Бионическая рука Вebionic. Бионические руки: история, будущее и реальность

Современная наука и медицина позволяют существенно облегчить жизнь больным, которым ранее не давалось никаких перспектив на улучшение самочувствия и реализацию в социуме. В этой статье мы ознакомим вас с 6 удивительными техническими достижениями современной медицины. Возможно, эта информация будет полезна для вас, и вы сможете воспользоваться предложенными новинками технического прогресса, делающими жизнь больных более насыщенной, позитивной и свободной.

Бионические протезы

Упоминание о бионических протезах вызывает у многих ассоциации с фильмом «Звездные войны». Искусственная рука может функционировать как настоящая, глаз «видит» и мозг «считывает» полученную информацию, ухо воспринимает все звуки – это далеко не весь перечень таких протезов.

Слово «бионический» произошло от слова «бионика», и оно обозначает использование технических устройств, способных воспроизводить структуры живой природы. Одним из направлений этой отрасли является создание протезов и имплантатов, созданных на основе множества наук – химии, физики, биологии, кибернетики, электроники, навигации и др. Они способны воссоздавать функции утраченных органов и конечностей.

Бионические руки

Создание этих протезов заняло много времени и сил, т. к. при создании искусственной конечности трудно воспроизвести такие деликатные движения, которые способна выполнять кисть человека. Это объясняется тем, что на кончиках пальцев расположены самые чувствительные нервные окончания, обеспечивающие предельную точность движений.

Пока ученые не смогли на все 100% повторить естественные возможности руки человека, но существует несколько интересных попыток, максимально приближающих функции протеза к обычной верхней конечности. Такие бионические устройства разрабатываются различными компаниями.

Протезы i-LIMB

Эти бионические руки выпускаются компанией Touch Bionics и изначально разрабатывались для ветеранов войны. Они способны брать и удерживать предметы, пальцы могут двигаться по-отдельности, воспроизводя несколько записанных стандартных движений, сила сжатия предметов может быть различной.

Работа протеза основана на свойствах микроэлектрического устройства, которое считывает биоэлектрические потенциалы с уцелевшей области руки и передает их на программное устройство, обеспечивающее дальнейшее функционирование бионической верхней конечности. В компьютерной системе содержится целый ряд стандартных движений и захватов.

Протезы Bebionic3

Эта разновидность миоэлектрического протеза аналогична бионической руке i-LIMB. Она способна выполнять 14 разных захватов и движений для воспроизведения разных действий. Как и протез i-LIMB, эта бионическая рука в процессе доработок, и после них может стать полноценной заменой настоящих верхних конечностей.

Проект биоруки ученых Технического университета Чалмерса

Ученым удалось создать биопротез, способный работать частично от миоэлектрики и частично от нервной системы инвалида. В руку пациента могут имплантироваться электроды, способные считывать производимые головным мозгом биоэлектрические сигналы. После этого сигналы поступают в компьютерное устройство, и система перенаправляет их в импульсы, управляющие моторами. В результате обладатель биоруки может управлять и всеми пальцами одновременно, и двигать отдельные пальцы.

Разработчики этой модели бионических протезов проводят работу над совершенствованием этой биоруки. Их стремления направлены на создание искусственной верхней конечности, которая будет управляться исключительно нервными сигналами, вырабатываемыми головным мозгом.

Разработка нейробиолога Эндрю Швартца

Благодаря этой разработке удалось провести операцию, которая была направлена на восстановление движений рукой парализованной женщины, страдающей от тяжелого нейродегенеративного заболевания, приведшего у полной утрате движений во всем теле. В ее мозг были имплантированы электроды, способные управлять биорукой.

Тактильные сигналы прототипа нового биопротеза руки передаются специальными сенсорами, встроенными в кончики искусственных пальцев, запястья и ладони. Такое нововведение позволяет человеку чувствовать не только расположение протеза, но и сжимаемые им предметы. Пока эти ощущения не могут в полной мере сравниваться с естественными ощущениями человека, а материал имплантата может находиться в организме человека не более месяца. Однако первые шаги к созданию идеальной бионической руки уже сделаны.

Бионические ноги

Несмотря на тот факт, что создание бионической ноги более легкая задача, чем разработка искусственной руки, пока ученые не смогли полностью приблизиться к естественному аналогу. Такие работы активно проводятся, и на протяжении нескольких лет ученым удалось создать ряд удачных бионических протезов нижних конечностей.

Университет Вандербильта проводит усиленную работу над созданием двигателей для ступни и колена. Первым человеком, испытавшим возможности такой бионической ноги, стал 23 летний студент Крейг Хатто, который лишился конечности в результате контакта с акулой. Анализ видеоматериалов о его походке позволяет делать выводы, что молодой человек может вполне хорошо передвигаться по различным поверхностям. Его хромота заметна лишь слегка, и Крейг смог пройти самостоятельно расстояние в 14 км. Протез может реагировать на самые минимальные изменения в условиях движения, т. к. он оснащен внушительным компьютерным и программным обеспечением.

Еще одной удачной разработкой ученых из Университета Вандербилта и Реабилитационного центра института Чикаго стала бионическая нога для Зака Воутера. Благодаря ее техническим возможностям он смог самостоятельно подняться на 103-этажный небоскреб. Секрет характеристик этой модели бионической ноги кроется в том, что протез может управляться сигналами, посылаемыми из головного мозга, и соединен с нервными окончаниями ноги.

Кроме вышеперечисленных бионических протезов существуют и другие достойные разработки искусственных нижних конечностей. Одной из них является бионога Tibion. Ее конструкция максимально приближена к параметрам скелета естественной ноги. Эта разработка была создана для пожилых больных с обездвиженными нижними конечностями (например, после кровоизлияния в мозг в результате ).

Слуховые аппараты


С помощью кохлеарных имплантов можно вернуть слух многим пациентам с тугоухостью.

Бионическими протезами можно считать и кохлеарные имплантаты, вживляемые в органы слуха. Они представляют собой устройства, состоящие из микрофона, звукового процессора и передатчика звукового сигнала, который может фиксироваться путем прикрепления к волосам или на кожу. Приемник, входящий в состав этого устройства, имплантируется под кожу пациента, а ряд электродов вводится во время хирургической операции внутрь слуховой улитки.

Аппараты этого типа изобретены уже давно: впервые они устанавливались уже в 1951 году. Первый кохлеарный имплантат был установлен в 1978 году. Он был разработан в Мельбурне и устанавливался людям с тяжелыми нарушениями слуха сенсоневрального происхождения. К 2000 году благодаря этой разработке ученых частично вернуть слух удалось тысячам больных, в т. ч. и детям до года. Сейчас такие операции могут проводиться и в России.

Искусственное сердце

С 1950 года начали проводиться первые эксперименты по созданию искусственного сердца. Первые имплантации такого бионического протеза были проведены в 1982 году. Jarvik-7 – результат научных исследований доктора Ярвикова – был пересажен двум пациентам. Тогда они считались успешными, т. к. могли продлевать жизнь больных даже на непродолжительные сроки. Один из них смог прожить после выполнения пересадки 112 дней, а второй – 620 дней.

Множество попыток заместить естественное сердце искусственным привело ученых к тому, что они смогли создавать модели, способные стать временным вариантом для поддержания жизни людей, нуждающихся в пересадке сердца от донора. Сейчас к числу таких бионических сердец относят такие два устройства: SynCardia temporary Total Artificial и AbioCor Replacement Heart. Лидером среди этих разработок стало искусственное сердце SynCardia temporary Total Artificial, т. к. первая имплантация второго варианта потерпела фиаско.

При выполнении пересадки искусственного сердца возможно появление такого риска для больного как отторжение устройства. Оно вызывается кардиопротезным психопатологическим синдромом и заключается в чрезмерной фиксации внимания больного на работе клапана, сопровождающейся характерным слышимым звуком. В результате пациенты пугаются такого сочетания звука и осознания того, что внутри них находится инородный механизм.

Бионический глаз

Одним из самых удивительных бионических протезов можно по праву считать искусственный глаз. Сложность его работы оправдывается тонким устройством естественного органа зрения.

Argus II

Принцип работы такого устройства как Argus II заключается в установке антенны в область глазного яблока и на специальные очки, снабженные камерой и соединенные с компьютером. Полученный визуальный сигнал фиксируется камерой и поступает в обработку на компьютерное устройство. После обработки он переводится на приемник и направляется к электродам, стимулирующим уцелевшие клетки зрительного нерва и сетчатки.

Argus II включает в себя 60 электродов, и они позволяют больному различать формы, очертания и цвет предметов и воспринимать шрифт больших размеров. Полностью восстановить зрение такое устройство пока не способно, но его использование позволяет человеку получать ориентацию в пространстве и социализироваться в более полной мере.


Bio-Retina

Этот искусственный глаз включает в себя сенсор, разрешение которого составляет 576 пикселей, его имплантируют в функционирующую сетчатку и соединяют с глазным нервом. Бионический протез преобразовывает данные пикселей в электрические импульсы и головной мозг. Bio-Retina работает через специальные очки, проекцирующие инфракрасное изображение на сенсорное устройство, подпитывающееся от солнечной батарейки.

Бионический миокард

Этот бионический протез создан израильскими учеными, и он может помочь множеству людей, страдающих от , избежать наступления смерти в ожидании трансплантации сердца от донора. Разработчикам удалось воссоединить ткань живого миокарда с наноэлектроникой и полимерными материалами. В результате полученные «заплатки для сердца» позволяют заменять существенно поврежденные участки этого жизненно важного органа. Ученые добились того, что такие биопротезы позволяют не только готовить больного к необходимой трансплантации, но и лечат сердце.

Бионическая рука Вebionic получила репутацию одной из самых “продвинутой” бионической руки-протеза в мире. После просмотра недавнего видеофильм инвалида с рукой Bebionic становится ясно, что бионика достигла уровня, когда бионические протезы уже не неуклюжие и недостаточные замены рукам, но они существенно улучшают жизнь. Потому что они восстанавливают почти большую часть функций руки, которые были безвозвратно потеряны.

Рука Найджела Экланда была раздроблена в промышленной установке для измельчения металлических отходов пять лет назад. После несчастного случая он использовал несколько протезов рук ограниченного использования: от пассивной, чисто косметической руки, к открытому крюку с ремнем, прикреплённым к телу, к электрическому захвату с весьма ограниченной функциональностью. Недавно Экланд начал использовать последнюю третью версию бионической руки Вebionic (изготовленной компанией RSL Steeper), и она ему очень нравится. Движения бионической руки управляются электрической деятельностью двух основных неповрежденных мышц ампутированной руки. Рука снабжена 14-тью захватами и развивает очень приличное усилие в 99 фунтов. Счастливый Экланд хвастается своими новыми навыками в разбивании куриных яиц на видео, и завершает ролик бокалом пива.

Стандартная перчатка бионической руки Вebionic изготовлена из многослойного силиконового материала, который очень похож на кожу руки, и придаёт бионической руке очень реалистичный внешний вид. Экланд считает, что протез выглядит "слишком реальным" и решил носить протезную руку без перчатки, чтобы были видны металлические фаланги пальцев.
Компания RSL Steeper - не единственная компания, изготавливающая “продвинутые” бионические протезы рук. ultra компании Touch Bionics - другой пример очень удачной миоэлектрической рукой, доступной инвалидам. Но пациенты – и их страховые компании – не будут получать эти протезы бесплатно. И Bebionic v3 и i-limb ultra стоят порядка 15,000$ - 25,000$.

В то время как миоэлектрические протезы, такие как как Bebionic, всё улучшаются, другие разработчики бионики продолжают развивать протезы, которые управляются естественными сигналам и тела – электрической деятельностью нейронов. Присоединение поврежденных нейронов к бионической конечности смогло бы не только повторно соединить протез с управляющими нервами нервной системы, но могло потенциально также передавать сенсорные сигналы назад в мозг. И позволить инвалидам чувствовать, скажем, теплоту кофейной кружки или холод миски мороженого в их протезных руках. Но создание эффективного интерфейсного устройства нерв протез является невероятно сложной технической проблемой.

Ученые из университета Нью-Мексико придумали новый путь, который может сделать интерфейсные устройства достаточно эффективными, чтобы точно передать сигналы нейрона к проводке протеза. Их передовая технология, называющаяся “electrospinning “ (использующая достижения нанотехнологии), позволит соединять нейроны и наноэлектроды. Работа находится еще в ранней стадии доказательства принципа. Но однажды она сможет позволить инвалидам восстановить нейронное управление протезами в течение многих лет без потребности в повторных хирургических вмешательствах.

В мае 2016 года 62-летний Крег Пол поднялся на вершину горы Эверест. Три года назад Пол страдал от артрита и не мог даже подняться по лестнице. «Я хочу показать всем, кто сомневается в своих возможностях или чувствует себя старым. Там, где есть воля, есть и победа. Восхождение на Эверест превратилось для меня в эпическое путешествие», - писал Пол в своём блоге. Пол смог стать альпинистом благодаря нескольким сложным операциям и двум искусственным коленным суставам. По прогнозам экспертов , объём рынка имплантов и протезов колен и бёдер достигнет $33 млрд к 2022 году. «Секрет» рассказывает о его развитии.

Бионические протезы

Бионика соединяет биологию и технику, изучает нервную систему и нервные клетки, а также исследует органы чувств человека для создания новых технологических устройств. Одно из главных направлений этой науки - исследования, связанные с созданием протезов и имплантов. Электронные устройства заменяют утраченные органы и конечности, взаимодействуя с нервными клетками. Их производят из искусственных материалов, но человек может управлять ими при помощи собственной нервной системы за счёт метода целевой мышечной реиннервации. Его суть состоит в том, что нервы, которые раньше управляли, например, ампутированной конечностью, соединяют с сохранившимися мышцами и те посылают сигналы на электронные датчики протеза.

После ампутации конечности в организме человека остаются двигательные нервы, их хирурги соединяют с участками крупной мышцы - например, грудной, если речь идёт об ампутированной руке. Когда человек думает, что нужно пошевелить пальцем, мозг отправляет сигнал грудной мышце. Сигнал фиксируется электродами, которые отправляют импульс по проводам в процессор внутри электрической руки к нужному участку. Протез совершает движение.

Чтобы человек мог чувствовать прикосновения, тепло и давление электронной конечностью, хирурги пришивают оставшийся чувствительный нерв к участку кожи на груди, этот метод называется целевой сенсорной реиннервацией. Сенсоры протеза передают сигнал этому участку кожи, а оттуда он поступает в мозг, и пациент может одёрнуть руку, если чувствует, например, высокую температуру. Сейчас компании активно работают над внедрением бионических конечностей. В 2013 году появилась первая бионическая нога, которая полностью контролировалась мозгом.

Бионическое колено

Над созданием бионического колена задумались ещё в 1990-х. Компания Blatchford начала производство микропроцессора для контроля протеза коленного сустава, его выпустили в 1993 году под названием Intelligent Prosthesis. В 1997 году немецкая компания Otto Bock представила микропроцессор искусственного колена C-leg. В 2005 году исландская компания Ossur сделала электронный коленный модуль - Rheo Knee, а спустя год - протез с двигателем Power Knee стоимостью от $60 000 до $80 000.

По статистике, 52,5 млн американцев страдают от болезней суставов. Количество операций по замене колена за последние годы увеличилось втрое среди людей в возрасте от 45 до 64 лет. При этом каждый пятый пациент недоволен результатом. Пациенты часто жалуются на боли и невозможность чувствовать себя так, как с натуральным коленом. Компании - производители протезов постоянно работают над улучшением технологий и стараются устанавливать импланты, которые по ощущениям не отличаются от натурального колена. Канадская компания ConforMIS предлагает напечатать новую коленку на 3D-принтере. Стоимость импланта, созданного таким образом, составит около $4000. Разработанная в компании платформа iFit Image-to-Implant позволяет каждый раз печатать персональные импланты, подходящие конкретному человеку, и внедрять их за 70 минут. Сейчас компания работает над тем, чтобы персонализировать бёдра, плечи и лодыжки - все части тела, которые начинают болеть с возрастом.

Бионические руки и ноги

В 2012 году американец Зак Воутер, которому ампутировали ногу после аварии, при помощи бионического протеза поднялся по лестницам на смотровую площадку чикагского небоскрёба. «Когда Зак хочет сделать движение, мозг посылает вниз по спинному мозгу импульс к неповреждённой мышце. В протезе установлены электроды, которые контролируют эти импульсы. Специальная компьютерная программа декодирует полученные данные и передаёт их протезу для выполнения, будь то сгибание или выпрямление колена, сгибание лодыжки или приём сидячего положения», - объяснял профессор Чикагского университета Леви Харгрув.

Микрокомпьютер протеза собирал данные от 11 электродов, закреплённых на бедре Воутера. Роботизированная нога получала электрические импульсы от нервных волокон, пришитых к подколенному сухожилию американца во время ампутации, - они сохранили способность передавать импульсы в нижнюю часть конечности.

Проекты по созданию технологичных протезов часто поддерживают силовые ведомства разных стран, которым нужно возвращать к нормальной жизни ветеранов военных действий. В 2013 году специалисты Реабилитационного института Чикаго создали первую ногу, напрямую управляемую мозгом. Разработчики привлекли $8 млн от Минобороны США, а в ближайшие пять лет протез будет доступен для тестирования бесплатно. Тестировать бионические протезы могут не только люди с ампутированными конечностями - в 2013 году актёр и писатель Брент Роуз носил искусственную ногу для репортажа на сайте Gizmodo, и ему понравилось. Создатели хотят, чтобы их протез стоил как можно дешевле - около $20 000. В этом году учёные Университета Джона Хопкинса представили протезированную руку, пальцы которой контролируются мозгом, разработка велась при поддержке агентства Минобороны США DARPA.

Канадская компания Spring Loaded Technology, создатель бионического бандажа Levitation для колена, заключила контракт с Министерством национальной обороны Канады на $1 млн на поставку гидравлических наколенников. Устройство будут использовать военные для испытаний в боевых условиях. Позже компания привлекла $1,9 млн в посевном раунде от венчурного фонда Build Ventures. Компания собирается сделать продукт массовым, его смогут покупать спортсмены и любители фитнеса, чтобы защищать колени от травм и лишних нагрузок. В первый день краудфандинговой кампании на Indiegogo Spring Loaded Technology привлекла больше половины нужной суммы из $75 000. Предзаказ коленного бандажа обходился в $1200, в будущем цена поднимется до $2500.

Канадский наколенник можно назвать экзоскелетом - устройством, предназначенным для восполнения утраченных функций, увеличения силы мышц и расширения амплитуды движений. Портал SnapMunk писал в этом году: «Экзоскелеты сделали переход от научной фантастики к осязаемой технологии в военной и промышленной индустрии. Они помогут тем, кто болен параплегией, расстройствами мышц, имеет двигательные нарушения в повседневной жизни».

Наиболее прогрессивный экзоскелет Phoenix разрабатывает компания SuitX. Он будет стоить порядка $40 000, в то время как его конкурент ReWalk стоит $77 000. Phoenix весит 27 фунтов, это один из самых лёгких экзоскелетов. Параметры работы протеза можно установить в приложении для Android.

В прошлом году российская компания «ЭкзоАтлет», которая занимается производством экзоскелетов для людей с параличом нижних конечностей, привлекла 16 млн рублей от фондов Moscow Seed Fund и «Биофонд РВК». Пока компания распространяет бесплатные пилотные версии и планирует, что её экзоскелеты станут значительно дешевле зарубежных аналогов.

Эксперты прогнозируют, что объём рынка роботов для реабилитации, в том числе экзоскелетов, вырастет до $1,1 млрд к 2021 году.

Эксперименты

На конференции Code Conference 2016 предприниматель Илон Маск заявил: «Людям необходимо создать компьютеры, связанные с корой головного мозга. В противном случае мы будем настолько ниже роботов в интеллектуальном плане, что станем их домашними питомцами. Они будут относиться к нам, как сейчас люди относятся к домашней кошке».

Помимо создания протезов и имплантов биотехнологические компании ведут эксперименты по печати органов на 3D-принтере. Уже удалось напечатать сердечные и сосудистые ткани из стволовых клеток взрослых людей в рамках экспериментов. В 2015 году российская компания 3D Bioprinting Solutions напечатала щитовидную железу мыши, которая была успешно имплантирована. Человеческие 3D-органы сейчас всё чаще используют для предварительного планирования сложных хирургических операций. Так, несколько месяцев назад китайские врачи спасли девятимесячного ребёнка благодаря распечатанной заранее модели сердца. Американская Organovo уже производит ткани печени, используемые в качестве образцов для тестирования новых лекарственных препаратов на эффективность, токсичность и побочные эффекты.

Скептики утверждают, что полноценные органы напечатать невозможно, потому что они имеют сложную структуру. Наиболее вероятно воссоздание щитовидной железы, у которой нет сложной системы протоков для выведения продуктов деятельности. Однако и там возникает много вопросов, связанных с тем, как минимизировать риски.

В июне главный учёный в компании Techshot, давний партнёр NASA по части биотехнологий, заявил , что компания готова напечатать сердце со стволовыми клетками к 2024 году. В конце 2015-го Techshot разработала метод производства кровеносных сосудов из собственных стволовых клеток пациента и рассчитывает, что он поможет биологам в будущих экспериментах.

Фотография на обложке: Peter Endig / EPA

Когда человек теряет конечность, то самая главная его мечта - снова ощутить руку или ногу. И не просто ощутить, а выполнять конечностью все движения, доступные до травмы или болезни: взять чашку, зашнуровать ботинки, идти с опорой на обе ноги. Вернуть утраченные возможности позволяет бионический протез, или сложное устройство, улавливающее нервные импульсы.

Как появились «умные» протезы?

Прототип «живых» протезов придумали и описали фантасты. Это в их произведениях на смену утраченным в сражениях рукам, ногам, глазам и сердцам приходили механические помощники, работающие лучше живых органов. Самый известный пример - Терминатор Камерона, взявший от человека только внешний облик.

Мало кто знает, что прообраз современных протезов относится еще к 19-му веку, когда в деревянную ногу вставляли металлический шар, чтобы сделать нижнюю часть подвижной. Но в 20-м веке эти примитивные устройства заменил бионический протез, созданный на стыке нескольких наук: медицины, инженерии, бионики и электроники.

Ученые разных стран оспаривают первенство в этом вопросе, но факты таковы, что первый действующий бионический протез руки был представлен на ортопедической выставке в немецком городе Лейпциге в 2010 году. За несколько лет, прошедших с этого события, в мире было разработано огромное количество протезов стоп, ног и даже собачьих лап.

Что такое бионика?

Это целая наука, изучающая живую природу и возможность перенесения принципов работы живых существ в промышленные аналоги. Инженеры подсматривают идеи у природы и воплощают их в своих устройствах и сооружениях. В этом смысле бионические протезы - только капля в море. Так, известные всем застежки-липучки всего лишь копируют способ передвижения семян репейника. Присоски заимствованы у пиявок. При конструировании подводных лодок взяли за образец дождевого червя - у него все «отсеки» автономные. Невероятно выносливый металлический ажур Останкинской и Эйфелевой башен - это многократно увеличенная копия трубчатой кости человека. Переплетения металла, которые всех так восхищают - копия строения костной ткани, сочетающей прочность и гибкость.

Даже многоэтажный дом, в котором одновременно живут такие разные семьи, списан с пчелиных сот. Идея жизни разных людей в «ячейках» под одной крышей с общими коммуникациями копирует уклад жизни пчелиной семьи.

Бионические воплощения есть во многих предметах, окружающих нас: автомобильных шинах, самолетах, камерах наблюдения, водных судах и самых обычных

Как работает простейший бионический протез?

После травмы или в ходе болезни Оставшаяся культя состоит из множества тканей: кожи, мышц, костей, сосудов и нервов. Хирург во время операции выводит сохранившийся двигательный нерв на остающуюся крупную мышцу. После заживления операционной раны нерв может передавать двигательный сигнал. Этот сигнал воспринимает датчик, установленный на протезе. В процессе восприятия нервного импульса участвует сложная компьютерная программа.

Поэтому бионический протез может выполнять только те действия, которые в этой программе прописаны: взять ложку, вилку или шарик, нажать клавишу и тому подобное. По сравнению с отсутствием конечности возможность даже ограниченного числа движения - огромный прогресс. Однако даже самые лучшие и совершенные бионические протезы пока не могут выполнить всех тех мелких и точных движений, на которые способна живая конечность.

Как проходит от мозга к протезу?

Чтобы понять, как работают бионические протезы, нужно вспомнить нормальную физиологию человека.

Движения, которые мы совершаем многократно в течение дня, называются автоматическими. Подъем, поход в туалет, умывание, чистка зубов, одевание - все это никаких мыслей у нас не вызывает. Тело делает все что нужно как бы само собой. Но на самом деле начало любого движения - мысль. То есть вначале мы думаем: нужно почистить зубы, сварить кофе, одеться. Мозг посылает сигналы тем мышцам, которые в данном движении задействованы. Мышца может сокращаться или расслабляться только по сигналу мозга. Но процесс проходит настолько быстро и слаженно, что мы не успеваем осознать происходящее. В случае с протезом все сложнее: вначале сигнал о движении считывается электродом, расположенным рядом с выведенным на мышцу нервом, а затем отправляется на процессор внутри протеза. Этот процесс тоже достаточно быстрый, но скорость совершения действий все равно уступает живой конечности.

Искусственные человеческие «запчасти»

С тех пор как был представлен первый бионический протез, наука ушла далеко вперед. Если первые модели были громоздкими, требовали переключателей и могли выполнять только самые простые движения, то современные образцы трудно назвать протезами. Это элегантные инженерные изделия, словно сошедшие с экрана футуристических фильмов.

Протез абсолютно похож на здоровую руку, им можно писать, держать столовые приборы, руль автомобиля или куриное яйцо. Для совершенства движений иногда используются собственные ткани человека с других участков тела - с ног, например.

Идеи из будущего

Инженеры и ученые в своих фантазиях неудержимы. Так, ученые даже смогли «обойти» поврежденную сетчатку глаза, транслируя изображение окружающего прямиком на зрительный нерв. Человек, ослепший вследствие травмы, при сохранности зрительного нерва может рассчитывать на то, что снова увидит родные лица или прекрасный рассвет.

Уже появились устройства, улучшающие работу мозга. Так, с дрожательным параличом или болезнью Паркинсона можно справиться при помощи вживленного электрода.

Людям, ставшими неподвижными вследствие паралича, вживляют электроды прямо в мозг, чтобы они могли управлять искусственными руками и ногами. Для человека, полностью зависящего от окружающих, возможность самообслуживания - несказанная радость.

Обсуждается вопрос о вживляемых под кожу чипах, способных заменить ключи, банковскую карточку и одновременно.

А что у нас?

Наиболее известное предприятие, выпускающее бионические протезы в России, - это Московский протезно-реабилитационный центр. Здесь собирают протезы из модулей, используется продукция Германии, Исландии и России.

Протез каждого человека имеет индивидуальные особенности. Это и уровень ампутации, и вес, и рост, и род занятий, особенности походки и мелких движений, возраст. Используется много самообучающихся модулей. Приспосабливается не только человек к протезу, но и протез к человеку. Самообучающийся модуль, оснащенный встроенным искусственным интеллектом, запоминает особенности походки и маршрута движения. Модуль «учит» не только ширину шага и нагрузку на конечность, но и запоминает количество и высоту ступеней, выбоин и ямок на пути. Модули копируют действия мозга, подготавливающего шаг или другое движение.

Сколько стоит «живой» протез?

Стоимость бионического протезирования пока высока и может достигать в сложных случаях миллионов рублей. Однако возврат к полноценной жизни трудно оценить в материальном исчислении. По сути, установка бионических протезов - единственная возможность для инвалида вернуться к нормальной жизни: строить и осуществлять планы, содержать семью, добиваться карьерных вершин.

Самое главное - это вернуться в сообщество здоровых, надеющихся на себя людей. Люди с «живыми» протезами продолжают вести привычный образ жизни, танцуют и даже получают спортивные награды. То есть протез становится частью человека настолько, что трудно отличить действия живых мышц от их бионических аналогов.

Протезирование: этапы развития

По сравнению с обычным бионический протез кисти - настоящий прорыв. Совсем недавно человек, потерявший кисть, мог рассчитывать только на две возможности: между локтевой и лучевой костью формировался кожный лоскут, чтобы человек мог захватывать крупные предметы, или к культе присоединялся крюк. И то, и другое было неудобно и малоэстетично. Сегодня даже формирование культи под будущий протез начинается еще в операционной. С первых дней послеоперационного периода с пострадавшим работает протезист, помогая подобрать наилучшее сочетание деталей. Культю формируют и тренируют, а части будущего протеза максимально приспосабливают к оставшимся возможностям. С кожей соприкасается нежная манжета из силикона со встроенными чипами. Потертостей от современных протезов не бывает. Программа для каждого изделия разрабатывается индивидуально, в зависимости от того, чем человек занимается. Задача - максимальное восстановление функции.

Помощь инвалидам

Человек, утративший конечность, в обязательном порядке проходит медико-социальную экспертизу. Одновременно с установлением для каждого разрабатывается программа социальной реабилитации. Реабилитация предполагает использование в первую очередь технических средств, способствующих возвращению человека к труду. Все бионические протезы конечностей входят в обязательный перечень таких технических средств. У человека есть выбор: в рамках программы реабилитации получить готовое изделие или приобрести его самостоятельно с последующим получением денежной компенсации. Размер компенсации рассчитывается по средней стоимости аналогичных протезных изделий.

Над чем трудятся разработчики?

Современные бионические протезы рук отлично выполняют тонкие движения, но человек не получает от них тех ощущений, к которым привык. Так, протезом можно погладить человека по волосам, но нельзя ощутить тепло кожи головы и мягкость волос. Устранением именно этого недостатка занимаются сейчас ученые. Специалисты уже научились сращивать кости с титаном, а датчики движений и чувств соединять непосредственно с живым нервом. Так, бионическая рука полностью заменяет живую, и человек получает которых был лишен много лет. Непосредственное соединение нервов и мышц с техническим приспособлением намного увеличивает скорость движений, приближая ее к природной.

Из каких частей состоит бионическая нога?

Современный бионический протез ноги включает несколько обязательных элементов, таких как:

  • силиконовая манжета со встроенными датчиками;
  • опора - титановый стержень, формой напоминающий голень;
  • шарнирный модуль с микродвижками и процессором;
  • блок искусственного интеллекта, обрабатывающий все поступающие сигналы.

Последние модели протезов ведущих немецких компаний имеют особое покрытие, очень похожее на кожу. Синтетическая кожа имеет двойное назначение: защищает детали протеза от влаги и выполняет косметическую функцию. Протез с покрытием можно не снимать, принимать с ним душ и ходить по лужам.

Немного фантазии

Сегодня живут на одной с нами планете несколько человек, имеющих 2 и даже 3 бионических протеза одновременно. Изобретена синтетическая кожа, меняющая жесткость. Придуманы экзоскелеты, помогающие ходить парализованным людям. Разрабатываются изделия, управляемые силой мысли. Проводятся эксперименты по выращиванию нервов в микроканалах. Теоретически недалек тот день, когда можно будет вырастить нерв нужной длины. Ученые пытаются стереть грань между живой природой и техническим устройством. Количество движений, совершаемых бионическими протезами, постоянно увеличивается, возрастает и их сложность.

Все это дает большие надежды на то, что человек станет сильнее болезни.

Протезирование конечностей становится рутинной процедурой, возвращающей человека в привычное русло. Возможно, наступит тот день, когда любую часть человеческого тела можно будет заменить искусственной. По крайней мере, очень хочется в это верить.

Человечество со времен средневековья и по сегодняшний день стремится создать протезы, наиболее похожие на утраченную конечность как внешне, так и функционально. Будущее - за бионическими протезами, которые механически наиболее приближены к функционалу тела здорового человека, однако проблема качественного управления такими устройствами на сегодняшний день до сих пор не имеет готового решения.

За последние 5 лет появилось много компаний, занимающихся разработкой бионических протезов. В основном фокус делается на дешёвые бионические устройства из пластиковых деталей, выполненных в том числе при помощи технологий 3D печати. Есть уже готовые продукты, например, от OpenBionics, которые сейчас находятся на стадии одобрения в FDA . Механическая часть у таких игроков на рынке, как OttoBock или iLimb , тоже развивается, но это развитие направлено не на удешевление протезов, а скорее на механику движений (плавность, естественность, точность). При подобном подходе функциональная часть протеза развивается, но управляемость остается прежней.

От Крюка до бионики

История протезов начинается еще в давние времена - наиболее древним считается протез глаза , который относят к III тысячелетию до н. э. В средние века стали появляться хорошо известные «пиратские» деревянные опоры вместо утраченных ног или крюки вместо кисти. Такие протезы выполняли ограниченный ряд функций, в которых нуждался конкретный человек, исходя из его рода деятельности. Подобный подход можно встретить в протезировании и сегодня.

Когда речь идет о реабилитации после ампутации руки, наиболее простым решением является косметический протез. Помимо эстетического назначения, такие протезы не выполняют практически никаких функций и не имеют преимуществ по сравнению со средневековыми протезами-крюками.

Другое решение - это тяговые протезы. Их кисти уже могут сжиматься и разжиматься за счет, например, движений лучезапястного или локтевого сустава оставшейся части руки. Эти движения руководят механическим натяжением нитей, приводящих «пальцы» в действие. Такая кисть «умеет» только сжимать кулак и разжимать его. Она отличается быстродействием и неплохой надежностью. Тяговые протезы разрабатываются отечественными инновационными компаниями, также их можно сделать самостоятельно по инструкции (что практикуется и в странах третьего мира).

Третий класс - механические протезы, управляемые мышечной активностью. Такие устройства, как правило, выполнены из металла, имеют большую прочность, но обладают только двумя степенями свободы - сжатие и разжатие . Управлять механическим протезом не очень удобно: для того, чтобы разжать кулак, нужно напрячь внешнюю сторону предплечья, а для того, чтобы сжать - наоборот, напрячь внутреннюю сторону предплечья. Это так называемый триггерный способ управления: либо мышечная активность есть - тогда движение активируется, либо мышечной активности нет. К сожалению, такая система управления может приводить к ложным срабатываниям. Механические протезы обладают «внешностью» косметических и функциональностью тяговых, питаются от аккумулятора, который размещается на протезе. Металлический каркас и мотор, приводящий в движение кисть, позволяют называть конструкцию надежной: например, если требуется держать какой-то предмет, механическая рука сможет сжать его сильно и надолго, и это практически не потребует усилий со стороны человека. Неудобное управление и ограниченная функциональность - основные недостатки механических протезов.

Последний, четвертый класс - бионические протезы, в которых каждый палец управляется отдельным мотором - это дает большее преимущество в плане манипуляций с предметами. Система управления бионической кистью такая же, как и у механической, на основе сжатия и разжатия - поэтому этими протезами сложно пользоваться. Для облегчения использования добавляют какие-либо внешние переключатели - рычажки на протезе или приложения на смартфоне.

Дороговизна и малофункциональность

«Бионичность» подразумевает помимо восполнения механических функций потерянной руки, естественность её использования. Разработчики сфокусированы на оптимизации строения протезов - нужны максимально прочные, эргономичные, функциональные с точки зрения механики решения. Тем не менее, задача обеспечения максимальной функциональностью управления, не имеет готового решения на рынке. А неудобные и ограниченно функционирующие протезы стоят от $30 000 до $70 000 .

Все сегодняшние R&D проекты сфокусированы на двух направлениях: удешевление самого протеза и улучшение системы управления . Если для первой проблемы существуют более-менее подходящие решения, то в области разработки систем управления все только начинается.

В идеале человек, пользующийся протезом, не должен замечать системы управления. То есть интерфейс между человеком и протезом использует естественные механизмы управления, которым человек обучался ещё в детстве. Таким образом, остро стоит вопрос, какой интерфейс взаимодействия между человеком и протезом стоит использовать и как подстроить это взаимодействие под индивидуальные особенности каждого?

Совершенное взаимодействие с человеком

Для удешевления производства используются технологии 3D печати. Стоимость таких протезов невысока за счет использования пластиковых деталей, а компаний, которые занимаются 3D печатью протезов, достаточно много по всему миру, в том числе и в России. Зарубежные компании создают модели бионических протезов и выкладывают их в открытый доступ, способствуя развитию и доступности протезирования. Другие компании-разработчики оптимизируют и дорабатывают дизайн и механику свободно доступных 3D моделей.

А вот решить задачу по улучшению взаимодействия человека с протезом намного сложнее. Наиболее «естественный» подход - это полноценная трансплантация руки . Мышцы и нервы при этом работают точь-в-точь как в здоровой руке, но процедура весьма дорогостоящая, требующая донорский материал, дополнительную терапию и риски отторжения. Безусловно, за таким методом, в том или ином виде будущее, которое наступит только после революций в смежных областях - лет через 100. Пока актуально создание устройств реабилитации, в достаточной мере восполняющих функции утраченной кисти и позволяющих управлять собой естественным образом.

Можно выделить четыре основных типа взаимодействия человека с протезом:

Первый , наиболее радикальный - разного рода импланты в моторную и сенсорную зоны коры головного мозга. Такой интерфейс обладает теми же недостатками, что и трансплантированная рука. Особенно уместны импланты в мозг в случае, когда по каким-либо причинам нарушена связь головного мозга и руки. В остальных случаях стоит дополнительно оценивать пользу/риск от использования такого интерфейса.

Второй способ управления - использование электроэнцефалографии (ЭЭГ). Метод ЭЭГ основан на регистрации биоэлектрической активности головного мозга, возникающей вследствие распространения потенциала действия по нейронам. Метод считается перспективным, но имеет ряд технических сложностей, которые мешают появлению в продаже интерфейса на его основе. Во-первых, из-за особенностей регистрации карты мозговой активности систему нужно «обучать» заново при перемещении электродов. А во-вторых, сам сигнал очень неустойчив к различного рода электрическим наводкам и помехам.

Третий: имплантация электродов к периферическим нейронам в оставшейся части руки. Такой способ имеет все те же проблемы , что трансплантация и мозговые импланты, к тому же требует длительной и индивидуальной работы врачей.

И последний тип интерфейса - электромиография (ЭМГ). Простейшая его реализация - триггерная - используется в механических протезах, руководя сжатием или разжатием кисти. В бионические протезы внедрена точно такая же система управления. Но, как уже было сказано, ЭМГ в них используется только для двух степеней свободы - сгибание и разгибание пальцев. Также к ним может быть добавлена и третья степень свободы - одновременное напряжение обеих мышц, на которых измеряется ЭМГ активность.

Электромиография - это метод анализа мышечной активности, основанный на измерении разности потенциалов в двух точках, между которыми под кожей по мембранам мышечных волокон распространяется потенциал действия (именно этот потенциал представляет собой распространение волны мышечной активности от зоны, куда поступает потенциал действия моторного нейрона, заставляющей «работать» наши мышцы). Такой способ позволяет записывать сигнал мышечной активности с минимальным уровнем шума. Большая часть движения пальцев и кисти тесно связана с мышцами предплечья. Это легко проверить, положив одну руку на предплечье (чуть ниже локтя) и пошевелив пальцами другой руки - можно почувствовать, как при этом сокращаются различные мышцы предплечья. Использование системы управления, индивидуально настроенной на паттерны движений кисти конкретного человека, приближает нас к созданию естественного интерфейса между человеком и протезом. С одной стороны, он не инвазивен и обладает большой функциональностью, с другой – быстро настраивается и устойчив к внешним воздействиям. Проблемой может стать атрофия оставшихся мышц, однако метод позволяет извлечь максимум сохранившихся естественных паттернов мышечной активности.

Текущий статус разработок в мире

Системы управления протезом также развивается, но компаний, сфокусированных на этой задаче значительно меньше. В основном, разработчики используют уже готовые электромиографические усилители и, получив сигнал, примитивно его обрабатывают. (так или иначе всё сводится к «триггерной» системе, вопрос только в количестве порогов и в количестве каналов записи ЭМГ). В некоторых случаях, прибегают к кластерному анализу, но такое в основном встречается в научных статьях, где также утверждается, что такие методы не приспособлены для использования в реальной жизни за счет изменчивости мышечной активности. В триггерных системах используются смартфоны или иные устройства, переключающих режимы схватов, по аналогии с существующими протезами. Тем не менее, в сочетании с дешевизной 3D печати и схожей системой управления «дорогих» протезов, данные компании займут свою долю на рынке. Существует и другой подход к решению задачи управляемости - более детальная обработка ЭМГ сигнала и выделение паттернов конкретных движений, чтобы впоследствии воспроизводить их на протезе после обучения с помощью machine learning. То есть нужно обучить систему управления каждому индивидуальному движению для конкретного пациента, которое будет воспроизводиться при повторном напряжении мышц, соответствующих конкретному движению. Данное обучение системы управления может происходить в течение 1-2 минут, при этом точность распознавания движений будет зависеть от качества алгоритмов обработки ЭМГ и алгоритмов machine learning и будет составлять не менее 99% в зависимости от многообразия распознаваемых движений. Такая система управления может быть встроена практически в любой бионический протез, что выделит его на рынке среди конкурентов. Компаний, ведущих разработку в этой области, во всем мире не так уж и много. В нашей стране этим тоже занимается ряд компаний (компания «Мионикс», которую представляет автор, - одна из них - Forbes)

Также ведутся разработки систем обратной связи - от вибрационной тактильной обратной связи до искусственной кожи, интегрированной с нервной системой человека. Это отдельный пласт разработок, который безусловно необходим для тонких манипуляций со сложными объектами, например, хрупкими или мягкими. Без обратной связи протез, как реабилитационное устройство, не будет полноценной заменой утраченной конечности. Примечателен факт, что, как правило, разработка обратной связи не пересекается с разработкой улучшенной механики протеза и тем более системой управления бионическими протезами.

Направление бионических протезов развивается во всём мире. Главная цель этого развития - создание готового удобного в управлении протеза, который можно купить, надеть и пользоваться без сложного процесса обучения. К сожалению, в настоящий момент такой продукт не создан, а спрос на него каждый год растёт. Мы верим, что в ближайшем будущем сможем увидеть дешевый протез с удобной, простой и персонализированной системой управления и обратной связью. Такие системы управления также дадут толчок к развитию экзоскелетов, управляемых небольшими мышечными усилиями.

Читайте также: