Применение анатоксинов. Анатоксины это препарат из Что такое анатоксин

Молекулярные вакцины – в них антиген находится в молекулярной форме или даже в виде фрагментов его молекул, определяющих специфичность т. е. в виде эпитопов, детерминант.

В процессе культивирования природных патогенных микробов можно получить протективный антиген, синтезируемый этими бактериями токсин затем превращается в анатоксин, сохраняющий специфическую антигенность и иммуногенность. Анатоксины являются одним из видов молекулярных вакцин. Анатоксины – препараты, полученные из бактериальных экзотоксинов, полностью лишенные своих токсических свойств, но сохранившие антигенные и иммуногенные свойства.Получение : токсигенные бактерии выращивают на жидких средах, фильтруют с помощью бактериальных фильтров для удаления микробных тел, к фильтрату добавляют 0,4% формалина и выдерживают в термостате при 30-40t на 4 недели до полного исчезновения токсических свойств, проверяют на стерильность, токсигенность и иммуногенность. Эти препараты называются нативными анатоксинам, в настоящее время почти не используются, т. к. содержат большое количество балластных веществ, неблагоприятно влияющих на организм. Анатоксины подвергают физической и химической очистке, адсорбируют на адъювантах. Такие препараты называются адсорбированными высокоочищенными концентрированными анатоксинами.

Титрование анатоксинов в реакции фолликуляции производят по стандартной фолликулирующей антитоксической сыворотке, в которой известно количество антитоксических единиц. 1 антигенная единица анатоксина обозначается Lf, это то количество анатоксина, которое вступает в реакцию флокуляции с 1 единицей дифтерийного анатоксина.

Анатоксины применяются для профилактики и реже, для лечения токсинемических инфекций (дифтерия, газовая гангрена, ботулизм, столбняк). Так же анатоксины применяются для получения антитоксических сывороток путем гипериммунизации животных.

Примеры препаратов: АКДС, АДС, адсорбированный стафилококковый анатоксин, ботулинистический анатоксин, анатоксины из экзотоксинов возбудителей газовых инфекций



3 . Вирус кори. Таксономия. Характеристика. Лабора­торная диагностика. Специфическая профилактика.

Корь - острая инфекционная болезнь, ха­рактеризующаяся лихорадкой, катаральным воспалением слизистых оболочек верхних дыхательных путей и глаз, а также пятнисто-папулезной сыпью на коже.

Таксономия. РНК-содержащий вирус. Семейства Paramyxoviridae. Род Morbillivirus.

Структура и антигенные свойства. Вирион окружён оболочкой с гликопротеиновыми шипами. Под оболочкой находится спиральный нуклеокапсид. Геном вируса - однонитевая, нефрагменти-рованная минус РНК. Имеются следующие основные белки: NP - нуклеокапсидный; М - матриксный, а также поверхностные гли-козилированные белки липопротеиновой обо­лочки - гемагглютинин (Н) и белок слияния (F), гемолизин. Вирус обладает гемагглютинирующей и гемолитической активнос­тью. Нейраминидаза отсутствует. Имеет общие антигены с вирусом чумы собак и крупного рогатого скота.

Культивирование. Культивируют на первично-трипсинизированных культурах клеток почек обезьян и человека, перевивае­мых культурах клеток HeLa, Vero. Возбудитель размножается с образованием гигантских мно­гоядерных клеток - симпластов; появляются цитоплазматические и внутриядерные вклю­чения. Белок F вызывает слияние клеток.

Резистентность. В окружающей среде нестоек, при комнатной температуре инактивируется через 3-4 ч. Быстро гибнет от солнечного света, УФ-лучей. Чувствителен к детергентам, дезинфектантам.

Восприимчивость животных. Корь воспро­изводится только на обезьянах, остальные животные маловосприимчивы.

Эпидемиология. Корь - антропонозная инфекция, распространена повсеместно. Восприимчивость человека к вирусу кори чрезвычайно высока. Болеют люди разного возраста, но чаще дети 4-5 лет.

Источник ин­фекции - больной человек.

Основной путь инфицирования - воздушно-капельный, ре­же - контактный. Наибольшая заражаемость происходит в продромальном периоде и в 1-й день появления сыпи. Через 5 дней после по­явления сыпи больной не заразен.

Патогенез. Возбудитель проникает через сли­зистые оболочки верхних дыхательных путей и глаз, откуда попадает в подслизистую оболоч­ку, лимфатические узлы. После репродукции он поступает в кровь (вирусемия) и поражает эндотелий кровеносных капилляров, обуслав­ливая тем самым появление сыпи. Развиваются отек и некротические изменения тканей.

Клиника. Инкубационный период 8-15 дней. Вначале отмечаются острые респираторные проявления (ринит, фарингит, конъюнктивит, фотофобия, температура тела 39С). Затем, на 3-4-й день, на слизистых оболочках и коже появляется пятнисто-папулезная сыпь, распространяющаяся сверху вниз: сначала на лице, затем на туловище и конечностях. За сут­ки до появления сыпи на слизистой оболочке щек появляются мелкие пятна, окруженные крас­ным ореолом. Заболевание длится 7-9 дней, сыпь исчезает, не оставляя следов.

Возбудитель вызывает аллергию, подавляет активность Т-лимфоцитов и иммунные реак­ции, что способствует появлению осложнений в виде пневмоний, воспаления среднего уха и др. Редко развиваются энцефалит и ПСПЭ.

Иммунитет. После перенесенной кори раз­вивается гуморальный стойкий пожизненный иммунитет. Повторные заболевания редки. Пассивный иммунитет, передаваемый плоду через плаценту в виде IgG, защищает новорож­денного в течение 6 месяцев после рождения.

Микробиологическая диагностика. Исследуют смыв с носоглотки, соскобы с элементов сыпи, кровь, мочу. Вирус кори можно обнаружить в патологическом материале и в зараженных культурах клеток с помощью РИФ, РТГА и реакции нейтрализации. Характерно наличие многоядерных клеток и антигенов возбудителя в них. Для серологической диагностики приме­няют РСК, РТГА и реакцию нейтрализации.

Лечение. Симптоматическое.

Специфическая профилактика. Активную специфическую профилактику кори прово­дят подкожным введением детям первого года жизни или живой коревой вакцины из аттенуированных штаммов, или ассоции­рованной вакцины (против кори, паротита, краснухи). В очагах кори ослабленным детям вводят нормальный иммуноглобулин чело­века. Препарат эффективен при введении не позднее 7-го дня инкубационного периода.

Билет 17.

1. Механизмы передачи генетического материала у бактерий.

Конъюгация бактерий состоит в переходе генети­ческого материала (ДНК) из клетки-донора («мужской») в клет­ку-реципиент («женскую») при контакте клеток между собой.

Мужская клетка содержит F-фактор, или половой фактор, который контролирует синтез так называемых половых пилей, или F-пилей. Клетки, не содержа­щие F-фактора, являются женскими; при получении F-фактора они превращаются в «мужские» и сами становятся донорами. F-фактор располагается в цитоплазме в виде кольцевой двунитчатой молекулы ДНК, т. е. является плазмидой. Молекула F-фак­тора значительно меньше хромосомы и содержит гены, контро­лирующие процесс конъюгации, в том числе синтез F-пилей. При конъюгации F-пили соединяют «мужскую» и «женскую» клетки, обеспечивая переход ДНК через конъюгационный мостик или F-пили. Клетки, содержащие F-фактор в цитоплазме, обозначаются F + ; они передают F-фактор клеткам, обозначае­мым F" («женским»), не утрачивая донорской способности, так как оставляют копии F-фактора. Если F-фактор включается в хромосому, то бактерии приобретают способность передавать фрагменты хромосомной ДНК и называются Hfr-клетками (от англ. high frequency of recombination - высокая частота реком­бинаций), т.е. бактериями с высокой частотой рекомбинаций. При конъюгации клеток Hfr и клеток F" хромосома разрывается и передается с определенного участка (начальной точки) в клет­ку F", продолжая реплицироваться. Перенос всей хромосомы может длиться до 100 мин.

Переносимая ДНК взаимодействует с ДНК реципиента - происходит гомологичная рекомбинация. Прерывая процесс конъ­югации бактерий, можно определять последовательность распо­ложения генов в хромосоме. Иногда F-фактор может при выхо­де из хромосомы захватывать небольшую ее часть, образуя так называемый замещенный фактор - F".

При конъюгации происходит только частичный перенос ге­нетического материала, поэтому ее не следует отождествлять пол­ностью с половым процессом у других организмов.

Трансдукция - передача ДНК от бактерии-донора к бактерии-реципиенту при участии бактериофага. Различают неспецифическую (общую) трансдукцию, при которой возможен перенос любого фрагмен­та ДНК донора, и специфическую - перенос определен­ного фрагмента ДНК донора только в определенные участки ДНК реципиента. Неспецифическая трансдукция обусловлена включе­нием ДНК донора в головку фага дополнительно к геному фага или вместо генома фага (дефектные фаги). Специфическая транс­дукция обусловлена замещением некоторых генов фага генами хромосомы клетки-донора. Фаговая ДНК, несущая фрагменты хромосомы клетки-донора, включается в строго определенные участки хромосомы клетки-реципиента. Таким образом, привно­сятся новые гены и ДНК фага в виде профага репродуцируется вместе с хромосомой, т.е. этот процесс сопровождается лизоге-нией. Если фрагмент ДНК, переносимый фагом, не вступает в рекомбинацию с хромосомой реципиента и не реплицируется, но с него считывается информация о синтезе соответствующего про­дукта, такая трансдукция называется абортивной.

Трансформация заключа­ется в том, что ДНК, выделенная из бактерий в свободной ра­створимой форме, передается бактерии-реципиенту. При транс­формации рекомбинация происходит, если ДНК бактерий род­ственны друг другу. В этом случае возможен обмен гомологич­ных участков собственной и проникшей извне ДНК. Впервые явление трансформации описал Ф. Гриффите (1928). Он вводил мышам живой невирулентный бескапсульный R-штамм пневмо­кокка и одновременно убитый вирулентный капсульный S-штамм пневмококка. Из крови погибших мышей был выделен вирулен­тный пневмококк, имеющий капсулу убитого S-штамма пнев­мококка. Таким образом, убитый S-штамм пневмококка передал наследственную способность капсулообразования R-штамму пнев­мококка. О. Эвери, К. Мак-Леод и М. Мак-Карти (1944) дока­зали, что трансформирующим агентом в этом случае является ДНК. Путем трансформации могут быть перенесены различные признаки: капсулообразование, устойчивость к антибиотикам, синтез ферментов.

Изучение бактериальной трансформации позволило установить роль ДНК как материального субстрата наследственности. При изучении генетической трансформации у бактерий были разра­ботаны методы экстракции и очистки ДНК, биохимические и биофизические методы ее анализа.

2 . Особенности противовирусного иммунитета.

Противовирусный иммунитет. Основой противовирусного иммунитета является клеточный иммунитет. Клетки-мишени, ин­фицированные вирусом, уничтожаются цитотоксическими лим­фоцитами, а также NK-клетками и фагоцитами, взаимодействую­щими с Fc-фрагментами антител, прикрепленных к вирусспецифическим белкам инфицированной клетки. Проти­вовирусные антитела способны нейтрализовать только внеклеточно расположенные вирусы, как и факторы неспецифическо­го иммунитета - сывороточные противовирусные ингибиторы. Такие вирусы, окруженные и блокированные белками организ­ма, поглощаются фагоцитами или выводятся с мочой, потом и др. (так называемый «выделительный иммунитет»). Интерфероны усиливают противовирусную резистентность, индуцируя в клет­ках синтез ферментов, подавляющих образование нуклеиновых кислот и белков вирусов. Кроме этого, интерфероны оказывают иммуномодулирующее действие, усиливают в клетках экспрес­сию антигенов главного комплекса гистосовместимости (МНС). Противовирусная защита слизистых оболочек обусловлена сек­реторными IgA, которые, взаимодействуя с вирусами, препятст­вуют их адгезии на эпителиоцитах.

3 . Возбудители шигеллеза. Таксономия. Характеристика. Микробиологическая диагностика. Специфическая профилактика и лечение.

Род Shigella включает 4 вида: S. dysenteriae - 12 сероваров, S.flexneri - 9 сероваров, S. boydii - 18 сероваров, S. sonnei - 1 серовар.

Морфология. Шигеллы представле­ны неподвижными палочками. Спор и капсул не образуют.

Культуральные свойства. Хорошо культи­вируются на простых питательных средах. На плотных средах образуют мелкие глад­кие, блестящие, полупрозрачные колонии; на жидких - диффузное помутнение. Жидкой средой обогащения является селенитовый бу­льон. У S. sonnei отмечена при росте на плот­ных средах S R-диссоциация.

Биохимическая активность: слабая; отсутствие газообразования при фермента­ции глюкозы, отсутствие продукции сероводорода, отсутствие ферментации лактозы.

Резистентность. Наиболее неустойчив во внешней среде вид S. dysenteriae. Шигеллы переносят высушивание, низкие темпе­ратуры, быстро погибают при нагревании. S. sonnei в молоке способны не только длительно пере­живать, но и размножаться. У S. dysenteriae отмечен переход в некультивируемую форму.

Антигенная структура. Соматический О-антиген, в зависи­мости от строения которого происходит их подразделение на серовары, a S. flexneri внут­ри сероваров подразделяется на подсеровары. S. sonnei обладает антигеном 1-й фазы, кото­рый является К-антигеном.

Факторы патогенности. Способность вызывать инвазию с пос­ледующим межклеточным распространением и размножением в эпителии слизистой толстого кишечника. Функци­онирование крупной плазмиды инвазии, кото­рая имеется у всех 4 видов шигелл. Плазмида инвазии детерминирует синтез белков, входящих в состав наружной мембраны, которые обеспечивают процесс ин­вазии слизистой. Продуцируют шига и шигаподобные белковые токсины. Эндотоксин защищает шигеллы от дейс­твия низких значений рН и желчи.

Эпидемиология: Заболевания - шигеллезы, антропонозы с фекально-оральным механизмом переда­чи. Заболевание, вызываемое S. dysenteriae, имеет контактно-бытовой путь передачи. S. flexneri - водный, a S. sonnei - алиментар­ный.

Патогенез и клиника: Инфекционные заболева­ния, характеризующиеся поражением толсто­го кишечника, с развитием колита и интокси­кацией.

Шигеллы взаимодействуют с эпителием слизистой тол­стой кишки. Прикрепляясь инвазинами к М-клеткам, шигеллы поглощаются макрофагами. Взаимодействие шигелл с макрофагами при­водит к их гибели, следствием чего является выделение ИЛ-1, который инициирует воспа­ление в подслизистой. При гибели шигелл происходит выделение шига токсинов, действие которых приводит к появлению крови в испражнениях.

Иммунитет. Секреторные IgA, пре­дотвращающие адгезию, и цитотоксическая антителозависимая активность лимфоцитов.

  • 11. Патогенные простейшие (возбудители амебиаза, токсоплазмоза, малярии). Морфологические особенности возбудителей и вызываемые ими заболевания.
  • 12. Вирусы бактерий (бактериофаги)
  • 13.Вирусы бактерий-(бактериофаги)
  • 14. Морфология плесневых и дрожжеподобных грибов
  • 15. Понятия об асептике и антисептике
  • 16. Действие физических факторов. Физические методы стерилизации
  • 17. Действие химических факторов. Дезинфекция
  • 19. Химические и физико-химические методы стерилизации
  • 20. Питательные среды, их классификация. Требования, предъявляемые к ним.
  • 31) Характерные особенности инфекционных заболеваний.
  • 32 Виды инфекций -
  • 34Классификация инфекций. По происхождению. По локализации. По количеству возбудителей. По течению. Микробоносительство.
  • 2)Полиинфекции - смешанные - миксты.
  • 3)Реакция нейтрализации.
  • Сложные реакции(состоят из простых).
  • 5)Реакции с использованием меченых антител/антигенов
  • 51.Микрофлора тела человека и ее значение.
  • 52. Дисмикробиоценоз. Препараты применяемые для лечения.
  • 53. Изменчивость бактерий. Понятие о генотипе и фенотипе бактерий.
  • 54,56. Плазмиды бактерий и их значение. Использование плазмид в генной инженерии.
  • 55.Виды генетических рекомбинаций у бактерий.
  • 57.Использование достижений генной инженерии в получении иммунобиологических препаратов.
  • 58.Понятие о биотехнологии. Использование достижений в практической микробиологии.
  • 59.Вакцины. Классификация вакцин. Требования предъявляемые к вакцинным препаратам.
  • 60. Анатоксины, их получение и практическое применение.
  • 61. Диагностикумы (бактериальные, эритроцитарные, вирусные), получение и использование.
  • 62. Диагностические сыворотки, получение и использование.
  • 64.Инактивированные, корпускулярные вакцины. Приготовление и применение. Достоинства и недостатки.
  • 65. Химические (субклеточные вакцины) вакцины. Получение и применение. Роль адъювантов.
  • 66.Ассоциированные и комбинированные вакцины. Достоинства.
  • 67. Антимикробные сыворотки. Получение и применение.
  • 68.Антитоксические сыворотки. Получение, очистка, титрование и применение.
  • 69.Иммуноглобулины. Получение и применение.
  • 70. Методы микробиологической диагностики инфекционных заболеваний.
  • 71. Основные принципы микробиологической диагностики вирусных инфекций.
  • 72. Серологический метод диагностики инфекционных заболеваний.
  • 73. Понятие об иммуномодуляторах. Принцип действия. Применение.
  • 74. Стафилококки. Таксономия. Свойства. Патогенез вызываемых поражений. Микробиологическая диагностика. Профилактика и лечение.
  • 75. Стрептококки – возбудители гнойно- воспалительных инфекций. Классификация. Свойства. Патогенез вызываемых поражений.
  • 76. Стрептококки – возбудители распираторных инфекций. Классификация. Свойства. Патогенез вызываемых поражений.
  • 77. Менингококки. Таксономия. Свойства. Патогенез вызываемых поражений. Микробиологическая диагностика. Профилактика и лечение.
  • 78. Гонококки. Таксономия. Свойства. Патогенез вызываемых поражений. Микробиологическая диагностика. Профилактика и лечение.
  • 79. Эшерихии. Таксономия. Свойства. Патогенез вызываемых поражений. Микробиологическая диагностика. Профилактика и лечение.
  • 80. Возбудители брюшного тифа и паратифа. Таксономия. Свойства. Патогенез вызываемых поражений. Микробиологическая диагностика. Профилактика и лечение.
  • 129. Санитарно-показательные микробы почвы и их определение
  • 130. Микрофлора почвы. Санитарно-эпидемическое значение. Определение общего колличества микробов в почве.
  • 131. Понятие о санитарно – показательных микроорганизмов.
  • 132. Способы повышения микробной чистоты нестерильных лекарственных средств.
  • 133. Бактериологическое исследование стерильных лек.Средств.
  • 134. Санитарно-микробиологическое исследование инвентаря, оборудования, рук и санитарной одежды работников аптек
  • 135.Методы контроля микробной загрязненности растительного лек.Сырья
  • 136. Санитарно-микробиологическое исследование сухих веществ, используемых для приготовления лек.Форм.
  • 138. Санитарно-микробиологическое исследование воздуха в аптеках.
  • 143.При проведении исследования определяют
  • 60. Анатоксины, их получение и практическое применение.

    Анатоксины - обезвреженные формалином экзотоксины возбудителей токсинемических инфекций (дифтерийный анатоксин, столбнячный, ботулинический, гангренозный, стафилококковый). Формирует напряженный иммунитет на 4-5 лет. Получают из вышеперечисленных возбудителей инфекций, выращивают на жидких питат.средах для накопления токсина, затем фильтруют через бактериальные фильтры для удаления микробных клеток. К фильтрату добавляют 0,3-0,4% формалина и выдерживают его при 37 0 C 3-4недели до полного исчезновения токсических свойство, очищают. Исп-ют для активной иммунопрофилактики токсинемических инфекций (столбняка, дифтерии, ботулизма).

    61. Диагностикумы (бактериальные, эритроцитарные, вирусные), получение и использование.

    Диагностикумы. Получение, применение.

    В диагностических целях при обнаружении антител в сы­воротке крови больных, реконвалесцентов и бактерионосите­лей используются серологические реакции.

    Для постановки таких реакций применяются диагностикумы - препараты, содержащие взвесь обезвреженных микроор­ганизмов или определенные антигены.

    Необходимость использования диагностикумов для сероло­гических реакций связана не только с явным их преимущест­вом перед живыми культурами микробов (безопасность в ра­боте), но еще и потому, что для приготовления диагностикумов подбираются штаммы микроорганизмов с высокой чувст­вительностью к антителам и способностью длительно сохра­нять антигенные свойства.

    Для инактивации микроорганизмов при приготовлении диагностикумов чаще всего используются химические вещест­ва, особенно формалин, являющийся лучшим консервантом. Убитые нагреванием микробы хуже сохраняют антигенные свойства и применяются редко.

    В серологических реакциях (реакции агглютинации, реак­ции пассивной гемагглютинации, реакции связывания компле­мента, реакции торможения гемагглютинации) для выявления специфических антител применяются: бактериальные, эритроцитарные и вирусные диагностикумы.

    Бактериальные диагностикумы могут содержать инактивированную микробную взвесь или отдельные антигенные компоненты бактерий: О, Н или Vi-антигены и используются в реакциях агглютинации.

    Эритроцитарные диагностикумы представляют собой эритроциты (обработанные танином или формалином) с ад­сорбированными на них антигенами, извлеченными из бакте­рий, и применяются в РПГА (реакции пассивной гемагглютинации). В том случае, когда РПГА используется для выяв­ления антигена в выделениях больных, в тканях и др., при­меняют «антительные диагностикумы», т. е. эритроциты, сен­сибилизированные антителами.

    Вирусные диагностикумы - препараты, содержащие инактированные вируссодержащие жидкости (культуральные, из куриных эмбрионов или организма животных, зараженных соответствующим вирусом), применяются в РСК (реакции связывания комплемента), реакции торможения гемагглютинации (РТГА) и реакции нейтрализации.

    В настоящее время в лабораториях используются следу­ющие диагностикумы.

    1. Бактериальный диагностикум сальмонелл тифа. Приме­няется в реакции агглютинации для обнаружения антител в сыворотке больных.

    2. Сальмонеллезные О-диагностикумы содержат О-антигены различных групп сальмонелл (инактивированных 15%-ным раствором глицерина). Применяются для выявления О-антител при сальмонеллезных инфекциях в реакции агглю­тинации с сывороткой больных.

    3. Сальмонеллезные Н-монодиагностикумы. Исполь­зуются в реакции агглютинации для определения заболевания в прошлом (анамнестическая реакция агглютинации) и реже с диагностической целью.

    4. Vi - брюшнотифозный диагностикум. Применяется в реакции агглютинации при выявлении брюшноти­фозного бактерионосительства.

    5. Единый бруцеллезный диагностикум - взвесь бруцелл (инактивированных фенолом), подкрашенная метиленовым синим. Применяется для определения антител в сыворотках крови больных бруцеллезом людей и животных в реакциях агглютинации Райта и Хеддльсона.

    6. Эритроцитарный сальмонеллезный О-диагностикум - взвесь эритроцитов с адсорбированными на них О-антигенами различных групп сальмонелл. Используется для постановки РПГА с сывороткой больного при уточнении клинического диагноза сальмонеллезной инфекции.

    7. Эритроцитарный Vi-диагностикум - эритроциты, сенси­билизированные очищенным Vi-антигеном S. typhi, применяет­ся в РПГА при выявлении брюшнотифозного бактерионоси­тельства.

    8. Гриппозный диагностикум представляет собой аллантоисную жидкость инфицированных вирусом гриппа (типов А, В) куриных эмбрионов и инактивированную мертиолатом или формалином. Диагностикумы необходимы при постановке РТГА с парными сыворотками больных для уточнения кли­нического диагноза и циркулирующего типа вируса гриппа.

    9. Диагностикум вируса клещевого энцефалита получают из суспензии мозга белых мышей, зараженных вирусом кле­щевого энцефалита. Суспензию подвергают центрифугирова­нию (для осветления) и инактивируют химическими вещест­вами.

    Диагностикум используется в РТГА и РСК с сывороткой больных при диагностике заболевания.

    Анатоксины - иммунобиологические препараты, которые получают в результате соответствующей обработки экзотоксинов бактерий; применяют для выработки активного иммунитета у привитых. Возможность использования анатоксинов в целях профилактики возникновения заболеваемости обусловливается тем, что в основе патогенеза многих заболеваний (столбняк, дифтерия, ботулизм, газовая гангрена и др.) лежит воздействие на организм специфических ядовитых продуктов (экзотоксинов), выделяемых возбудителями этих заболеваний.

    Экзотоксины, наряду со способностью вызывать в живом организме патологические процессы обладают антигенностью, т.е. способностью при введении в организм в небольших дозах вызывать в нем образование специфических антител - антитоксинов. После добавления к экзотоксинам формалина в небольшом количестве и выдерживания их в течение нескольких дней при 37-40°С они полностью утрачивают токсичность, сохраняя антигенные свойства.

    Анатоксины - одни из наиболее эффективных и безопасных препаратов, используемых с целью активной иммунизации людей. Такие анатоксины готовят в виде очищенных, концентрированных препаратов, адсорбированных на геле гидроксида алюминия. Адсорбция анатоксинов на различных минеральных адсорбентах обусловливает резкое повышение эффективности вакцинации. Это объясняется тем, что в месте введения адсорбированного препарата создается депо антигена и замедляется его всасывание.

    При дробном поступлении антигена из места инъекции обеспечивается эффект суммации антигенного раздражения, резко повышается степень иммунного ответа. Кроме того, депонирующее вещество вызывает в месте инъекции воспалительную реакцию, что, с одной стороны, препятствует всасыванию антигена и усиливает его депонирующее действие, а, с другой, - служит неспецифическим стимулятором, усиливающим плазмоцитарные реакции в лимфатических тканях организма, которые участвуют в иммуногенезе. Адсорбированные препараты перед применением взбалтывают с целью обеспечения во всем их объёме равномерного распределения активного начала, находящегося в осадке вместе с адсорбентом. На практике наиболее широко применяются дифтерийный, столбнячный и ботулинический анатоксины.

    Похожие статьи:

    Примите к сведению

    Информация на этом сайте представлена в справочных и образовательных целях и не должна быть использована как инструкция по лечению. В любых случаях необходимо консультироваться у врача.

    Анатоксины – это иммунобиологические препараты, которые получают в результате соответствующей обработки экзотоксинов бактерий и применяют для выработки активного иммунитета у привитых.

    Возможность использования анатоксинов в целях профилактики связана с тем, что в основе патогенеза многих заболеваний (столбняк, дифтерия, ботулизм, газовая гангрена) лежит воздействие на организм специфических ядовитых продуктов, выделяемых возбудителями этих заболеваний – экзотоксинов.

    Наряду со способностью вызывать патологические процессы в живом организме, экзотоксины обладают весьма важным свойством – антигенностью, т.е.

    Анатоксины

    способностью при введении в организм в небольших дозах вызывать образование специфических антител – антитоксинов. После добавления небольших количеств формалина и выдерживания в течение нескольких дней при температуре 37-40°С экзотоксины полностью теряют токсичность, сохраняя при этом свои антигенные свойства. Полученные таким образом из токсинов препараты были названы Рамоном анатоксинами. Анатоксины являются одними из наиболее эффективных и безопасных препаратов, используемых с целью активной иммунизации людей.

    Анатоксины, предназначенные для иммунизации людей, готовят в виде очищенных, концентрированных препаратов, адсорбированных на геле гидроксида алюминия. Адсорбция анатоксинов на различных минеральных адсорбентах (в т.ч. на гидроксиде алюминия) обусловливает резкое повышение эффективности вакцинации. Это объясняется созданием в месте введения адсорбированного препарата депо антигена, а также замедленным его всасыванием: дробное поступление антигена из места инъекции обеспечивает эффект суммации антигенного раздражения, резко повышает иммунологический ответ. Помимо этого, депонирующее вещество вызывает в месте инъекции воспалительную реакцию. С одной стороны, это препятствует всасыванию антигена и усиливает депонирующее действие антигена, а с другой, являясь неспецифическим стимулятором, усиливает плазмоцитарные реакции в лимфатических тканях организма, участвующих в иммуногенезе.

    Адсорбированные препараты перед употреблением необходимо взбалтывать, чтобы обеспечить во всем объеме равномерное распределение активного начала, которое перед взбалтыванием находится в осадке вместе с адсорбентом. В практике наиболее широкое применение получили дифтерийный, столбнячный и ботулинический анатоксины.

    Дата добавления: 2015-02-06 | Просмотры: 697 | Нарушение авторских прав

    1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 |

    Анатоксины. Получение. Применение. Достоинства

    Для специфической профилактики инфекционных заболеваний, возбудители которых продуцируют экзотоксин, применяют анатоксины. Анатоксин — это экзотоксин, лишенный токсических свойств, но сохранивший антигенные свойства. Метод получения анатоксина предложил в 1923 г. французский ученый Рамон. В отличие от вакцин, при использовании которых у человека формируется антимикробный иммунитет, при введении анатоксинов формируется антитоксический иммунитет, так как они индуцируют синтез антитоксических антител — антитоксинов.

    В настоящее время применяются: дифтерийный, столбнячный, ботулинический, стафилококковый анатоксины, холероген-анатоксин. Их получают путем выращивания глубинным способом в ферментаторах возбудителей столбняка, дифтерии, ботулизма и других микроорганизмов, в результате чего в культуральной жидкости накапливаются токсины. После отделения микробных клеток сепарированием культуральную жидкость (токсин) обезвреживают формалином в концентрации 0,3=0,4 % при 37˚C в течение 3-4 нед. Обезвреженный токсин – анатоксин, потерявший токсичность, но сохранивши антигенность, подвергают очистке и концетрированию, стандартизации и фасовке. К очищенным анатоксинам добавляют консервант и адъювант. Такие токсины называются очищенными сорбированными. Дозируют анатоксин в антигенных единицах (ЕС – единица связвания, LF – флоккуляционная единица).

    Титрование анатоксинов в реакции флоккуляции (по методу Рамона) производят по стандартной флоккулирующей антитоксической сыворотке, в которой известно количество Международных антитоксических единиц (ME) в 1 мл.

    Анатоксины выпускаются в виде монопрепаратов и в составе ассоциированных вакцин, предназначенных для иммунизации против нескольких заболеваний.

    Препараты, предназначенные для проведения иммунизации против одной какой-либо инфекции, получили название моновакцины, против двух инфекционных заболеваний- дивакцины, против трех - тривакцины, против нескольких инфекций - поливакцины.

    Достоинства анатоксинов в то, что они в принципе не могут вызвать инфекционное заболевание и могут быть использованы для вакцинации ослабленных детей, детей с хроническими заболеваниями и детей с иммунодефицитами.

    Иммунные сыворотки. Классификация. Получение, очистка, применение. Антитоксические сыворотки.

    Анатоксины. Получение и применение

    Получение, очистка, титрование, применение, осложнения при использовании и их предупреждение

    К сывороточным иммунным препаратам относятся иммунные сыворотки и иммуноглобулины .

    Эти препараты обеспечивают пассивную невосприимчивость к возбудителям инфекционных болезней. Иммунные сыворотки получают из крови гипериммунизированных (интенсивно иммунизированных) животных (лошади, ослы, кролики) соответствующей вакциной или крови иммунизированных людей (используется донорская, плацентарная, абортная кровь). Нативные иммунные сыворотки для удаления из них балластных белков и повышения концентрации антител подвергают очистке , используя различные физико-химические методы (спиртовой, ферментативный, аффинная хроматография, ультрафильтрация).

    Иммунные сывороточные препараты, полученные из крови животных, называют гетерологичными , а из крови людей – гомологичными . Активность сывороточных препаратов выражают в титрах антител – антитоксинов, гемагглютининов, комплементсвязывающих, вируснейтрализующих и т.д.

    Сывороточные иммунные препараты применяются для специфического лечения и экстренной профилактики. Основной механизм лечебного и профилактического действия сводится к связыванию и нейтрализации антителами бактерий, вирусов и их антигенов, в том числе токсинов в организме. В связи с этим различают противовирусные, антибактериальные, антитоксические иммунные сывороточные препараты.

    Сывороточные препараты вводят внутримышечно, подкожно, иногда внутривенно. Эффект от введения препарата наступает сразу после введения и продолжается 2-3 нед. (гетерологичные антитела) до 4-5 нед. (гомологичные антитела). Для исключения возникновения анафилактической реакции и сывороточной болезни препараты вводят по методу Безредки.

    Гомологичные сывороточные препараты широко применяют для профилактики и лечения вирусного гепатита, кори, для лечения ботулизма, столбняка, стафилококковых и других инфекций. Гетерологичные сывороточные препараты имеют строго ограниченное применение из-за опасности аллергических осложнений при их введении.

    В последнее время получены иммунные препараты на основе моноклональных антител. Однако они еще не нашли широкого лечебного и профилактического применения, а используются пока в диагностических целях.

    Антитоксические сыворотки содержат антитела против экзотоксинов. Их получают путем гипериммунизации животных (лошадей) анатоксином. Активность таких сывороток измеряется в АЕ (антитоксических единицах) или МЕ (международных единицах) — это минимальное количество сыворотки, способное нейтрализовать определенное количество (обычно 100 DLM) токсина для животных определенного вида и определенной массы.

    В настоящее время в России широко используются следующие антитоксические сыворотки — противодифтерийная, противостолбнячная, противогангренозная, противоботулиническая, причем применение антитоксических сывороток при лечении соответствующих инфекций является обязательным.

    Титрование антитоксических сывороток может проводиться тремя методами - Эрлиха, Ремера, Рамона. Метод Эрлиха — перед титрованием сывороток определяют условную смертельную (опытную) дозу токсина. За опытную дозу токсина (Lt) принимается то его количество, которое в смеси с 1 ME стандартной сыворотки вызывает гибель 50% взятых в опыт животных. На втором этапе титрования к различным разведениям испытуемой сыворотки добавляют опытную дозу токсина, смесь выдерживают 45 мин и вводят животным. По получаемым результатам производят расчет титра испытуемой антитоксической сыворотки.

    По методу Ремера титруется противодифтерийная сыворотка.

    Обязательно проводится проба на чувствительность к чужеродному белку, так как антитоксическая сыворотка гетерогенна. Если проба положительная, то проводится (в присутствии врача) предварительная десенсибилизация, затем вводят необходимую дозу сыворотки под прикрытием кортикостероидов. От сыворотки могут возникнуть различные осложнения, наиболее опасное из них - анафилактический шок. На вторую неделю заболевания может развиться сывороточная болезнь. Существует альтернатива антитоксической сыворотке - нативная гомологичная плазма (вводят по 250 мл 1-2 раза в сутки).

    Антитоксические сыворотки: противодифтерийная, противостолбнячная. Широко используются следующие: противогангренозная, противоботулиническая. Применение антитоксических сывороток при лечении соответствующих инфекций обязательно.

    Предыдущая9101112131415161718192021222324Следующая

    АНАТОКСИНЫ (anatoxina ; греческий ana- - против + токсины) - бактериальные токсины, потерявшие в результате специальной обработки свои токсические, но сохранившие антигенные и иммуногенные свойства. Обычно токсины обезвреживают воздействием формалина и тепла (35-38°). Возбудители токсинемических инфекций - дифтерии, столбняка, газовой гангрены, ботулизма и другое - вырабатывают очень сильные экзотоксины, обладающие антигенными свойствами.

    В 1909 году Левенштейн (Е. Löwenstein) случайно обнаружил быстрое падение токсичности столбнячного токсина под влиянием ультрафиолетовых лучей и формалина. В дальнейшем Эйслер (М. Eisler, 1912) и Левенштейн установили, что после добавления к столбнячному токсину 0,1-0,3% формалина и выдерживания при повышенной температуре происходит обезвреживание токсина. Введение такого токсина вызывает иммунитет у животных.

    Десять лет спустя метод приготовления анатоксинов, пригодного для иммунизации людей, был разработан Районом (G. Ramon), о чем он сообщил 10 декабря 1923 года во французскую Академию наук. Рамон установил, что при воздействии формалина и тепла на дифтерийный токсин образуется обезвреженное соединение, обладающее антигенными и иммуногенными свойствами. Изучая реакцию флоккуляции дифтерийного токсина с антитоксином, он применял формалин как антисептик для сохранения токсина. Добавление формалина к токсину не препятствовало появлению феномена флоккуляции(см.), даже если этот токсин подвергался действию умеренного тепла в термостате. Не влияя на способность токсина флоккулировать, формалин резко снижал его токсические свойства, как и ряд других химических и физических свойств. Реакция флоккуляции токсинов с антитоксинами сыграла большую роль в разработке метода приготовления анатоксинов. С помощью этой реакции можно было легко контролировать изменение антигенных свойств анатоксинов в процессе обезвреживания токсинов формалином. До применения этой реакции было невозможно установить, сохраняет ли токсин антигенные свойства при потере токсигенных свойств.

    Некоторые анатоксины могут быть аллергенами и вызывать у особо чувствительных субъектов общие и местные реакции, не имеющие отношения к специфической токсичности. Анатоксинам свойственна стабильность и необратимость: при длительном хранении при разных температурах они сохраняют свою безвредность и антигенные свойства. Антигенные свойства анатоксинов определяют по реакции связывания антитоксинов (см.), которая выражается в единицах связывания (ЕС), или по реакции флоккуляции с антитоксинами. Иммуногенные свойства анатоксинов определяют путем иммунизации животных (морские свинки, мыши) и выражают в иммунизирующих единицах (ИЕ), то есть в способности определенного количества анатоксинов защищать животных от введения соответствующих токсинов.

    Принципы изготовления анатоксинов, разработанные Районом, легли в основу производства анатоксинов во многих странах мира. Это позволило начать массовую иммунизацию против дифтерии и столбняка, которая привела к резкому снижению заболеваемости этими инфекциями.

    Процесс формалиновой детоксикацин рассматривают как необратимое нарушение структуры активного центра токсина за счет реакции с формалином входящих в состав токсина функциональных групп. На первых этапах детоксикация протекает очень быстро (как правило, на 1-4-е сутки инкубирования с формалином наблюдается падение токсичности на 80-90%), а достижение полной безвредности происходит только через 2-4 недели и более. Для получения безвредных и стабильных анатоксинов после обезвреживания должно пройти некоторое время для «созревания» анатоксинов. Обезвреживание бактериальных токсинов без нарушения их антигенных свойств происходит в нейтральной среде. Кислая среда препятствует взаимодействию формалина с аминогруппами токсина, замедляет или совсем прекращает процесс обезвреживания. Если формалинизацпя токсинов идет в щелочной среде, то обезвреживание токсина происходит быстро, но со значительной потерей его антигенных свойств. Оптимальное количество формалина для детоксикации всех токсинов рекомендуется от 0,3 до 0,8% ; в пределах этого количества к некоторым токсинам нужно добавлять формалин дробным методом, это способствует более быстрому обезвреживанию токсина без СИЛЬНОЕ потери антигенных свойств. Для обезвреживания токсина имеет большое значение температура, при которой содержится токсин. Повышение температуры ведет к более быстрой детоксикации всех токсинов со значительной потерей антигенных свойств. Попытки разработать ускоренный метод обезвреживания бактериальных токсинов путем добавления 1% и более формалина при t° 36-40° приводили к потере токсичности через 6-8 суток инкубации с резким снижением антигенных свойств. Увеличение количества формалина при детоксикации не оправдано еще и потому, что независимо от количества взятого формалина лишь определенная часть его вступает во взаимодействие с токсином. Количество связанного формалина зависит от состава среды, на которой приготовлен токсин, от содержания аминного азота, от химического состава токсина.

    Для очистки анатоксинов от балластных белков применялось фракционное осаждение различными концентрациями сульфата аммония. В настоящее время этот метод используется лишь на отдельных этапах очистки и концентрации небольших объемов анатоксинов.

    В зарубежных странах для очистки и концентрации дифтерийного и столбнячного анатоксина применяют метод ультрафильтрации через почкообразные фильтры, покрытые 8%парло-диновой оболочкой. Осадок после растворения в воде фракционируют сульфатом аммония при различных процентах насыщения. Очищенный дифтерийный анатоксин содержит 1800-2500 Lf на 1 мг общего азота (Lf - сокр. англ, limit of flocculation - порог флоккуляции).

    В СССР для очистки и концентрации анатоксинов ботулинических, возбудителей газовой гангрены, дифтерийного и столбнячного анатоксинов применяют кислотное осаждение. Перед подкислением для усиления ионной силы раствора в анатоксины растворяют 10-30% хлорида натрия. Затем понижают рН анатоксинов до 3,5, добавляя НСl; выпавший осадок отделяют от жидкости и растворяют в 1/20 части изотонического раствора хлорида натрия от объема исходного анатоксина. Полученный концентрат анатоксинов подвергают дальнейшей очистке повторным осаждением ацетоном. При кислотном осаждении столбнячного и других анатоксинов в некоторых лабораториях для усиления ионной силы раствора анатоксина применяют гексаметофосфат. Бактериальные токсины и анатоксины можно очистить с помощью сорбции фосфатом алюминия, гидратом окиси алюминия, фосфатом кальция и другими неорганическими сорбентами с последующей элюцией (см.); кроме того, все более широкое применение находят методы ионообменной хроматографии и гель-фильтрации через сефадексы различных марок (см. Гель-фильтрация, Хроматография).

    Для иммунизации против токсинемических инфекций применяются анатоксины, депонированные на гидрате окиси алюминия и фосфате алюминия; алюминиево-калиевые квасцы для депонирования применяются только в ветеринарной практике. Высокую пммуногенность депонированных анатоксинов объясняют адъювантным действием сорбента и замедленной резорбцией из депо антигена. В результате этого происходит длительное поступление небольших количеств анатоксинов в организм, что ведет к развитию напряженного иммунитета. Применение дифтерийного и столбнячного анатоксинов, сорбированных на гидроокиси алюминия, для массовой иммунизации людей в СССР дало резкое снижение заболеваемости дифтерией и столбняком.

    Иммунизацию детей против дифтерии, столбняка и коклюша проводят ассоциированной вакциной, включающей сорбированные дифтерийный, столбнячный анатоксины и корпускулярную коклюшную вакцину.

    В 1959 году был предложен концентрированный адсорбированный анаэробный полианатоксин, включающий столбнячный анатоксин, несколько типов гангренозного и ботулинического анатоксинов (всего 7 антигенов), обладающий хорошими иммуногенными свойствами. См. также Иммунизация, Токсины.

    Библиография: Апанащенко Н. И., Помянкевич А. Н. и Нехотенова Е. И. Очищенный адсорбированный дифтерийный анатоксин, Журн. микр., эпид.

    АС-анатоксин

    ииммун., № 8, с. 54, 1951: Воробьев А. А., Васильев Н. Н. и Кравченко А. Т. Анатоксины, М., 1965, библиогр.; Выгодчиков Г. В. Микробиология и иммунология стафилококковых заболеваний, М., 1950, библиогр.; он же, Стафилококковые инфекции, М., 1963, библиогр.; Матвеев К. И. Ботулизм, М., 1959, библиогр.; он же, Эпидемиология и профилактика столбняка, М., 1960, библиогр.; Рамон Г. Сорок лет исследовательской работы, пер. с франц., М., 1962; Prévot A. R. Manuel de classification et de détermination des bacteries anaerobies, P., 1957.

    К. И. Матвеев.

    Препараты, полученные из бактериальных экзотоксинов , полностью лишенные токсических свойств, но сохранившие антигенные и иммуногенные свойства.

    Метод получения анатоксина предложил в 1923 году крупнейший французский ученый Рамон (G. Ramon).При приготовлении анатоксинов культуры бактерий выращивают в жидких питательных средах для накопления токсина. Затем фильтруют через бактериальные фильтры для удаления микробных тел.

    К фильтрату добавляют 0,3-0,4 % -формалина и помещают в термостат при температуре 37°-40°С на 3-4 недели до полного исчезновения токсических свойств. Полученный анатоксин проверяют на стерильность, безвредность и иммуногенность.

    Такие препараты получили название нативных анатоксинов, т. к. они содержат большое количество веществ питательной среды , которые являются балластными и могут способствовать развитию нежелательных реакций организма при введении препарата. Нативные анатоксины необходимо вводить в больших дозах из-за их невысокой удельной активности.

    Очищенные анатоксины - нативные анатоксины подвергают обработке различными физическими и химическими методами (ионнообменной хромотографии, кислотному осаждению и др.), Однако уменьшение размеров частиц анатоксина сделало необходимым адсорбировать препарат на адъютантах.

    Анатоксины применяются для профилактики и реже для лечения токсинемических инфекций (дифтерия, газовая гангрена, ботулизм, столбняк) и некоторых заболеваний, вызванных стафилококками.

    1. Дифтерийный анатоксин адсорбированный - фильтрат токсигенного штамма дифтерийной палочки «Парк Вильяме 8», обезвреженный по методу Рамона.

    Применяется для профилактики дифтерии в виде моноанатоксина, чаще в составе АДС или АКДС.

    2. Столбнячный анатоксин сорбированный - препарат, полученный из фильтрата бульонной культуры столбнячной палочки, обезвреженный по методу Рамона при 40°С.

    Применяется в составе АКДС для иммунизации против столбняка детей в возрасте от 6 месяцев до 5 лет с последующими ревакцинациями.

    3. Дифтерийно-столбнячный анатоксин адсорбированный (АДС) АДС используют вместо вакцины АКДС при отсутствии необходимости иммунизации против коклюша.

    Сыворотки

    Для специфического лечения и экстренной специфической профилактики ряда инфекционных болезней применяют сыворотки искусственно иммунизированных животных (в основном лошадей).

    1. Лечебные сыворотки

    Преимущество :

    Быстрота создаваемого пассивного иммунитета. Введенные иммуноглобулины способны немедленно нейтрализовать патогенные микроорганизмы и токсические продукты их жизнедеятельности.

    Недостатки :

    Кратковременность обусловливаемого ими пассивного иммунитета. Быстрое выведение (через 1-2 недели) иммуноглобулинов из организма связано с естественным процессом распада белков и действием образовавшихся антител к введенным белкам - иммуноглобулинам.

    Может вызвать побочные реакции - анафилактический шок или сывороточную болезнь .

    При введении гомологичной сыворотки (сыворотки человека) антитела циркулируют в организме в течение 4-5 недель, обусловливая более длительное состояние невосприимчивости , связанное с тем, что происходит медленный процесс разрушения введенных белков.

    Частота развития сывороточной болезни зависит от количества введенного чужеродного белка. Для устранения этого осложнения сыворотки подвергают очистке от балластных белков.

    АНАТОКСИНЫ (anatoxina ; греческий ana- - против + токсины) - бактериальные токсины, потерявшие в результате специальной обработки свои токсические, но сохранившие антигенные и иммуногенные свойства. Обычно токсины обезвреживают воздействием формалина и тепла (35-38°). Возбудители токсинемических инфекций - дифтерии, столбняка, газовой гангрены, ботулизма и другое - вырабатывают очень сильные экзотоксины, обладающие антигенными свойствами.

    В 1909 году Левенштейн (Е. Löwenstein) случайно обнаружил быстрое падение токсичности столбнячного токсина под влиянием ультрафиолетовых лучей и формалина. В дальнейшем Эйслер (М. Eisler, 1912) и Левенштейн установили, что после добавления к столбнячному токсину 0,1-0,3% формалина и выдерживания при повышенной температуре происходит обезвреживание токсина. Введение такого токсина вызывает иммунитет у животных.

    Десять лет спустя метод приготовления анатоксинов, пригодного для иммунизации людей, был разработан Районом (G. Ramon), о чем он сообщил 10 декабря 1923 года во французскую Академию наук. Рамон установил, что при воздействии формалина и тепла на дифтерийный токсин образуется обезвреженное соединение, обладающее антигенными и иммуногенными свойствами. Изучая реакцию флоккуляции дифтерийного токсина с антитоксином, он применял формалин как антисептик для сохранения токсина. Добавление формалина к токсину не препятствовало появлению феномена флоккуляции (см.), даже если этот токсин подвергался действию умеренного тепла в термостате. Не влияя на способность токсина флоккулировать, формалин резко снижал его токсические свойства, как и ряд других химических и физических свойств. Реакция флоккуляции токсинов с антитоксинами сыграла большую роль в разработке метода приготовления анатоксинов. С помощью этой реакции можно было легко контролировать изменение антигенных свойств анатоксинов в процессе обезвреживания токсинов формалином. До применения этой реакции было невозможно установить, сохраняет ли токсин антигенные свойства при потере токсигенных свойств.

    Некоторые анатоксины могут быть аллергенами и вызывать у особо чувствительных субъектов общие и местные реакции, не имеющие отношения к специфической токсичности. Анатоксинам свойственна стабильность и необратимость: при длительном хранении при разных температурах они сохраняют свою безвредность и антигенные свойства. Антигенные свойства анатоксинов определяют по реакции связывания антитоксинов (см.), которая выражается в единицах связывания (ЕС), или по реакции флоккуляции с антитоксинами. Иммуногенные свойства анатоксинов определяют путем иммунизации животных (морские свинки, мыши) и выражают в иммунизирующих единицах (ИЕ), то есть в способности определенного количества анатоксинов защищать животных от введения соответствующих токсинов.

    Принципы изготовления анатоксинов, разработанные Районом, легли в основу производства анатоксинов во многих странах мира. Это позволило начать массовую иммунизацию против дифтерии и столбняка, которая привела к резкому снижению заболеваемости этими инфекциями.

    Процесс формалиновой детоксикацин рассматривают как необратимое нарушение структуры активного центра токсина за счет реакции с формалином входящих в состав токсина функциональных групп. На первых этапах детоксикация протекает очень быстро (как правило, на 1-4-е сутки инкубирования с формалином наблюдается падение токсичности на 80-90%), а достижение полной безвредности происходит только через 2-4 недели и более. Для получения безвредных и стабильных анатоксинов после обезвреживания должно пройти некоторое время для «созревания» анатоксинов. Обезвреживание бактериальных токсинов без нарушения их антигенных свойств происходит в нейтральной среде. Кислая среда препятствует взаимодействию формалина с аминогруппами токсина, замедляет или совсем прекращает процесс обезвреживания. Если формалинизацпя токсинов идет в щелочной среде, то обезвреживание токсина происходит быстро, но со значительной потерей его антигенных свойств. Оптимальное количество формалина для детоксикации всех токсинов рекомендуется от 0,3 до 0,8% ; в пределах этого количества к некоторым токсинам нужно добавлять формалин дробным методом, это способствует более быстрому обезвреживанию токсина без СИЛЬНОЕ потери антигенных свойств. Для обезвреживания токсина имеет большое значение температура, при которой содержится токсин. Повышение температуры ведет к более быстрой детоксикации всех токсинов со значительной потерей антигенных свойств. Попытки разработать ускоренный метод обезвреживания бактериальных токсинов путем добавления 1% и более формалина при t° 36-40° приводили к потере токсичности через 6-8 суток инкубации с резким снижением антигенных свойств. Увеличение количества формалина при детоксикации не оправдано еще и потому, что независимо от количества взятого формалина лишь определенная часть его вступает во взаимодействие с токсином. Количество связанного формалина зависит от состава среды, на которой приготовлен токсин, от содержания аминного азота, от химического состава токсина.

    Для очистки анатоксинов от балластных белков применялось фракционное осаждение различными концентрациями сульфата аммония. В настоящее время этот метод используется лишь на отдельных этапах очистки и концентрации небольших объемов анатоксинов.

    В зарубежных странах для очистки и концентрации дифтерийного и столбнячного анатоксина применяют метод ультрафильтрации через почкообразные фильтры, покрытые 8%парло-диновой оболочкой. Осадок после растворения в воде фракционируют сульфатом аммония при различных процентах насыщения. Очищенный дифтерийный анатоксин содержит 1800-2500 Lf на 1 мг общего азота (Lf - сокр. англ, limit of flocculation - порог флоккуляции).

    В СССР для очистки и концентрации анатоксинов ботулинических, возбудителей газовой гангрены, дифтерийного и столбнячного анатоксинов применяют кислотное осаждение. Перед подкислением для усиления ионной силы раствора в анатоксины растворяют 10-30% хлорида натрия. Затем понижают рН анатоксинов до 3,5, добавляя НСl; выпавший осадок отделяют от жидкости и растворяют в 1/20 части изотонического раствора хлорида натрия от объема исходного анатоксина. Полученный концентрат анатоксинов подвергают дальнейшей очистке повторным осаждением ацетоном. При кислотном осаждении столбнячного и других анатоксинов в некоторых лабораториях для усиления ионной силы раствора анатоксина применяют гексаметофосфат. Бактериальные токсины и анатоксины можно очистить с помощью сорбции фосфатом алюминия, гидратом окиси алюминия, фосфатом кальция и другими неорганическими сорбентами с последующей элюцией (см.); кроме того, все более широкое применение находят методы ионообменной хроматографии и гель-фильтрации через сефадексы различных марок (см. Гель-фильтрация , Хроматография).

    Для иммунизации против токсинемических инфекций применяются анатоксины, депонированные на гидрате окиси алюминия и фосфате алюминия; алюминиево-калиевые квасцы для депонирования применяются только в ветеринарной практике. Высокую пммуногенность депонированных анатоксинов объясняют адъювантным действием сорбента и замедленной резорбцией из депо антигена. В результате этого происходит длительное поступление небольших количеств анатоксинов в организм, что ведет к развитию напряженного иммунитета. Применение дифтерийного и столбнячного анатоксинов, сорбированных на гидроокиси алюминия, для массовой иммунизации людей в СССР дало резкое снижение заболеваемости дифтерией и столбняком.

    Иммунизацию детей против дифтерии, столбняка и коклюша проводят ассоциированной вакциной, включающей сорбированные дифтерийный, столбнячный анатоксины и корпускулярную коклюшную вакцину.

    Библиография: Апанащенко Н. И., Помянкевич А. Н. и Нехотенова Е. И. Очищенный адсорбированный дифтерийный анатоксин, Журн. микр., эпид. ииммун., № 8, с. 54, 1951: Воробьев А. А., Васильев Н. Н. и Кравченко А. Т. Анатоксины, М., 1965, библиогр.; Выгодчиков Г. В. Микробиология и иммунология стафилококковых заболеваний, М., 1950, библиогр.; он же, Стафилококковые инфекции, М., 1963, библиогр.; Матвеев К. И. Ботулизм, М., 1959, библиогр.; он же, Эпидемиология и профилактика столбняка, М., 1960, библиогр.; Рамон Г. Сорок лет исследовательской работы, пер. с франц., М., 1962; Prévot A. R. Manuel de classification et de détermination des bacteries anaerobies, P., 1957.

    К. И. Матвеев.

    Читайте также: