составляет главную массу дубильного вещества мироболанов, альгаробилл, диви-диви (см. Дубящие материалы) и, вероятно, коры корней граната (Löwe 1875, Zöllfel 1891), а также найдена вместе с дубодубильной кислотой C 16 H 14 O 9 в древесине черешчатого дуба (Etti 1889). Высушенная при 100°, она представляет состав C 14 H 10 O 10 и вид буроватой аморфной массы; растворима в воде, спирте и уксусном эфире; образует чёрно-синий осадок с уксуснокислым железом и осадки с клеем, белком, алкалоидами и рвотным камнем; при нагревании с водой до 110° переходит в эллаговую кислоту, теряя при этом 2Н 2 О, и образует с уксусным ангидридом пятиацетильный эфир. Zöllfel приписывает ей строение, выражаемое формулой С 6 Н 2 (ОН) 3 СО-О-О-С 6 Н 2 (ОН) 2 СООН = 2C 6H 2 (OH) З COHO - H 2 . Эллаговая кислота C 14 H 6 O 8 +2Н 2 О добывается из предыдущей или непосредственно из диви-диви; найдена во многих дубильных материалах, где, быть может, образуется на счет эллагогендубильной кислоты, получается искусственно из галловой кислоты при разнообразных условиях по уравнению: 2C 7 H 6 O 5 = C 14 H 6 O 8 + 2H 2 O + H 2 , напр., при нагревании её с мышьяковой к. (Löwe 1868, H. Schiff 1873), при нагревании её этилового эфира с раствором соды (Н. Schiff 1879) и мн. др. Она представляет желтоватый кристаллический порошок; трудно растворима в воде и спирте, нерастворима в эфире; теряет при 100° всю кристаллизационную воду, поглощая её обратно во влажном воздухе, если не была нагрета выше 120°; с хлорным железом даёт сперва зелёное и затем чёрно-синее окрашивание, а с азотной и азотистой кислотами в присутствии воды - кроваво-красное (характерно); образует четырёхацетильный (H. Schiff, Zöllfel) и такой же бензольный (Goldschmidt u. Jahoda 1892) эфиры; хотя ей и отвечают разнообразного состава труднорастворимые микрокристаллические или аморфные соли, однако кислотные её свойства выражены слабо, и угольную кислоту из углекислых солей она вытесняет с трудом; при восстановлении амальгамой натрия даёт как конечный продукт γ-гексаоксидифенил С 12 Н 4 (ОН) 6 , который образуется из неё также вместе с β-гексаоксидифенилом при плавлении с едким натром ; при кипячении с концентрированным раствором едкого кали превращается в гексаоксидифениленкетон C 13 H 8 O 7 , а при перегонке с цинковой пылью во флуорен С 13 Н 10 . Строение её не вполне выяснено.

Дубодубильные кислоты

Находятся в молодой коре (Eichenrindegerbs ä ure), древесине (Eichenholzgerbs ä ure) и листьях различных видов дуба. Кислоте (из коры), содержащей в круглых числах 56 % углерода и 4 % водорода и дающей с хлорным железом синее окрашивание, Этти (1880, 1883) даёт формулу C 17 H 16 O 9 , а Беттингер (1887) C 19 H 16 O 10 [Аналитические данные Леве (1881) хорошо согласуются с формулой Этти.]. Из одной дубовой коры Этти получил дубильную кислоту состава C 18 H 18 O 9 , из коры Quercus pubescens C 20 H 20 O 9 , из экстракта древесины черешчатого дуба (Qu. pedunculata) C 16 H 14 O 9 , a из этой последней действием соляной кисл. C 15 H 12 O 9 (1889). К группе дубодубильных кислот Этти причисляет также дубильную кислоту из коры красного бука состава C 20 H 22 O 9 и из шишек хмеля состава C 22 H 26 O 9 . дубильное вещество чайных листьев, по Рохледеру, есть также дубодубильная кисл. Дубодубильные кислоты представляют аморфные порошки различных оттенков от буро-красного до светло-красного цвета (C 15 H 12 O 9 желт.), растворимые в воде (за исключением кислоты C 16 H 14 O 9 , которая почти не растворима), спирте, смеси спирта с эфиром, уксусном эфире и трудно растворимые в чистом эфире; имеют в водном растворе кислую реакцию; растворяются в щелочах; с уксуснокислым свинцом дают желтовато-белые осадки свинцовых соединений; с окисью магния образуют растворимые в воде средние и кислые соли (Etti); с хлорным железом кислоты C 17 H 16 O 9 (или C 19 H 16 O 10 , по Беттингеру) и C 16 H 14 O 9 дают синие осадки, прочие зелёные; осаждаются клеем (осадок, по Беттингеру, содержит около 43 % дубодубильной кислоты) и по действию на кожу являются типическими дубильными веществами.

Весьма характерна для дубодубильных кислот способность, вполне отсутствующая у таннина, образовать ангидриды при нагревании до 130°-140° и при кипячении со щелочами и разведенными минеральными кислотами. При этом, по Этти, две частицы дубильной кислоты теряют одну или более частиц воды (до пяти, смотря по условиям и числу незамещенных водных остатков в частице кислоты). Кислота C 17 H 16 O 9 , например, даёт 4 ангидрида C 34 H 30 O 17 (флобофен), C 34 H 28 O 16 , C 34 H 26 O 15 (дубовое красное) и C 34 H 24 O 14 [Но не даёт ни следов какого-либо сахаристого вещества ни при кипячении с H 2 SO 4 , ни при действии эмульсии (Etti, Löwe).].

Некоторые из этих ангидридов находятся готовыми в дубовой коре (флобофен и дубовое красное, Eichenroth), составляя такое же дубильное начало её, как и сами кислоты. Они имеют вид аморфных, в основном красных или буро-красных порошков, трудно или нерастворимы в чистой воде, но растворимы в ней в присутствии дубодубильной кислоты, а также в спирте и щелочах. Ангидриды, представляющие предел дегидратации дубильных кислот, в спирте и щелочах не растворяются. Флобофен и дубовое красное к хлорному железу, клею, коже, уксуснокислому свинцу относятся одинаково с самой дубильной кислотой и подобно ей восстановляют Фелингову жидкость. Ангидриды эти обратно воды не присоединяют ни при каких условиях (Etti). Кислота C 17 H 16 O 9 при сухой перегонке дает пирокатехин и вератрол С 6 Н 4 (ОСН 3) 2 , при плавлении с едким кали пирокатехин, протокатеховую кислоту и флороглюцин, при кипячении с слабой H 2 SO 4 галловой кислоты не образует (отличие от таннина) и лишь с трудом и в малом количестве при нагревании с нею в запаянной трубке до 130°-140°, с крепкой соляной кислотою при 150°-180° отщепляет метильные группы в виде хлористого метила (Etti). Эти реакции в основном свойственны и др. дубодубильным кислотам. Кислота C 16 H 14 O 9 с соляною кислотой, отщепляя СН 3 , переходит отчасти в кислоту C 15 H 13 O 9 с одним СН 3 в составе, который и выделяется в виде йодистого метила при кипячении с йодистым водородом (Etti [Замечательно, что ангидриды дубодубильных кислот, в противоположность самим кислотам, не способны отщеплять CH 3 J при действии HJ (Etti).]). Для этой же кислоты C 16 H 14 O 9 получены гидроксиламинное и фенилгидразинное производные, что указывает на присутствие в её составе карбонильной группы СО. Ацетильные производные дубодубильных кислот изучены недостаточно. Получение их в чистом состоянии затрудняется, по-видимому, легкостью, с которою дубодубильные кислоты переходят в ангидриды в кислой среде. Ацетильному производному кислоты из экстракта дубовой древесины Беттингер даёт состав С 15 Н 7 (СН 3 О) 5 О 9 , что находится в согласии с данными Этти для строения полученных им кислот C 16 H 14 O 9 и C 15 H 12 O 9 .

Кинодубильная кислота

Кинодубильная кислота (Kin oroth) составляет главную массу кино (см. Дубильные материалы) и представляет ангидрид киноина , из кот. может быть получена нагреванием при 120°-130°. Киноин также находится в кино, бесцветен, кристалличен и растворим в воде, спирте и немного в эфире. Он клеем не осаждается, а с хлорным железом даёт красное окрашивание и, следовательно, не обладает характерными свойствами дубильных веществ. Наоборот, в ангидриде его они явственно развиты и обусловливают применение кино как дубла. Кинодубильная кислота представляет красное аморфное смолистое вещество, растворимое в спирте и трудно растворимое в холодной воде, дающее осадок с клеем и грязно-зелёное окрашивание с . При нагрвании до 160°-170° или при кипячении с слабыми серной или соляной кислотами она переходит в ангидрид с подобными же свойствами. Как сам киноин, так и кинодубильная кислота с соляной кислотой в запаянной трубке при 120°-130° распадаются на пирокатехин, галловую кислоту и хлористый метил. На основании этой реакции Этти считает киноин за метиловый эфир пирокатехингалловой кислоты ().

Катехудубильные кислоты

Находятся вместе с катехинами близкого между собою состава в различных сортах катеху и в гамбире (см. также Дубильные материалы). Они представляют ангидриды катехинов, из которых могут быть получены и искусственно простым нагреванием до 130-170°, кипячением с содой или нагреванием с водой при 110°. Состав катехинов, высушенных при температуре около 100° (они содержат до 5 паев кристаллизационной воды, которую и теряют при этой температуре), выражается формулами (Liebermann u. Teuchert 1880), , (Etti, Hlasiwetz) и др. Катехины кристаллизуются в форме очень мелких иголочек светло-жёлтого цвета, дают с зелёное окрашивание, но клеем не осаждаются, при плавлении с КНО распадаются на флороглюцин и протокатеховую кислоту, а при сухой перегонке образуют пирокатехин. Для катехина получены двуацетильный и двубензоильный эфиры (Lieb. u. Teuch.). Катехин при 140° с разведенной серной кислотой распадается на флороглюцин и пирокатехин. С он реагирует подобно пирокатехину, а с древесиной сосны - подобно флороглюцину, представляя как бы молекулярное соединение этих двух фенолов (Etti). Катеху-Д. кислоты, по Этти (1877-81), имеют состав , и и представляют красновато-бурые аморфные порошки с характерными свойствами дубильных веществ. Нагреванием катехинов до более высокой температуры или с минеральными кислотами получены ангидриды, образованные с ещё большею потерею воды (Etti).

Маклурин

Маклурин, или моринодубильная кислота, (Hiasiwetz 1863, Benedict 1877) и морин (Löwe 1875, Benedict u. Hazura 1884) находятся в жёлтом дереве (Morus tinctoria или Maclura aurantiaca, применяется в красильном деле), откуда их извлекают кипячением с водой и разделяют, пользуясь меньшею растворимостью морина в воде. Маклурин, светло-жёлтый кристаллический порошок, из свойств, характеризующих дубильные вещества, обладает лишь способностью давать с железом (смесью закиси и окиси) чёрно-зелёный осадок и осаждаться клеем, алкалоидами и альбуминатами, но для дубления неприменим. Подобно многим дубильным веществам, он распадается на флороглюцин и протокатеховую кислоту по уравнению:

Такое распадение происходит количественно при кипячении его с крепким раствором едкого кали или при 120°C с слабою серною кислотою и указывает на эфирную натуру этого вещества. Морин, составляющий красящее начало жёлтого дерева и кристаллизующийся из водного раствора в форме длинных блестящих игл, за исключением зелёного окрашивания с хлорным железом, типических свойств дубильных веществ не представляет. При плавлении с едким кали в качестве главных продуктов распадения он даёт резорцин и флороглюцин, при восстановлении амальгамой натрия образует флороглюцин, причём сперва переходит в изоморин (пурпурно-красные призмы), легко превращающийся обратно в морин. Как морин, так и маклурин образуют с металлами частью кристаллические, частью аморфные соли, состав которых нельзя считать установленным

См. также

  • - соединения, добываемые путем экстрагирования (вытяжки) из нек рых растений (дуба, каштана и др.), легко растворимые в воде, имеющие вяжущий вкус и дающие с хлористым железом темно голубое или зеленое окрашивание. Д. в. способны осаждать белки и… … Технический железнодорожный словарь
  • дубильные вещества - raugai statusas T sritis chemija apibrėžtis Medžiagos odai išdirbti rauginimo būdu. atitikmenys: angl. tanning agents rus. дубильные вещества; дубители ryšiai: sinonimas – rauginės medžiagos … Chemijos terminų aiškinamasis žodynas

    - (химич.). Под названием Д. веществ соединяют весьма разнообразные и сложные по составу растворимые органические вещества ароматического ряда, чрезвычайно распространенные в растительном царстве, обладающае характерным вяжущим вкусом и способные… … Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона

    дубильные вещества - растительные, таннины, высокомолекулярные фенольные соединения растений, способные образовывать прочные связи с белками и другими природными полимерами (целлюлозой, пектиновыми веществами). Могут накапливаться в листьях, коре, древесине, корнях и … Сельское хозяйство. Большой энциклопедический словарь

    ДУБИЛЬНЫЕ ВЕЩЕСТВА - растительные, таннины, высокомолекулярные фенольные соединения р ний, способные образовывать прочные связи с белками и др. природными полимерами (целлюлозой, пектиновыми веществами). Могут накапливаться в листьях, коре, древесине, корнях и плодах … Сельско-хозяйственный энциклопедический словарь

    - (tannica) вяжущие вещества растительного происхождения; в медицине используют содержащие Д. в. кору дуба, шалфей, чернику и др … Большой медицинский словарь

    То же, что Дубящие вещества … Большая советская энциклопедия

    Дубильные вещества - (танины) высокомолекулярные фенольные соединения, содержащиеся в тканях растений, способные осаждать белки, алкалоиды и другие вещества и обладающие вяжущим вкусом. Применяются в медицине и кожевенной промышленности … Краткий словарь основных лесоводственно-экономических терминов

    дубильные вещества - водорастворимые эфиры фруктозы и ароматических кислот, содержащиеся в клеточном соке большого числа растений. Особенно много их в клетках корки дуба (Quercus), ивы (Salix). Отличаются сильновяжущим вкусом, предохраняют ткани растений от… … Анатомия и морфология растений

Читайте также: