Мейоз. Стадии мейоза. Мейоз и митоз - отличие, фазы

Мейоз (греч. meiosis – уменьшение, убывание) или редукционное деление. В результате мейоза происходит уменьшение числа хромосом, т.е. из диплоидного набора хромосом (2п) образуется гаплоидный (n).

Мейоз состоит из 2-х последовательных делений:
I деление называется редукционное или уменьшительное.
II деление называется эквационное или уравнительное, т.е. идет по типу митоза (значит число хромосом в материнской и дочерних клетках остается прежним).

Биологический смысл мейоза заключается в том, что из одной материнской клетки с диплоидным набором хромосом образуется четыре гаплоидные клетки, таким образом количество хромосом уменьшается в два раза, а количество ДНК в четыре раза. В результате такого деления образуются половые клетки (гаметы) у животных и споры у растений.

Фазы называются также как и в митозе, а перед началом мейоза клетка также проходит интерфазу.

Профаза I – самая продолжительная фаза и ее условно делят на 5 стадий:
1) Лептонема (лептотена) – или стадия тонких нитей. Идет спирализация хромосом, хромосома состоит из 2-х хроматид, на еще тонких нитях хроматид видны утолщения или сгустки хроматина, которые называются – хромомерами.
2) Зигонема (зиготена, греч. сливающиеся нити) - стадия парных нитей. На этой стадии попарно сближаются гомологичные хромосомы (одинаковые по форме величине), они притягиваются и прикладываются друг к другу по всей длине, т.е. коньюгируют в области хромомеров. Это похоже на замок «молния». Пару гомологичных хромосом называют биваленты. Число бивалентов равно гаплоидному набору хромосом.
3) Пахинема (пахитена , греч. толстая) – стадия толстых нитей. Идет дальнейшая спирализация хромосом. Затем каждая гомологичная хромосома расщепляется в продольном направлении и становится хорошо видно, что каждая хромосома состоит из двух хроматид такие структуры называют тетрадами, т.е. 4 хроматиды. В это время идет кроссинговер, т.е. обмен гомологичными участками хроматид.
4) Диплонема (диплотена) – стадия двойных нитей. Гомологичные хромосомы начинают отталкиваться, отходят друг от друга, но сохраняют взаимосвязь при помощи мостиков – хиазм, это места где произойдет кроссинговер. В каждом соединении хроматид (т.е. хиазме), осуществляется обмен участками хроматид. Хромосомы спирализуются и укорачиваются.
5) Диакинез – стадия обособленных двойных нитей. На этой стадии хромосомы полностью уплотнены и интенсивно окрашиваются. Ядерная оболочка и ядрышки разрушаются. Центриоли перемещаются к полюсам клетки и образуют нити веретена деления. Хромосомный набор профазы I составляет - 2n4c.
Таким образом, в профазу I происходит:
1. конъюгация гомологичных хромосом;
2. образование бивалентов или тетрад;
3. кроссинговер.

В зависимости от конъюгирования хроматид могут быть различные виды кроссинговера: 1 – правильный или неправильный; 2 – равный или неравный; 3 – цитологический или эффективный; 4 – единичный или множественный.

Метафаза I – спирализация хромосом достигает максимума. Биваленты выстраиваются вдоль экватора клетки, образуя метафазную пластинку. К центромерам гомологичных хромосом крепятся нити веретена деления. Биваленты оказываются соединенными с разными полюсами клетки.
Хромосомный набор метафазы I составляет - 2n4c.

Анафаза I – центромеры хромосом не делятся, фаза начинается с деления хиазм. К полюсам клетки расходятся целые хромосомы, а не хроматиды. В дочерние клетки попадает только по одной из пары гомологичных хромосом, т.е. идет их случайное перераспределение. На каждом полюсе, оказывается, по набору хромосом - 1п2с, а в целом хромосомный набор анафазы I составляет - 2n4c.

Телофаза I – по полюсам клетки находится целые хромосомы, состоящие из 2-х хроматид, но количество их стало в 2 раза меньше. У животных и некоторых растений хроматиды деспирализуются. Вокруг них на каждом полюсе формируется ядерная мембрана.
Затем идет цитокинез
. Хромосомный набор образовавшихся после первого деления клеток составляет - n2c.

Между I и II делениями нет S-периода и не идет репликация ДНК, т.к. хромосомы уже удвоены и состоят из сестринских хроматид, поэтому интерфазу II называют интеркинезом – т.е. происходит перемещение между двумя делениями.

Профаза II – очень короткая и идет без особых изменений, если в телофазу I не образуется ядерная оболочка, то сразу образуются нити веретена деления.

Метафаза II – хромосомы выстраиваются вдоль экватора. Нити веретена деления крепятся к центромерам хромосом.
Хромосомный набор метафазы II составляет - n2c.

Анафаза II – центромеры делятся и нити веретена деления разводят хроматиды к разным полюсам. Сестринские хроматиды называются дочерними хромосомами(или материнские хроматиды это и будут дочерние хромосомы).
Хромосомный набор анафазы II составляет - 2n2c.

Телофаза II – хромосомы деспирализуются, растягиваются и после этого плохо различимы. Образуются ядерные оболочки, ядрышки. Телофаза II завершается цитокинезом.
Хромосомный набор после телофазы II составляет – nc.

Схема мейотического деления

Мейоз, или редукционное деление

Определение 1

Мейоз – это форма ядерного деления, которая сопровождается уменьшением числа хромосом с диплоидного (2n ) до гаплоидного (n ).

При этом делении в родительской клетке происходит однократное удвоение хромосом (репликация ДНК, как во время митоза), после которого следуют два цикла клеточных и ядерных делений (первое и второе деление мейоза). Второе деление мейоза происходит практически сразу же за первым и ДНК в интервале между ними не синтезируется (по сути между первым и вторым делениями нет интерфазы).

Мейоз происходит при образовании спермиев и яйцеклеток (гаметогенез) у животных.

При мейозе происходит редукция хромосомного набора и каждая гаплоидная гамета или спора получает одну хромосому из каждой пары материнской клетки. Во время дальнейшего слияния гамет (оплодотворения) новый организм снова получает диплоидный набор хромосом, то есть кариотип организма данного вида остаётся стабильным в ряду поколений.

В процессе мейоза быстро один за одним происходят два деления. В начале мейоза происходит репликация (удвоение) каждой хромосомы. Некоторое время две её образованные копии остаются соединёнными центромерой. Значит, каждое ядро, которое начинает мейотически делиться, содержит эквивалент четырёх наборов гомологических хромосом () и для того, чтобы образовались ядра гамет с гаплоидным (одинарным) набором хромосом, должны произойти два ядерных деления.

Первое мейотическое деление

В результате первого мейотического (редукционного) деления из диплоидных клеток (2n ) образуются гаплоидные (n ). Он начинается из профазы І, в которой, также как и в митозе, происходит упаковка наследственного материала (спирализация хромосом). Одновременно гомологические (парные) хромосомы сближаются одинаковыми участками – происходит коньюгация . В результате коньюгации образуются пары хромосом – биваленты . Каждая хромосома, вошедшая в мейоз, состоит из двух хроматид иимеет удвоенный наследственный материал, потому бивалент состоит из 4 нитей. Когда хромосомы находятся в коньюгированном состоянии, их дальнейшая спирализация продолжается. Отдельные хроматиды гомологических хромосом переплетаются и перекрещиваются. В дальнейшем гомологические хромосомы отталкиваются и немного расходятся, потому в местах переплетения хроматид может произойти их разрыв. Как результат в процессе возобновления разрывов у хроматиды гомологических хромосом происходит обмен соответствующими участками. В итоге перешедшая от родителя к данному организму хромосома, содержит часть материнской хромосомы, и наоборот.

Определение 2

Перекрещивание гомологических хромосом, в результате которого происходит обмен участками хроматид, называется кроссинговером.

После кроссинговера уже изменённые хромосомы, то есть с другими объединениями генов, расходятся.

Поскольку кроссинговер является процессом закономерным, он каждый раз приводит к обмену разными по размеру участками и, таким образом, обеспечивается эффективная рекомбинация материала хромосом гамет.

  1. В метафазе І завершает формироваться веретено деления. Его нити крепятся к центромерам хромосом, которые соединены в биваленты так, что от каждой центромеры отходит лишь одна нить к одному из полюсов клетки. В результате с помощью связанных с центромерами гомологических хромосом нитей биваленты располагаются по экватору веретена деления.
  2. В анафазе І гомологические хромосомы рассоединяются и расходятся к полюсам клетки.

Замечание 1

При анафазе к каждому полюсу отходит одинарный набор хромосом, состоящий из двух хроматид.

В телофазе І возле полюсов веретена собирается одинарный (гаплоидный) набор хромосом, в котором каждый их вид представлен уже не парой, а одной хромосомой, состоящей из двух хроматид. В короткой по длительности телофазе возобновляется оболочка ядра, а материнская клетка делится на две дочерние. Таким образом, благодаря образованию бивалентов при коньюгации гомолологических хромосом в профазе І мейоза создаёт условия для дальнейшей редукции количества хромосом. Формируется гаплоидный набор в гаметах, который обеспечивается расхождением в анафазе І не хроматид, как в митозе, а гомологических хромосом, которые ранее были соединены в биваленты.

Второе мейотическое деление

Второе мейотическое деление происходит сразу же после первого и подобно обычному митозу (потому его ещё называют митозом мейоза), но клетки, которые делятся, содержат гаплоидный набор хромосом.

  1. Профаза ІІ недлительна.
  2. В метафазе ІІ снова образуется веретено деления, хромосомы располагаются в экваториальной плоскости, а центромеры соединяются с микротрубочками веретена деления.
  3. В анафазе ІІ их центромеры рассоединяются и каждая хроматида превращается в самостоятельную хромосому. Дочерние хромосомы, которые отделяются друг от друга, направляются к полюсам клетки.
  4. В телофазе ІІ завершается расхождение хромосом и клетки делятся: из двух гаплоидных клеток образуются четыре гаплоидные дочерние клетки.

Значение мейоза

Благодаря редукционному делению регулируется непрерывное увеличение числа хромосом в процессе слиянии гамет. Если бы не было этого механизма, то во время полового размножения число хромосом удваивалось бы из поколения в поколение.

Замечание 2

Мейоз – это процесс, который поддерживает постоянное число хромосом в клетках всех поколений каждого вида растений, животных, протистов и грибов.

Ещё одно важное значение мейоза: обеспечение большого разнообразия генетического состава гамет как в результате кроссинговера, так и в результате различного объединения отцовских и материнских хромосом при их расхождении в анафазе І мейоза. Это обеспечивает разнообразие и разнокачественность потомства во время полового размножения.

Замечание 3

Важнейшее значение мейоза – обеспечить постоянство кариотипа в ряду поколений данного вида организмов и обеспечение большого разнообразия в генетическом составе гамет и спор.

а) транскрипция;

б) редукционное деление;

в) денатурация;

г) кроссинговер;

д) конъюгация;

е) трансляция.

5. В результате редукционного деления в овогенезе образуются:

а) одно редукционное тельце;

б) овогогии;

в) овоцит I порядка;

г)два редукционных тельца;

д) овоцит I I порядка.

Вариант 5

1. В результате первого деления мейоза из одной материнской клетки образуются:

a) две дочерние клетки с уменьшенным вдвое набором хромосом;

б) четыре дочерние клетки с уменьшенным вдвое числом хромосом;

в) две дочерние клетки с увеличенным вдвое числом хромосом;

г) четыре дочерние клетки с числом хромосом, равным материнской клетке.

Для первой фазы мейоза характерен процесс

а) конъюгации;

б)трансляции;

в)редупликации;

г) транскрипции.

Биологическое значение мейоза у животных заключается в

а) предотвращении удвоения числа хромосом в новом поколении;

б) образовании мужских и женских половых гамет;

в) создании новых генных комбинаций;

г) создании новых хромосомных комбинаций;

д) увеличении числа клеток в организме;

е) кратном увеличении набора хромосом.

Яйцеклетка в отличие от сперматозоида характеризуется

а) гаплоидным набором хромосом;

б) диплоидным набором хромосом;

в) большим запасом питательных веществ;

г) более крупными размерами;

5) неподвижностью;

д) активным движением.

5 Хромосомный набор метафазы 1 мейоза равен:

б) 2n4с 4 хр;

в) 4n4с 4хр;

г) 1nб4с4хр.

ОТВЕТЫ НА ВХОДНОЙ ТЕСТОВЫЙ КОНТРОЛЬ

1 вар. 1-а,б, 2- а,г.; 2-в; 3-г; 4-а; 5-а.

2 вар. 1- 1-б,в,г,д,е 2- а,ж,з. 2-в, 3-а, 4-а, 5-а.

3 вар. 1- а,б,в,г, 2-а,б,в; 2- в, 3-а, 4- а,в,г.; 5-г

4 вар. 1- а,г,д, 2-б,в,е; 2-а; 3-б,4- б,г,д. 5-а,в.

5 вар . 1-а,2-а,3-а,б,в. 4-в,г,д, 5-г

ПРИЛОЖЕНИЕ № 3 СИТУАЦИОННЫЕ ЗАДАЧИ.

ОБУЧАЮЩИЕ ЗАДАЧИ:

1.2 . Секвенирование генома человека в рамках международной программы «Геном человека» заложило основу нового направления - предективной медицины (генетическое тестирование генов предрасположенности). Она дает возможности не только достоверно поставить диагноз, но м если позволяют современные технологии осуществить лечение и профилактику наследственных заболеваний. Это особенно актуально в доэмбриональном периоде онтогенеза, когда молодые люди проходят обследование, еще до рождения детей.

Например, проведение тестирования гена CFT, мутация в котором приводит к развитию болезни муковисцедоз. Ген включает 1245 триплетов, в результате одной из миссенс –мутаций в 455 триплете происходит замена Ц на А. Определите последовательность аминокислот в норме (на участке 451-461) и при патологии.

ДНК в норме на участке триплетов 451-461

ДНК: ЦЦТ ГТЦ ААЦ ААЦ ЦГЦ ЦАА ЦГА ЦЦТ АГГ ТГА

ала- вал- ала - гли- сер- тре

измененная ДНК: ЦЦТ ГТЦ ААЦ ААЦ ЦГЦ ЦАА ЦГА ЦЦТ АГГ ТГА

иРНК: ГГА ЦАГ УУГ УУГ ГЦГ ГУУ ГЦУ ГГА УЦЦ АЦУ

полипептид гли - глн- лей - лей- сер - вал- ала - гли- сер- тре

ТРЕНИРУЮЩИЕ ЗАДАЧИ

1.3. В центр по планированию беременности « Брак и семья» обратилась супружеская пара, по поводу бесплодия. В браке они прожили 5 лет. Какие объективные причины могут вызвать бесплодие?

АЛГОРИТМ РЕШЕНИЯ.

Причины, вызывающие бесплодие, могут быть следующими:

1) нарушение сперматогенеза;

2) нарушение овогенеза;

3) нарушение строения и функции матки и маточных труб;

4) эндокринные расстройства (гипотириодизм, диабет), нарушения строения и функций надпочечников и гипофиза;

5) острые инфекции (паротит);

6) хронические инфекции (туберкулёз);

7) недостаточность витаминов А, В, С;

8) хроническая почечная недостаточность;

9) воздействие солей тяжелых металлов и радиоактивных веществ, нарушающих сперматогенез;

10) лечебные препараты, применяющиеся для лечения лейкозов и псориаза (милеран, метатрексат).

1.4. 21-летняя беременная женщина, будучи на осмотре в консультации, спросила о возможности рождения ею двойни. Ее вопрос был связан с тем, что двойни рождались ее матерью, бабушкой и даже прабабушкой. Как бы вы ответили на этот вопрос? Считаете ли вы целесообразным в виде дополнительной информации выяснить, рождались ли в ее семье идентичные однояйцевые или разнояйцевые близнецы? Имеет ли значение информация о рождении близнецов у родственников по линии отца?

АЛГОРИТМ РЕШЕНИЯ.

Нет сомнения в том, что наследственность оказывает влияние на рождение полизиготных близнецов. Нет уверенности в том, что от наследственности зависит частота монозиготных близнецов. В случае рождения полизиготных близнецов дети различаются как по своим физическим, так и по умственным способностям. Дети монозиготных близнецов имеют идентичные физические и умственные характеристики. Установлено, что генотип отца не способен изменить частоту рождения двоен.

КОНТРОЛИРУЮЩИЕ ЗАДАЧИ

1.5. На микрофотографии представлена яйцеклетка, в цитоплазме которой содержится незначительное количество равномерно расположенных желточных включений. Яйцеклетка окружена двумя структурами: блестящей оболочкой и лучистым венцом. Назовите тип яйцеклетки, для кого он характерен? Чем образован лучистый венец и блестящая оболочка яйцеклетки? Какие функции они выполняют? Как отличаются по химическому составу части яйцеклетки? Какое значение имеет ооплазматическая сегрегация для развития эмбриона?

АЛГОРИТМ РЕШЕНИЯ.

Такой тип яйцеклетки- алецитальный, характерен для млекопитающих и человека. Блестящая оболочка является продуктом как самого ооцита, так и питающих его фолликулярных клеток. Ее важной особенностью является наличие особых белков – гликопротеинов ZP1, ZP2 и ZP3, ответственных за видовую специфичность оплодотворения. Кроме этого ей принадлежит значительная роль в защите яйцеклетке и транспорте питательных веществ.

Лучистый венец или вторичная оболочка яйцеклетки, состоит из нескольких слоев фолликулярных клеток, расположенных вокруг яйцеклетки. Она контактирует с яйцеклеткой своими тонкими цитоплазматическими отростками, проникающими через отверстия в блестящей оболочке. Фолликулярные клетки, образующие лучистый венец играют важную роль в направленном движении яйцеклетки по маточным трубам.

Ооплазматическая сегрегация, приводящая к тому, что состав цитоплазмы в разных участках яйца становится различным. Так, гликоген и РНК концентрируется на одном из полюсов, витамин С располагается по экватору.

1.6. У 18-летнего мужчины обнаружен двусторонний крипторхизм (неопущенные в мошонку оба яичка). Какое значение для молодого человека может иметь эта врождённая аномалия? Какие советы необходимо дать пациенту?

АЛГОРИТМ РЕШЕНИЯ

Врач должен объяснить пациенту, что оба яичка необходимо опустить в мошонку хирургическим путем. Эта операция необходима по следующим причинам:

1) в яичках ребенка, находящихся в паховом канале или полости брюшины, после 5 лет развиваются дегенеративные изменения в семенных канальцах. так как температура в мошонке на 2-3 градуса ниже внутрибрюшинной, в связи с этим необратимо нарушается сперматогенез и появляется угроза бесплодия;

2) если яички не располагаются в мошонке до периода половой зрелости, сперматозоиды не образуются. хотя клетки Лейдига активно синтезируют тестостерон;

3) если яички остаются внутрибрюшинно до 30-35 летнего возраста, фиброзная соединительная ткань замещает интерстициальные клетки- гландулоциты чем объясняется снижение синтеза мужского полового гормона;

4) клеточные элементы неопустившихся яичек нередко могут явиться источником злокачественных опухолей.

1.7. К специалисту –андрологу обратился мужчина, в возрасте 36 лет. Пациента волновал вопрос: « Может ли вирусный паротит (свинка), которым он переболел в детском возрасте и который осложнился острым воспалением яичка (орхитом), явиться причиной бесполодия?»

АЛГОРИТМ РЕШЕНИЯ.

Воспалительные изменения в яичках вызывают развитие атрофии извитых канальцев яичка и регрессию сперматогенеза. Причиной же стерильности паротит может быть редко, так как при этой инфекции чаще всего поражается только одна из желез.

1.8 . Секвенирование двух самых маленьких хромосом человека 21 и 22 определило их размер, количество генов и их расположение. Размер ДНК в 21 хромосоме 33.8 Мб, в ней содержаться 225 генов, размер ДНК 22 хромосомы 33,4 Мб, в ней содержаться 545 генов. Учитывая этот факт, объясните почему трисомия по 22 хромосоме часто не совместима с жизнью. Какое заболевание развивается при трисомии по 21 хромосоме. Укажите возможные причины и механизмы, приводящие к развитию этого патологического состояния.

АЛГОРИТМ РЕШЕНИЯ.

Очевидно, что в 22 хромосоме несмотря на ее маленький размер содержится в 2 раза больше генов, чем в 21. Трисомия по 22 хромосоме приведет к развитию аномалий несовместимых с жизнью. Трисомия по 21 хромосоме приводит к формированию синдрома Дауна. Среди возможных причин, приводящих к неправильному расхождению хромосом в мейозе может быть возраст матери. Возможно по мере старения организма истощается пул ооцитов и хромосомы в « перезрелых» ооцитах возрастных женщин более подвержены нерасхождению. Предполагается, что возрастные гормональные изменения могут ускорять процесс мейотического созревания ооцитов и быть причиной аномальной сегрегации хромосом. Не исключено также, что с возрастом женщины нарушается образование веретена деления или изменяется продолжительность клеточного цикла.

Глоссарий.

Акросома - органоид сперматозоида расположенный на переднем конце головки сперматозоида, развивающийся из комплекса Гольджи путем конденсации гранул акросомного вещества.

Активация яйца - побуждение яйца к развитию, что происходит при оплодотворении его сперматозоидом или под действием других стимулов.

Анимальный полюс - часть телолецитальной яйцеклетки, в которой находится активная цитоплазма, не перегруженная желточными включениями. Последние сосредоточены на противоположном – вегетативном- полюсе.

Бивалент пара гомологичных хромосом, которые соединяются (коньюгируют) между собой в мейозе.

Вегетативный полюс- часть цитоплазмы яйцеклетки в которой сосредоточено большое количество желтка.

Гаметогенез - развитие половых клеток (сперматозоидов и яйцеклеток).

Гаметы – мужские и женские половые клетки имеющие гаплоидный набор хромосом.

Гонады - половые железы- органы образующие половые клетки и половые гормоны у животных и человека.

Деление редукционное (мейоз 1) –процесс деления созревающих половых клеток, в результате которого происходит уменьшение вдвое (редукция) числа хромосом.

Зигота – клетка, возникающая при слиянии двух гамет. Это оплодотвореная яйцеклетка.

Кортикальная реакция- цепь изменений в кортикальном слое цитоплазмы яйцеклетки при ее оплодотворении (разрушение кортикальных гранул, утолщение желточной оболочки и ее преобразование в оболочку оплодотворения, изменение мембранного потенциала, блокирование полиспермии).

Крипторхизм- неопущение яичка в мошонку. При этой аномалии развития яички остаются стерильными, так как из-за высокой температуры в брюшной полости сперматогенез приостанавливается.

Кроссинговер – взаимный обмен гомологичными участками конъюгирующих хромосом.

Мейоз – процесс деления созревающих половых клеток, в результате которого происходит уменьшение (редукция) числа хромосом.

Моносомия – отсутствие в хромосомном наборе клеток диплоидного организма одной из гомологичных хромосом.

Оболочка оплодотворения - утолщенная и как бы затвердевшая первичная оболочка яйцеклетки.

Оболочка яйцеклектки первичная – желточная оболочка, вырабатываемая самой яйцеклеткой. Она имеет вид тонкой пленки, связанной с цитоплазмой яйцеклетки.

Овогенез - развитие женской половой клетки.

Овуляция - процесс выбрасывания (выхода) яйцеклетки из граафового пузырька яичника, после чего она поступает в яйцевод.

Оплодотворение - процесс слияния мужской и женской половых клеток с образованием зиготы.

Оогонии – незрелые женские половые клетки, обладающие способностью к митотическому размножению.

Ооцит - незрелая женская половая клетка животных в периоды роста и созревания оогенеза.

Пронуклеус- ядерное вещество сперматозоида или ядро яйцеклетки, которые в процессе оплодотворения до образования синкариона переходят из плотного в более рыхлое состояние, приобретая при этом сходство с обычным клеточным ядром.

Полиплоидия – наследственное изменение, заключающееся в кратном увеличении числа наборов хромосом в клетках организма.

Размножение – присущее всем организмам свойство воспроизведения себе подобных, обеспечивающее непрерывность и преемственность жизни.

Размножение бесполое - размножение живых организмов, при котором одна родительская особь дает начало двум или большему числу особей потомства, идентичных по наследственным признакам родительской особи.

Размножение половое – способы размножения, при которых новый организм развивается обычно из зиготы, образующейся в результате слияния женских и мужских половых клеток – гамет.

Серый серп- часть яйцеклетки в виде серого полумесяца на стороне противоположной месту проникновения сперматозоида.

Синкарион – 1) ядро зиготы, образующееся в процессе слияния мужского и женского пронуклеусов.

Сперматиды – гаплоидные мужские половые клетки, образующиеся в течение 4-го (последнего) периода сперматогенеза.

Сперматогенез – превращение диплоидных первичных клеток у животных и многих растительных организмов в гаплоидные дифференцированные мужские половые клетки – сперматозоиды.

Сперматогонии – диплоидные мужские половые клетки первого периода сперматогенеза.

Сперматозоид – спермий – зрелая гаплоидная мужская половая клетка животных и многих растительных организмов.

Сперматоцит – мужская половая клетка в период роста и созревания (2-й и 3-й периоды сперматогенеза).

Хиазма – точка соединения конъюгирующих гомологичных хромосом в профазе первого деления мейоза.

Хромосомы – самовоспроизводящиеся структуры клеточного ядра, являющиеся носителями генов, определяющих наследственные свойства клеток и организмов.

Яички – наружные органы мужской половой системы овальной или бобовидной формы.

Яичники – женские половые железы, выполняющие генеративную (образование яйцевых клеток) и эндокринную (выработка овариальных гормонов) функции).

Яйцеклетка – женская половая клетка, специализированная к выполнению генеративной функции.


При большом увеличении микроскопа рассмотреть срез семенника крысы. Найти в семенных канальцах клетки в разных зонах развития. Зарисовать сегмент семенного канальца и обозначить сперматогонии, сперматоциты I порядка, II порядка, сперматиды. Подписать хромосомный комплекс каждой клетки.

ПРАКТИЧЕСКОЕ ЗАДАНИЕ 2.

При большом увеличении микроскопа рассмотреть постоянный препарат сперматозоидов морской свинки. Обратить внимание на размер сперматозоидов Рассмотреть головку, найти в ней акросому, ядро. Зарисовать 1-2 сперматозоида, сделать обозначение.

При малом увеличении микроскопа рассмотреть препарат среза яичника кошки. Найти фолликулы на разных стадиях зрелости. Зарисовать препарат и обозначить первичный фолликул, фолликул средней зрелости (растущий), зрелый фолликул (граафов пузырек). В граафовом пузырьке рассмотреть и обозначить фолликуярный слой, полость фолликула, яйценосный бугорок, овоцит I порядка.

ПРАКТИЧЕСКОЕ ЗАДАНИЕ 7.

Изучить по таблице строение сперматозоида и яйцеклетки млекопитающих и перенести ее в альбом. Зарисовать схему строения сперматозоида, обозначить головку, ядро, акросому, шейку, проксимальную, дистальную центриоли, хвост. Зарисовать схему строения яйцеклетки. Обозначить ее блестящую оболочку, ядро, ядрышко, желточные зерна.


Входной тестовый контроль

3 Уменьшение числа хромосом вдвое, образование клеток с гаплоидным набором хромосом происходит в процессе

2)дробления

3)оплодотворения

4 Значение митоза состоит в увеличении числа

1) хромосом в дочерних клетках по сравнению с материнской

2)клеток с набором хромосом, равным материнской клетке

3)молекул ДНК в дочерних клетках по сравнению с материнской

4)клеток с уменьшенным вдвое набором хромосом

5 В конце интерфазы каждая хромосома состоит из молекул ДНК

4)четырех

6 Конъюгация и обмен участками гомологичных хромосом происходит в

1)профазе I мейоза

2)профазе митоза

3)метафазе II мейоза

4)профазе II мейоза

7 Растворение ядерной оболочки и ядрышек в процессе митоза происходит в

1) профазе

2)интерфазе

3)телофазе

4)метафазе

8 в мейозе удвоение ДНК и образование двух хроматид происходит в

1) профазе первого деления

2) профазе второго деления

3)интерфазе перед первым делением

4)интерфазе перед вторым делением

10 Расхождение гомологичных хромосом происходит в

1) анафазе мейоза 1

2) метафазе мейоза 1

3) метафазе мейоза 2

4) анафазе мейоза 2

11 Расхождение хроматид к полюсам клетки происходит в

1) телофазе

2) анафазе

3) профазе

4) метафазе

12 В процессе мейоза у животных образуются гаметы с набором хромосом

1) диплоидным

2) гаплоидным

3) равным материнскому

4) удвоенным

14 у животных в процессе митоза, в отличие от мейоза, образуются клетки

1) соматические

2) с половинным набором хрмомосом

3) половые

4) споровые

Ответ:_____________________

Ответ:_____________________

Ответ:_____________________

18 Половые клетки животных в отличие от соматических

Ответ:_____________________

Ответ:_____________________

20 Выберите правильный ответ. В результате второго деления созревания сперматогенеза клетки называются:

1). Сперматогонии

2). Сперматоциты I порядка

3). Сперматиды

4). Сперматоциты I I порядка

21. Выберите правильные ответы. Прозрачная оболочка состоит из:

1). Гликозаминогликанов

2). Протеогликанов

3). Фолликулярных клеток

4). Пигментных включений

5). Желточных гранул

23. Выберите правильный ответ. Акросома содержит:

1). Гормоны

2). Ферменты

3. Ллипиды

25 Выберите правильный ответ. Яйцеклетка не содержит:

1). Митохондрий

2). Эндоплазматической сети

3). Комплекса Гольджи

4). Центриолей

26. Выберите правильный ответ. Первичная оболочка яйцеклетки является производной:

1). Фолликулярных клеток

2). Ооцита

3). Блестящей оболочки

4). Продуктами желез яйцеводов

5). Соединительной тканью

27. Выберите правильные ответы. Овогенез состоит из стадий:

1). Размножения

3). Созревания

4). Формирования.

92. При сперматогенезе в зоне роста располагаются клетки, которые называются:

a) сперматогониями;

b) сперматоцитами 1 порядка;

c) сперматоцитами 2 порядка;

d) сперматидами.

97. Пары хромосом выстраиваются в экваториальной плоскости клетки во время первого мейотического деления:

a) в профазу 1;

b) в метафазу 1;

c) в анафазу 1;

d) в телофазу 1.

98. Из всех фаз мейоза наиболее длительная:

a) профаза 1;

b) анафаза 1;

c) профаза 2;

d) телофаза 2.

99. Конъюгация и обмен участками гомологичных хромосом происходит:

a) в профазе митоза;


При половом размножении дочерний организм возникает в результате слияния двух половых клеток (гамет ) и последующего развития из оплодотворенной яйцеклетки - зиготы.

Половые клетки родителей обладают гаплоидным набором (n ) хромосом, а в зиготе при объединении двух таких наборов число хромосом становится диплоидным (2n ): каждая пара гомологичных хромосом содержит одну отцовскую и одну материнскую хромосому .

Гаплоидные клетки образуются из диплоидных в результате особого клеточного деления - мейоза.

Мейоз - разновидность митоза, в результате которого из диплоидных (2п) соматических клеток половых же лез образуются гаплоидные гаметы (1 n ). При оплодотворении ядра гаметы сливаются, и восстанавливается диплоидный набор хромосом. Таким образом, мейоз обеспечивает сохранение постоянного для каждого вида набора хромосом и количества ДНК.

Мейоз представляет собой непрерывный процесс, состоящий из двух последовательных делений, называемых мейозом I и мейозом II. В каждом делении различают профазу, метафазу, анафазу и телофазу. В результате мейоза I число хромосом уменьшается вдвое (редукционное деление): при мейозе II гаплоидность клеток сохраняется (эквационное деление). Клетки, вступающие в мейоз, содержат генетическую информацию 2n2хр (рис. 1).

В профазе мейоза I происходит постепенная спирализация хроматина с образованием хромосом. Гомологичные хромосомы сближаются, образуя общую структуру, состоящую из двух хромосом (бивалент) и четырех хроматид (тетрада). Соприкосновение двух гомологичных хромосом по всей длине называется конъюгацией. Затем между гомологичными хромосомами появляются силы отталкивания, и хромосомы сначала разделяются в области центромер, оставаясь соединенными в области плеч, и образуют перекресты (хиазмы). Расхождение хроматид постепенно увеличивается, и перекресты смещаются к их концам. В процессе конъюгации между некоторыми хроматидами гомологичных хромосом может происходить обмен участками - кроссинговер, приводящий к перекомбинации генетического материала. К концу профазы растворяются ядерная оболочка и ядрышки, формируется ахроматиновое веретено деления. Содержание генетического материала остается прежним (2n2хр).

В метафазе мейоза I биваленты хромосом располагаются в экваториальной плоскости клетки. В этот момент спирализация их достигает максимума. Содержание генетического материала не изменяется (2п2хр).

В анафазе мейоза I гомологичные хромосомы, состоящие из двух хроматид, окончательно отходят друг от друга и расходятся к полюсам клетки. Следовательно, из каждой пары гомологичных хромосом в дочернюю клетку попадает только одна - число хромосом уменьшается вдвое (происходит редукция). Содержание генетического материала становится 1n2хр у каждого полюса.

В телофазе происходит формирование ядер и разделение цитоплазмы - образуются две дочерние клетки. Дочерние клетки содержат гаплоидный набор хромосом, каждая хромосома - две хроматиды (1n2хр).

Интеркинез - короткий промежуток между первым и вторым мейотическими делениями. В это время не происходит репликации ДНК, и две дочерние клетки быстро вступают в мейоз II, протекающий по типу митоза.

Рис. 1. Схема мейоза (показана одна пара гомологичных хромосом). Мейоз I: 1, 2, 3. 4. 5 - профаза; 6 -метафаза; 7 - анафаза; 8 - телофаза; 9 - интеркинез. Мейоз II; 10 -метафаза; II -анафаза; 12 - дочерние клетки.

В профазе мейоза II происходят тс же процессы, что и в профазе митоза. В метафазе хромосомы располагаются в экваториальной плоскости. Изменений содержания генетического материала не происходит (1n2хр). В анафазе мейоза II хроматиды каждой хромосомы отходят к противоположным полюсам клетки, и содержание генетического метериала у каждого полюса становится lnlxp. В телофазе образуются 4 гаплоидные клетки (lnlxp).

Таким образом, в результате мейоза из одной диплоидной материнской клетки образуются 4 клетки с гаплоидным набором хромосом. Кроме того, в профазе мейоза I происходит перекомбинация генетического материала (кроссинговер), а в анафазе I и II - случайное отхождение хромосом и хроматид к одному или другому полюсу. Эти процессы являются причиной комбинативной изменчивости.

Биологическое значение мейоза :

1) является основным этапом гаметогенеза;

2) обеспечивает передачу генетической информации от организма к организму при половом размножении;

3) дочерние клетки генетически не идентичны материнской и между собой.

Атак же, биологическое значение мейоза заключается в том, что уменьшение числа хромосом необходимо при образовании половых клеток, поскольку при оплодотворении ядра гамет сливаются. Если бы указанной редукции не происходило, то в зиготе (следовательно, и во всех клетках дочернего организма) хромосом становилось бы вдвое больше. Однако это противоречит правилу постоянства числа хромосом. Благодаря мейозу половые клетки гаплоидны, а при оплодотворении в зиготе восстанавливается диплоидный набор хромосом (рис. 2 и 3).

Рис. 2. Схема гаметогенеза: ? - сперматогенез; ? - овогенез

Рис. 3. Схема, иллюстрирующая механизм сохранения диплоидного набора хромосом при половом размножении

Мейоз - деление эукариотической клетки с уменьшением числа хромосом в два раза и образованием гамет. Происходит в два этапа (редукционный и эквационный этапы мейоза).

Значение.

Биологическое значение мейоза заключается в поддержании постоянства числа хромосом при наличии полового процесса. Кроме того, вследствие кроссинговера происходит рекомбинация – появление новых сочетаний наследственных задатков в хромосомах. Мейоз обеспечивает также комбинативную изменчивость – появление новых сочетаний наследственных задатков при дальнейшем оплодотворении.

Фазы мейоза.

Мейоз состоит из 2 последовательных делений с короткой интерфазой между ними.

Профаза I - профаза первого деления очень сложная и состоит из 5 стадий:

Лептотена или лептонема - упаковка хромосом, конденсация ДНК с образованием хромосом в виде тонких нитей (хромосомы укорачиваются).

Зиготена или зигонема - происходит конъюгация - соединение гомологичных хромосом с образованием структур, состоящих из двух соединённых хромосом, называемых тетрадами или бивалентами и их дальнейшая компактизация.

Пахитена или пахинема - (самая длительная стадия) - в некоторых местах гомологичные хромосомы плотно соединяются, образуя хиазмы. В них происходит кроссинговер - обмен участками между гомологичными хромосомами.

Диплотена или диплонема - происходит частичная деконденсация хромосом, при этом часть генома может работать, происходят процессы транскрипции (образование РНК), трансляции (синтез белка); гомологичные хромосомы остаются соединёнными между собой. У некоторых животных в ооцитах хромосомы на этой стадии профазы мейоза приобретают характерную форму хромосом типа ламповых щёток.

Диакинез - ДНК снова максимально конденсируется, синтетические процессы прекращаются, растворяется ядерная оболочка; центриоли расходятся к полюсам; гомологичные хромосомы остаются соединёнными между собой. К концу Профазы I центриоли мигрируют к полюсам клетки, формируются нити веретена деления, разрушаются ядерная мембрана и ядрышки

Метафаза I - бивалентные хромосомы выстраиваются вдоль экватора клетки, наступает пауза.

Анафаза I - микротрубочки сокращаются, биваленты делятся и хромосомы расходятся к полюсам. Важно отметить, что, из-за конъюгации хромосом в зиготене, к полюсам расходятся целые хромосомы, состоящие из двух хроматид каждая, а не отдельные хроматиды, как в митозе.

Телофаза I - хромосомы деспирализуются и появляется ядерная оболочка.

Второе деление мейоза следует непосредственно за первым, без выраженной интерфазы: S-период отсутствует, поскольку перед вторым делением не происходит репликации ДНК.

Профаза II - происходит конденсация хромосом, клеточный центр делится и продукты его деления расходятся к полюсам ядра, разрушается ядерная оболочка, образуется веретено деления, перпендикулярное первому веретену.

Метафаза II - унивалентные хромосомы (состоящие из двух хроматид каждая) располагаются на «экваторе» (на равном расстоянии от «полюсов» ядра) в одной плоскости, образуя так называемую метафазную пластинку.

Анафаза II - униваленты делятся и хроматиды расходятся к полюсам.

Телофаза II - хромосомы деспирализуются и появляется ядерная оболочка.

В результате из одной диплоидной клетки образуется четыре гаплоидных клетки. В тех случаях, когда мейоз сопряжён с гаметогенезом (например, у многоклеточных животных), при развитии яйцеклеток первое и второе деления мейоза резко неравномерны. В результате формируется одна гаплоидная яйцеклетка и три так называемых редукционных тельца.

Динамика хромосом (n) и ДНК (с).

Профаза 1:

Лептотена Появление тонких нитей хромосом (хромосомы удвоены)

Зиготена Конъюгация хромосом

Пахитена Видны конъюгированные хромосомы

Диплотена Начало отталкивания гомологов – различима фигура, похожая на греческ. Х

Метафаза 1: Разрушение ядерной мембраны. Хромосомы выстраиваются в метафазную пластинку.

Анафаза 1: К разным полюсам расходятся гомологичные хромосомы, состоящие из 2 хроматид.

Телофаза 1 может отсутствовать, или ядро может восстанавливаться

Профаза 2, Метафаза 2: по митотическому типу.

Анафаза 2: Расхождение хроматид удвоенных хромосом.

Телофаза 2: 4 гаплоидных ядра.

Схема: 2n2c – 2n4c – 1n2c – 1n1c.

Схема нарушения расхождения

хромосом и формирование патологических кариотипов.

Нормальные кариотипы человека - 46,XX (женский) и 46,XY (мужской). Нарушения нормального кариотипа у человека возникают на ранних стадиях развития организма: в случае, если такое нарушение возникает при гаметогенезе, в котором продуцируются половые клетки родителей, кариотип зиготы, образовавшейся при их слиянии, также оказывается нарушенным. При дальнейшем делении такой зиготы все клетки эмбриона и развившегося из него организма обладают одинаковым аномальным кариотипом.

Как правило, нарушения кариотипа у человека сопровождаются множественными пороками развития; большинство таких аномалий несовместимо с жизнью и приводят к самопроизвольным абортам на ранних стадиях беременности.

Нарушения кариотипа могут также возникнуть и на ранних стадиях дробления зиготы, развившийся из такой зиготы организм содержит несколько линий клеток (клеточных клонов) с различными кариотипами, такая множественность кариотипов всего организма или отдельных его органов именуется мозаицизмом(химеризм).

Болезни, обусловленные нарушением числа аутосом - синдром Дауна, синдром Патау, синдром Эдвардса.

Болезни, связанные с нарушением числа половых хромосом - синдром Шерешевского - Тёрнера, полисомия по Х-хромосоме, полисомия по Y-хромосоме, синдром Клайнфельтера.

Болезни, причиной которых является полиплоидия вызывают смерть еще до рождения.

Нарушения структуры хромосом:

Транслокации - обменные перестройки между негомологичными хромосомами.

Делеции - потери участка хромосомы. Например, синдром кошачьего крика связан с делецией короткого плеча 5-ой хромосомы. Признаком его служит необычный плач детей, напоминающий мяуканье или крик кошки. Это связано с патологией гортани или голосовых связок. Наиболее типичным, помимо «кошачьего крика», является умственное и физическое недоразвитие, микроцефалия (аномально уменьшенная голова).

Инверсии - повороты участка хромосомы на 180 градусов.

Дупликации - удвоения участка хромосомы.

Изохромосомия - хромосомы с повторяющимся генетическим материалом в обоих плечах.

Возникновение кольцевых хромосом - соединение двух концевых делеций в обоих плечах хромосомы.

Читайте также: