Крупнейшие в мире солнечные электростанции. Крупнейшая в мире солнечная электростанция айванпа

цены указаны в украинских копейках на 2013 г, думаю в России та же история

привет хлопец Ну как же без критики России?

Например в Крыму станции были построены под зеленый тариф в 0.65доллара(2013) за кВт которые обязали покупать КП Энергорынок. Считайте — построить станцию которая выдает вместо 12−25 коп (АЭС — ГЭС) за кВт — 505 (пятьсот пять)коп за кВт, это какой-то бред.

Сравнение некорректно, т.к. на Украине АЭС «бесплатные» (достались от СССР), а в Крыму австрийские инвесторы строили солнечные электростанции за свои деньги и за кредиты и хотели отбить вложения.

Причем отбить затраты и вернуть кредиты они хотели быстро, всего за несколько лет. Соответственно, в цену электроэнергии они включали все затраты на строительство электростанций и заложили свою сверхприбыль. Поэтому и цену такую дорогую планировали — 0.65 доллара за кВтч. Иначе не смогли бы вернуть кредиты и получить свою сверхприбыль.

Развивать нужно либо дешевую чистую электроэнергетику — АЭС например

АЭС — это не дешевая и уж точно не чистая электроэнергетика.

Если включить в цену атомной электроэнергии стоимость строительства самой АЭС, то получится гораздо более дорогое электричество. Построить 1 энергоблок для АЭС стоит от 4−5 млрд долларов и выше. Например, стоимость АЭС «Аккую» в Турции оценивается в 27 млрд долларов (4 энергоблока по 1200 МВт), стоимость Белорусской АЭС оценивалась в 9−10 млрд долларов (2 энергоблока по 1200 МВт). Если посчитать, то получаются затры только на строительство — от 4.2 тысяч долларов за 1 кВт мощности АЭС. Плюс АЭС требуют больших затрат на обслуживание, дорогостоящие ремонты, наем большого числа высококлассных специалистов, закупку дорогого ядерного топлива, утилизацию этого топлива и др.

Солнечные электростанции по сравнению с АЭС практически бесплатные в обслуживании. Огромную СЭС могут обслуживать всего несколько человек средней квалификации — смахивать пыль с панелей да следить за проводкой, вот и все заботы на протяжении всего срока службы. Никаких сверхсложных опасных реакторов, никаких контуров высокого давления, паровых турбин, систем охлаждения, систем пожаротушения и т.д. не нужно.

Украине все атомные электростанции (а также заводы, транспортная инфраструктура и многое другое) достались бесплатно от Советского Союза, поэтому в стоимость электроэнергии не включена колоссальная стоимость строительства самих АЭС. Да и зарплаты на Украине в 4−5 раз ниже чем в России, украинцы просто не могут платить много за электроэнергию, поэтому энергетики вынуждены держать цены относительно низкими.

Допустим, некие австрийские инвесторы решили бы построить на Украине новую АЭС с 4 энергоблоками по 1000 МВт. Весь проект обойдется где-то в 20 млрд долларов. Численность высококвалифицированных работников АЭС — не менее 6 тысяч, с зарплатами не менее 900−1000 долларов в месяц, т. е. только на зарплаты еще 72 миллиона долларов в год. Плюс ремонты, закупка топлива (1 энергоблок 1000 МВт кушает 27 тонн ядерного топлива в год, по 1200—1500 долларов за 1 кг) и прочее — еще 200−230 млн долларов в год, итого расходы на содержание АЭС составят около 300 млн долларов в год. Поделим на 4 стоимость строительства АЭС (пусть хитрые австрийские инвесторы хотят отбить вложения за 4 года), итого получается им нужно зарабатывать на продаже электроэнергии — по 5.3 млрд долларов в год. Электростанция будет вырабатывать около 28 млрд кВт·ч в год (по аналогии с ЛАЭС), значит стоимость 1 кВт·ч составит как минимум 20 центов без учета налогов. Если гипотетические австрийские инвесторы хотели бы еще и прибыль извлекать и платили бы налоги, то стоимость 1 кВт составила бы уже 40 центов, 0.4 доллара, 10 гривень за 1 кВтч. Вот такая цена была бы на Украине, если бы там строили АЭС с нуля сами, ане пользовались доставшимися нахаляву советскими АЭС.

По поводу «чистоты» атомной энергетики, не нужно строить иллюзии — это очень грязная энергетика. Прежде всего из-за технологий добычи урана:

Топливный цикл. Добыча урана

Эра урана, добывающегося в промышленных масштабах, началась с конца Второй мировой войны, когда этот материал добывался как стратегический ресурс. Для получения этого сырья для ядерной бомбы были предприняты большие усилия с огромными издержками.

Поначалу никто не придал значения воздействию радиации на здоровье рабочих и окружающую среду. Соединенные Штаты получали уран из разнообразных источников, в основном из своих и канадских месторождений. Советский Союз, до обнаружения больших отечественных месторождениях, основал огромную горнодобывающую промышленность для получения урана в европейских государствах-сателлитах, в отдельных частях Восточной Германии и Чехословакии, а также в Венгрии и Болгарии. В то время более чем 100 000 человек тяжело трудились в рамках восточногерманского проекта «Wismut», чтобы добыть то же количество урана, которое сейчас могут добыть несколько сот человек на каком-нибудь канадском месторождения.

В 1970-х уран всё больше и больше становится коммерческим ресурсом для выработки ядерной энергии, ситуация начала изменяться: рынок развивался — теперь правительства больше не были единственными заказчиками урана — были установлены экологические стандарты для добывающей промышленности. С концом Холодной войны большая потребность в добыче урана исчезла, так как вторичные ресурсы, запасы сырья или материал для ядерной бомбы стали доступными для гражданского использования. В настоящее время вторичными ресурсами снабжают почти половину ядерной индустрии, и это оставляет шанс на выживание только самым экономичным шахтам по добыче урана. Однако из-за быстрого исчерпания вторичных ресурсов и предложений о расширении производства ядерной энергии, сделанных в нескольких странах, ситуация меняется снова: уран может еще раз стать редким ресурсом, который будет добываться по высокой (экологической) стоимости.

Горная промышленность урана: технология и влияние

При средней концентрации 3 г\тн в земной коре, уран не очень редкий металл. Добыча имеет смысл только в месторождениях, содержащих концентрации по крайней мере порядка 1000 г\тн (0,1%); руды с более низким содержанием в настоящее время добываются только в чрезвычайных обстоятельствах. Концентрации, имеющие промышленное значение, имеются в различных частях мира. Эти залежи различаются геологическим расположением, размером, количеством содержащегося в руде урана, условиями доступа к месторождению. На Плато Колорадо на западе Соединенных Штатов, где его содержание в руде — 0,1−0,2 процента, уран добывался в тысячах небольших шахт до начала 1980-х, когда цена на этот материал резко упала. В тоже время на озере Эллиот (Онтарио, Канада), в Восточной Германии и Чехословакии уран добывался в течение многих десятилетий главным образом в очень больших подземных шахтах и часто с более низким содержанием в руде. Когда восточногерманские операции по добыче урана были остановлены в 1990 г., цена на их продукцию была приблизительно в десять раз выше цен на мировом рынке.

После окончания Холодной войны продолжились разработки только самых выгодных месторождений. Большая концентрация в руде встречается редко — на реке McArthur в месторождении под землёй (Саскатчеван, Канада) добывается материал с содержанием урана 17,96%. Наиболее низкая концентрация в руде — в открытой шахте Рёссинг, в Намибии (0,029%).

Большое количество урана добыто традиционно — в открытых или подземных шахтах. За исключением нескольких месторождений в Канаде, содержание урана в рудах обычно ниже 0,5%, поэтому нужно добыть очень большое количество руды, чтобы получить уран. В шахтах рабочие не защищены от радиоактивной пыли и газа радона, повышающих риск заболевания раком лёгких. На ранних стадиях добычи урана после Второй мировой войны шахты были плохо вентилируемы, что приводило к необычайно высоким концентрациям пыли и радона в воздухе. В 1955 г. обычные концентрации радона в шахтах «Висмута» были приблизительно 100 000 Бк/кубометр, с максимумами 1,5 миллиона Бк/кубометр. В общей сложности 7163 восточногерманских шахтёра умерли от рака лёгких между 1946 и 1990 гг. Для 5237 из них, профессиональное воздействие было признано причиной болезни. В Соединённых Штатах Конгресс признал ответственность правительства за здоровье первых шахтёров (главным образом, индейцев Навахо) только в 1990 г., приняв закон о компенсации подвергшимся радиации. Административные препятствия для того чтобы получать компенсацию, были настолько высоки, и капитал, ассигнованный для этой программы, был настолько недостаточен, что многие шахтёры (или выжившие члены семьи) получили компенсацию только после принятия нового закона в 2000 году.

В течение добывающего цикла большие объёмы загрязнённой воды, выкачанные из шахты и спущенные в реки и озёра, попадают в окружающую среду. Сточные воды из месторождения «Рабит Лэйк» в Канаде, например, вызвали увеличение массы урана в донных отложениях залива Hidden Bay реки Уоллостон (Wollaston). В 2000 году содержание урана в донных отложениях в 8 раз превышало природный уровень. С тех пор оно росло быстрее, чем в геометрической прогрессии и между 2000 и 2003 годом увеличилось в 10 раз. В речных донных отложениях в районе месторождения «Висмут» (Wismut) концентрации радия и урана в 100 раз больше, чем природная норма.

Вентиляция шахт, снижающая опасность для здоровья шахтёров, выпускает в атмосферу радиоактивную пыль и газ радон, увеличивая риск заболевания раком лёгких для людей, живущих поблизости. На «Висмуте» (шахта Schlema-Alberoda), например, в общей сложности 7426 миллионов кубометров (235 m3/s) загрязненного воздуха были выброшены в атмосферу в 1993 г., со средней концентрацией радона 96 000 Бк/кубометр. Отвалы образуются в открытой шахте, например, когда тоннели проложены через безрудные зоны или концентрация урана в руде слишком низкая. Отвалы часто содержат повышенные концентрации радионуклидов по сравнению с нормальной породой. Такой материал продолжает угрожать людям и окружающей среде и после закрытия шахты, так как он источает газ радон и радиоактивную воду. Груды отвалов урановых шахт «Висмута» в области Schlema/Aue содержат объём 47 миллионов кубометров и покрывают область 343 гектара. Отвалы часто сваливали в непосредственной близости от жилых районов. В результате, были обнаружены высокие концентрации радона в воздухе (приблизительно 100 Бк/кубометр) на обширных территориях. В некоторых местах концентрация радона была даже выше — 300 Бк/кубометр. Это продолжалось пока радиоактивный материал не был изолирован. Независимый институт экологии (Ecology Institute) обнаружил, что при продолжительной жизни в такой области риск заболеть раком легких достигает 20 случаев при концентрации 100 Бк/кубометр и 60 случаев при коцентрации 300 Бк/кубометр — в расчёте на 1000 жителей. Кроме того, отвалы часто использовали в смеси с гравием или цементом для строительства дорог. Таким образом, гравий, содержащий повышенные радиоактивные концентрации, был распределён на больших территориях.

В некоторых случаях уран добывают из низкосортной руды выщелачиванием. Это делается из экономических побуждений, если содержание урана в руде слишком низкое. Щелочная или кислая жидкость вводится в массу материала и проникает вниз, где откачивается для дальнейшей обработки. В Европе, например, в Восточной Германии или Венгрии, эта технология использовалась до 1990 г. В процессе выщелачивания по-прежнему существует опасность выбросов пыли, газа радона и выщелачивающей жидкости. После завершения процесса выщелачивания, в особенности 6если руда содержит сульфид железа (случай Тюрингии в Германии и Онтарио в Канаде), могут появиться новые проблемы. Доступ к воде и воздуху может стать причиной непрерывного бактериального производства кислоты в отвалах, что ведет к самопроизвольному выщелачиванию урана и других загрязнителей в течение многих столетий с возможным постоянным загрязнением грунтовых вод. Пока выщелачивание не является востребованным из-за снижения цен на уран, но оно может снова заинтересовать производителей, если добыча руд с низким содержанием урана начнёт снова представлять экономический интерес.

Альтернативный способ — добыча растворением (solution mining). Эта технология, также известная как «выщелачивание на месте залегания», включает в себя введение щелочной или кислой жидкости (например, серной кислоты) через скважины в залежи урановой руды, и выкачивание обратно. Таким образом, эта технология не требует удаления руды с места добычи. Эта технология может использоваться только там, где месторождения урана расположены в водоносном слое в водопроницаемой породе, не слишком глубоко (приблизительно 200 м) в основании, и граничащие с водонепроницаемой породой. Преимущества этой технологии — уменьшенный риск несчастных случаев и облучения для персонала, низкая стоимость, не требуется много места для складирования отходов. Главные недостатки — риск отклонения выщелачивающих жидкостей от месторождения урана и последующего загрязнения грунтовой воды, и невозможность восстановления естественных условий в зоне выщелачивания после окончания операций. Возникшая загрязненная смесь или свалена на поверхности в некоторых водохранилищах, или введена в так называемые глубокие ликвидационные колодцы. Исторически выщелачивание использовалось в большом масштабе там, где есть крупные месторождения — оно включало ввод миллионов тонн серной кислоты, в Straz pod Ralskem, Чешская Республика, в различных местах в Болгарии, и немного в Konigstein, в Восточной Германии. В случае Кёнигштайна, в общей сложности 100 000 тонн серной кислоты были введены с жидкостью в месторождение руды. После закрытия месторождения, 1,9 миллиона кубометров этой жидкости остаётся в порах породы; ещё 0,85 миллиона кубометров такой жидкости находятся где-то между зоной выщелачивания и предприятием по обработке. Жидкость содержит высокие концентрации опасных примесей. Если сравнивать с допустимыми для питьевой воды концентрациями, то кадмия там больше в 400 раз, мышьяка — в 280, никеля — в 130, урана — в 83 раза. Эта жидкость представляет опасность с точки зрения загрязнения водоносного слоя. Проблема загрязнения грунтовой воды намного серьёзнее в Чехии, в Straz pod Ralskem, где было закачано 3,7 миллиона тонн серной кислоты: 28,7 миллиона кубометров загрязнённой жидкости до сих пор содержатся в зоне выщелачивания, расположенной на территории размером 5,74 кв. км. Кроме того, загрязнённая жидкость распространилась вне зоны выщелачивания горизонтально и вертикально, подвергая угрозе заражения территорию примерно в 28 кв. км. и 235 миллионов кубометров грунтовой воды.

С уменьшением цен на уран в течение прошлых десятилетий, выщелачивание по технологии «добыча растворением» — единственный способ, использующийся в США. Выщелачивание в естественных залежах получает широкое распространение по всему миру в случае с месторождениями с низким содержанием урана. Новые проекты реализуются в Австралии, России, Казахстане, и Китае. Руда, добытая в открытых или подземных шахтах сначала выщелачивается на специальном заводе. Завод обычно располагается около шахт, чтобы сократить количество транспортировок. Затем уран обрабатывается с помощью гидрометаллургического процесса. В большинстве случаев как средство выщелачивания используется серная кислота, хотя также применяется и щёлочь. Поскольку в процессе выщелачивания из руды выделяют не только уран, но и несколько других элементов (молибден, ванадий, селен, железо, свинец и мышьяк), нужно выделить уран из этой смеси. Конечный продукт, произведённый на заводе, обычно называемый «жёлтый пирог» (U3O8 с примесями), упаковывается и отправляется в бочках. Главная опасность, следующая из процесса обогащения — выбросы пыли. Закрывая завод по добыче урана, нужно избавиться от больших количеств радиоактивно загрязнённых отходов безопасным способом. Отходы от процесса обогащения, отходы с урановой обогатительной фабрики имеют форму жидкого раствора. Они обычно откачиваются в искусственные водоёмы для конечного захоронения. Количество произведенных отходов фактически равно количеству добытой руды, так как извлеченный уран представляет только незначительную долю от общей массы. Таким образом, количество радиоактивных отходов (РАО), произведённых на тонну (t) урана, обратно пропорционально качеству руды (концентрации урана в руде). Самый большой в мире искусственный водоём около завода по производству урана — Rossing в Намибии; он содержит более 350 миллионов тонн твёрдого материала. Аналогичные объекты в Соединённых Штатах и Канаде содержат до 30 миллионов тонн твёрдого материала. В Восточной Германии — 86 миллионов тонн. Однако раньше отходы в некоторых случаях просто выбрасывались в окружающую среду без всякого контроля. Самый тревожный пример — в Монтане (Габон) такая практика продолжалась до 1975 г.: филиал французской компании Cogema добывал уран там с 1961 г. В течение первых пятнадцати лет эксплуатации отходы с завода по производству урана сбрасывались в ближайший ручей. В общей сложности около двух миллионов тонн отходов с этого завода были выброшены в окружающую среду, загрязняя воду и опускаясь в донные отложения в речной долине. Когда добыча прекратилась в 1999 году, радиоактивные отходы вместо вывоза и утилизации покрыли тонким слоем почвы, склонной к эрозии. Не считая удалённого урана, жидкие отходы содержат все элементы руды. Поскольку продукты полураспада урана (торий-230 и радий-226) из руды не выделяют, раствор содержит до 85 процентов от природной радиоактивности руды. Из-за технических ограничений не может быть извлечён весь существующий в руде уран. Поэтому жидкий раствор содержит немного остаточного урана. Кроме того, жидкий раствор содержит тяжёлые металлы и другие загрязнители, типа мышьяка, так же как и химические реактивы, добавленные в процессе дробления.

Радионуклиды, содержащиеся в урановых отходах, обычно испускают в 20−100 раз больше гамма-радиации по сравнению с природным уровнем. Гамма-радиация локализована и ее уровень быстро уменьшается при увеличении дистанции. Когда поверхность отвалов высыхает, мелкий песок разносится ветром. Небо было тёмным от бурь, разносящих радиоактивную пыль по деревням, расположенным в непосредственной близости от восточногерманских свалок отходов около завода по обработке урана до того момента, пока свалки не были защищены покрытиями. Впоследствии радий-226 и мышьяк были найдены в образцах пыли в этих деревнях. Радий-226 в отходах распадается с образованием радиоактивного газа радон-222, продукты распада которого могут вызывать рак лёгких при вдыхании. Часть радона улетучивается. Норма выброса радона не зависит от процента содержания урана в отвалах; она зависит главным образом от общего количества урана, первоначально содержавшегося в добытой руде. Выброс радона — главная опасность, которая остаётся после того, как урановые шахты закрыты. Американское агентство по охране окружающей среды (EPA) оценило риск заболеть раком лёгких у жителей, проживающих поблизости от неизолированных свалок РАО на расстоянии до 80 гектаров, как два случая на сто человек. Когда радон распространяется при помощи ветра, много людей получают небольшие дозы радиации. Хотя риск для человека не слишком велик, об этом нельзя забывать из-за большого количества людей, которых эта проблема затрагивает. Принимая во внимание беспороговый дозовый эффект, EPA оценило, что залежи отходов уранодобывающей промышленности, существующие в Соединённых Штатах (по состоянию на 1983 г.), могли вызвать 500 смертельных случаев от рака лёгких в течение 100 лет, если бы не было предпринято никаких контрмер. Вытекание загрязнённой жидкости из отвалов — ещё одна большая опасность. Такие утечки создают риск загрязнения грунтовых и поверхностных вод. Опасные для людей уран и мышьяк попадают в питьевую воду и рыбу. Проблема утечек очень важна в случае с кислотными жидкостями, поскольку радионуклиды более подвижны в кислой среде. В отходах, содержащих сульфид железа, происходит самоподдерживающееся производство серной кислоты, что увеличивает скорость перемещения радионуклидов в окружающую среду. Утечка из хранилища отходов в Хельмсдорфе («Висмут») происходила на уровне 600 000 кубометров ежегодно ; только половину от этого количества удавалось останавливать и откачивать обратно в хранилище, пока не заработала установка по обработке загрязнённой воды. По сравнению со стандартами для питьевой воды в составе жидкости в Хельмсдорфе содержалось: сульфаты — в 24 раза больше, мышьяк — в 253 раз больше, уран — в 46 раз больше. В районе венгерского завода по хранению урановых отходов Pecs, загрязнённая грунтовая вода перемещается со скоростью 30−50 м ежегодно в направлении источников питьевой воды ближайшего города.

В связи с длинным периодом полураспада радиоактивных элементов необходимо в течение длительного времени поддерживать безопасность хранилищ отходов на высоком уровне, однако хранилища подвержены многим видам эрозии. После ливня могут сформироваться овраги; растения и животные могут повредить хранилища, что увеличит выброс радона и сделает хранилище более восприимчивым к климатическому воздействию. В случае землетрясений, сильного дождя или наводнений, хранилища могут быть полностью повреждены. Например, это случилось в 1977 г. в Гранте, Нью-Мексико (США) и привело к утечке 50 000 тонн жидкой смеси и нескольких миллионов литров заражённой воды, в 1979 г. в Черч Рок, Нью-Мексико, это привело к утечке более 1000 тонн жидкой смеси и приблизительно 400 млн. литров зараженной воды . Иногда, из-за подходящих характеристик, сухие РАО использовались для строительства домов или для захоронения мусора. В построенных из такого материала домах, были обнаружены высокие уровни гамма-излучения и концентрации газа радон. Американское агентство по охране окружающей среды (EPA) оценило риск получить рак легких для жителей таких домов, как 4 случая на 100 человек.

Очистка выработанных месторождений

На заре развития уранодобывающей промышленности, после Второй мировой войны, горнодобывающие компании оставляли шахты в том виде, в котором они были на момент исчерпания месторождения: в США не считалось нужным что-либо предпринимать даже в случае с открытыми месторождениями, не говоря уже об утилизации произведённых отходов; в Канаде, РАО завода по переработке урана часто просто сваливались в ближайшие озера. В Канаде и Соединённых Штатах, всё ещё существуют сотни небольших шахт по добыче урана, где никаких работ по утилизации и восстановлению не предпринималось. В некоторых случаях, чиновники всё ещё пытаются определить владельцев, которые могли бы считаться ответственными за утилизацию отходов, время от времени правительственным ведомствам приходится утилизировать отходы на этих участках за свой счёт (по крайней мере, они объявляют об этом). Пример успешной программы по утилизации — это большая шахта Джекпайл Пагуайт в Нью-Мексико. Значительная работа, которая приближается к завершению, была произведена для утилизации отходов больших шахт «Висмут» по добыче урана в Восточной Германии. Очистка необходима не только для неработающих шахт, но также и по завершении выщелачивания месторождений: от произведённых жидких отходов необходимо безопасно избавиться, и грунтовая вода, загрязнённая вследствие процесса выщелачивания, должна быть восстановлена до чистого состояния. Восстановление грунтовой воды — очень трудоёмкий процесс, невозможно восстановить её качество до изначального, хотя и применяются сложные насосы и схемы обработки. В Соединённых Штатах усилия по восстановлению воды были приостановлены во многих случаях, после того, как годы перекачки и обработки воды не привели к ощутимому уменьшению количества загрязняющих веществ. После этого стандарты по очистке воды были смягчены. Тогда как урановые месторождения главным образом расположены в отдалённых областях, где грунтовая вода едва пригодна для питья, всё-таки многие места разработок находились в плотно населённых областях, в частности, в тех местах, где с помощью выщелачивания добывали уран для Советского Союза. Если программы по восстановлению идут полным ходом в Германии и Чешской Республике, то в Болгарии не делается ничего. Чтобы ограничить выброс загрязняющих веществ в окружающую среду, нужно решить проблему избавления от РАО. Идея вернуть отходы туда, откуда была добыта руда не обязательно является верным решением. Хотя большинство урана было извлечено из руды, это не сделало её менее опасной: совсем наоборот. Большинство радионуклидных примесей (85 процентов всей радиоактивности и всех химических примесей) всё ещё присутствуют. С помощью механических и химических процессов использованная урановая руда находится в такой форме, в которой радионуклиды стали более подвижны и более восприимчивы к перемещению в окружающую среду. Поэтому в большинстве случаев сброс отходов в подземные шахты невозможен; там они находились бы в прямом контакте с грунтовой водой. Это похоже на ситуацию с хранением отходов в открытых шахтах. Здесь также существует непосредственный контакт с грунтовой водой и утечки повышают риск загрязнения грунтовой воды. Преимущество хранения в шахтах только одно — это относительно хорошая защита от эрозии. В большинстве случаев отходы сваливаются на поверхности земли из-за отсутствия других вариантов. В этом случае есть возможность принимать меры защиты. Обязательно необходимо защитить РАО от эрозии. В Соединённых Штатах подробные инструкции для захоронения отходов были разработаны Агентством по охране окружающей среды (EPA) и Комиссией по ядерному регулированию (КЯР) в 1980-х гг. Эти инструкции не только определяют максимальные концентрации загрязняющих веществ в почве и допустимые выбросы загрязняющих веществ (в частности для радона), но также и промежуток времени, в течение которого предпринятые меры должны работать: 200−1000 лет, желательно без активного обслуживания. На основании этих инструкций более чем дюжина мест, где скопились РАО, была приведена в порядок. Частично путем покрытия РАО слоем из глины и горной породы, и частично посредством переноса отходов в более подходящие места, чтобы избежать опасности при наводнении или загрязнения грунтовой воды. В Канаде, напротив, меры, принятые для утилизации отходов уранового производства, являются намного менее строгими; для РАО в области озера Эллиот, Онтарио, например, такие меры включают в себя «водное покрытие» как единственный «защитный барьер». Около урановых шахт в Восточной Европе и экс-СССР ситуация разная: в Восточной Германии, Венгрии и Эстонии в настоящее время места урановой добычи пытаются очистить и решить проблему РАО, а в Чешской Республике, на Украине, в Казахстане и Кыргызстане всё ещё не разработаны меры восстановления. 100 миллионов тонн отходов в Актау (Казахстан) даже не оборудованы временным покрытием; поэтому, большое количество пыли продолжает рассеиваться по окрестностям. Отходы в Киргизии расположены на крутых склонах и подвергаются опасности распространения из-за оползней. Стоимость утилизации отходов охватывает чрезвычайно широкий диапазон. Верхний предел цен установили правительства в Соединённых Штатах и Германии. Если исходить из произведённой продукции, то утилизация отходов, образовавшихся при производстве фунта U3O8, составляет $14. Эта цифра превышала стоимость фунта U3O8 до того, как началось недавнее повышение цен. Нижний предел отмечен в Канаде — US$ 0,12; это отражает необычайно низкие экологические стандарты, применяемые в случае месторождения Элиот Лэйк. Чтобы избежать продолжения ситуации, в которой брошенные шахты приходится очищать за средства налогоплательщиков, добывающая промышленность обязана начинать отчисление денег на утилизацию отходов в тот момент, когда начинается добыча. Но даже эта мера не может гарантировать, что не будут привлечены средства налогоплательщиков: средства, отложенные для очистки от РАО мест урановой добычи, принадлежавших обанкротившейся Atlas Corp в Моабе (Юта, США), например, составляют лишь три процента от стоимости программы очистки, которая тянет на US$ 300 миллионов. В Австралии закрытие Рэйнджер Майн стоит около 176 миллионов австралийских долларов, из которых есть лишь 65 миллионов. В случае, если бы компания ERA, которой принадлежит Рэйнджер Майн, обанкротилась — налогоплательщикам пришлось бы платить за утилизацию отходов.

То есть при добыче урана под землю закачивают тысячи тонн щелочи и другой ядовитой химии либо огромные отвалы урановой руды источают радиоактивную пыль, после закрытия урановых шахт надо тратить колоссальные средства на их очистку и консервацию (что часто не делается).

Во многих странах реализуются масштабные проекты по солнечной энергетике. Увидим рейтинг 9 крупнейших СЭС мира.

Солнечная энергия является одним из самых быстрорастущих источников электричества в мире. Уже построены 9 крупнейших электростанций в мире.

Снижение производственных затрат и повышение осведомленности общественности об экологических опасностях делает солнечную энергию одним из наиболее быстро растущих источников возобновляемой энергии. За последние 5 лет количество солнечных электростанций увеличилось почти в четыре раза. А к концу 2017 года их мощность выросла почти до 400 ГВт.

Крупнейшие СЭС мира

Страны, которые больше других развивают солнечную, - это Китай и США, которые вместе дают две трети глобального роста солнечной энергии. Но звание «крупнейшего солнечного завода» в мире никогда не удерживается долго, так как постоянно появляются новые солнечные парки.

1) Солнечная электростанция Камути, Индия

Электростанция, расположенная в штате Тамилнад, имеет общую генерирующую мощность 648 МВт и занимает 10 км2. Электричество вырабатывают 2,5 миллиона фотопанелей. Проект был завершен в сентябре 2016 года и обошелся в 679 миллионов долларов.

Постройка заняла рекордные 8 месяцев. Также солнечные панели электростанции в Камути каждый день очищает роботизированная система, которая сама заряжается собственными солнечными батареями.

2) Солнечный завод Лунъянся, Китай

Солнечный парк Лунъянся имеет общую мощность 850 МВт, достаточную для питания 200 тысяч домашних хозяйств.

Он расположен на Тибетском плато в провинции Цинхай на северо-западе Китая и управляется государственной энергетической инвестиционной корпорацией, одной из пяти ведущих в Китае.

Первая фаза строительства была завершена в 2013 году, а вторая - в 2015 году, общая стоимость строительства составила около 920 миллионов долларов.

3) Солнечная электростанция Карнул, Индия

Солнечный парк Карнул занимает 24 км2 и расположен в районе Андхра-Прадеш. Его общая мощность - 1000 МВт. Стоимость строительства также составила более миллиарда долларов.

В парке установлены более 4 миллионов солнечных панелей, каждый из которых имеет мощность 315 - 320 Вт.

В солнечные дни на участке может вырабатываться более 8 миллионов кВтч электроэнергии, достаточной для удовлетворения практически всего спроса на электроэнергию района Карнул.

4) Электростанция Enel Виллануева, Мексика

Расположенный в мексиканском штате Коауила, фотоэлектрический объект состоит из более 2,3 миллиона солнечных панелей на площади 2400 гектаров в мексиканском полузасушливом регионе. Он сможет производить более 1700 ГВт-ч в год после полного введения в эксплуатацию, а завершение ожидается во второй половине 2018 года.

Enel Group инвестирует около 650 миллионов долларов в строительство Виллануева. В настоящее время завод завершен на 41% и дает 310 МВт.

5) Электростанция Тэнгэр, Китай

Солнечный парк Тэнгэр, расположенный в Чжунвэй, Нинся, в настоящее время является крупнейшей в мире фотоэлектрической установкой по размеру и производству. Названный «Великой солнечной стеной», он охватывает 1200 км территории пустыни Тэнгэр протяженностью 36 700 км, занимая 3,2% ее площади.

Мощность солнечного парка составляет 1547 МВт.

6) Солнечный завод Shakti Sthala, Индия

Солнечный парк занимает 52,6 км2 вокруг пяти деревень в засушливом районе Павагада. Он имеет общую мощность 2000 МВт.

Первая фаза парка будет генерировать 600 МВт и еще 1 400 МВт планируется ввести в эксплуатацию к концу 2018 года. Первый этап проекта начал работать 1 марта этого года.

7) Солнечный парк Мохаммеда бин Рашида Аль Мактума, ОАЭ

В 2020 году солнечный парк Мухаммеда бин Рашида Аль Мактум планирует увеличить мощность до 1000 МВт, а к 2030 году - до 5000 МВт, что сделает его крупнейшей в мире солнечной электростанцией. По завершении работы предполагается, что парк сократит выбросы углекислого газа более чем 6,5 миллиона тонн в год.

8) Солнечный парк Бхадла, Индия

Солнечная ферма Бхадла расположена на 45 км2 в районе Раджстан. Как только все четыре этапа проекта будут завершены, завод сможет производить 2 255 МВт электроэнергии. Он должен заработать к декабрю 2019 года.

Уже установлено более миллиона панелей солнечных батарей, что составляет лишь около 15% всего будущего парка.

9) Солнечный парк Павагада, Индия

Солнечный парк Павагада расположен на площади 53 км2 в районе Тумкур Карнатака, который включает в себя пять сел. Этот район был выбран из-за высокой солнечной радиации и наличия земли, а также того факта, что в регионе очень мало осадков.

К концу 2018 года парк будет иметь общую мощность 2000 МВт, также запланировано добавление еще 1 400 МВт.

Общий объем инвестиций, необходимых для строительства участка, оценивается в 2,2 миллиарда долларов. опубликовано

Если у вас возникли вопросы по этой теме, задайте их специалистам и читателям нашего проекта .

Драгоценное название «Topaz» дали самой мощной электростанции в мире, работа которой основана на солнечной энергии. Эта уже известная во всем мире электростанция была сооружена в Калифирнии (США), на территории равнины Carrizo.

Еще несколько лет назад здесь был установлен юбилейный миллионный модуль FSLR, а на данное время установлено уже 9 миллионов высококачественных солнечных панелей.

Развитие солнечных ферм

Подобного типа электростанции также называют «солнечными фермами». Мощность «солнечного» проекта «Topaz» определяется цифрой в 550 МВт. Реализовывать данный объект начали еще в 2012 году, а его окончание планировалось на 2015. При этом профессиональный подход к работе и успешные вложения позволили закончить строительство и оформление грандиозного сооружения немного раньше. Официальный владелец электростанции MidAmerican Solar – дочернее предприятие компании MidAmerican Renewables .

Еще одним рекордом смело можно назвать затратную часть, выделенную на проект – почти 2, 5 миллиарда долларов. Разработчики уверены, что их детище способно обеспечить электрической энергией не менее 160 тысяч домов в Калифорнии.

Выбор места для электростанции «Топаз»

Была просчитана каждая деталь и все сопутствующие факторы, в том числе и место для расположения солнечной электростанции – его создатели выбрали далеко не случайно. Условия проекта изначально подразумевали наличие определенных условий, среди которых основными являются:

  1. Расположение в ближайших окрестностях населенных пунктов.
  2. Наличие одной или нескольких линий электропередач.
  3. Минимальное негативное влияние, которое может оказывать присутствие станции на окружающую среду в конкретной местности.

Необходимо осознавать тот момент, что на равнине Карризо люди издавна занимались возделыванием земли и сельскохозяйственным производством. Поэтому, запуская проект, пришлось произвести отчуждение определенного количества земель, выгодных для возделывания. Разработчики оправдывают эти вынужденные действия тем, что земли на данной территории имеют ограниченную плодородность, не являясь на самом деле таким уж выгодным регионом в плане ведения сельского хозяйства.

Планы США на альтернативную энергию

Хотя проекты развития считаются максимально удобными и выгодными, практически каждый из них сталкивается с протестами различных «зеленых» организаций. Но важно отметить то, что, даже отчасти загрязняя отводимые под станции участки земель, сама концепция их последующей работы позволяет решать часть экологических проблем.

В недалеком будущем Соединенные Штаты Америки вообще рассчитывают максимально приблизиться к статусу мирового лидера по применению экологически чистых видов энергии. С этой целью разработана специальная государственная программа, в соответствии с которой уже в 2020 году одна третья часть всего объема добываемой энергии на территории страны будет переведена на экологически чистые, возобновляемые источники.

Этот репортаж доступен в высоком разрешении

В Калифорнии, в пустыне Мохава была запущена крупнейшая в мире солнечная электростанция «Айванпа» площадью почти 13 кв.км. Объект стоимостью $ 2.2 млрд состоит из трех электростанций и почти 350 тысяч зеркал-гелиостатов.

Отправляемся в Калифорнию, чтобы поближе познакомиться с этим чудом техники.

Крупнейшая в мире солнечная электростанция «Айванпа» находится в 64 километрах от Лас-Вегаса. Как уже говорилось, она состоит из 350 тысяч зеркал-гелиостатов (каждое размером с гаражную дверь).

Гелиостат - это прибор, способный поворачивать зеркало так, чтобы направлять солнечные лучи постоянно в одном направлении, несмотря на видимое суточное движение Солнца. (Фото Ethan Miller | Getty Images):

3 поля гелиостатов окружают 40-этажные башни-электростанции. Зеркала фокусируют солнечный свет на котлах, находящихся на вершине башен (смотри заглавную фотографию). Вырабатывается пар, который приводит в движение турбины. Так появляется электрическая энергия, которой достаточно для питания 140 000 зданий в Калифорнии.

Выходная мощность крупнейшей в мире солнечной электростанции составляет почти 392 МВт. (Фото Ethan Miller | Getty Images):

Гелиостаты солнечной электростанции Айванпа, 20 февраля 2014. (Фото Ethan Miller | Getty Images):

Как видно, гелиостат состоит из двух зеркал и управляющего механизма. Количество таких гелиостатов здесь - 173 500 штук. Соответственно, зеркал в 2 раза больше. (Фото Ethan Miller | Getty Images):

Внизу каждой из трех электростанций находятся охлаждающие системы. Вверху - паровой котел. (Фото Ethan Miller | Getty Images):

Диспетчерская. (Фото Ethan Miller | Getty Images):

Графическая система управления крупнейшей в мире солнечной электростанцией Айванпа. (Фото Ethan Miller | Getty Images):

Автомобили на дороге для осознания масштабов. (Фото Ethan Miller | Getty Images):

Две из трех электростанций. Видно, как вырабатывается пар в котлах от солнечной энергии, фокусируемой гелиостатами. (Фото Ethan Miller | Getty Images):

(Фото Ethan Miller | Getty Images):

Так светится башня-приемник солнечной энергии с котлами внутри. (Фото Ethan Miller | Getty Images):

(Фото Ethan Miller | Getty Images):

Вид с воздуха на одно из зеркальных полей с электростанцией посредине. (Фото Ethan Miller | Getty Images):

Как уже говорилось, все здесь 3 поля с гелиостатами. (Фото Ethan Miller | Getty Images):

Постройка солнечной электростанции «Айванпа» является частью государственной программы, по которой Соединенные Штаты намерены к 2020 году перевести третью часть объема добываемой энергии на возобновляемые источники.

Это была экскурсия на крупнейшую в мире солнечную электростанцию Айванпа в Калифорнии. Также смотрите статьи « », « » и « ». (Фото Ethan Miller | Getty Images).

На прошлой неделе в калифорнийской пустыне Мохаве официально начала работу огромная солнечная электростанция, которая завораживает своей красотой. Проектная мощность электростанции составляет 400 мегаватт, что по подсчетам экспертов хватит 140 тысячам домов в Калифорнии. Давайте узнаем о ней подробнее.

Специалисты подчеркивают, что новая станция позволит серьезно сократить выбросы углекислого газа: как если бы с дорог Калифорнии убрали 72 тысячи автомобилей. В таких «солнечных» штатах, как Аризона, Невада, Калифорния и других уже выделено 17 участков под строительство аналогичных солнечных электростанций.

Вместе с тем, проекты реализуются медленнее, чем планировалось, наталкиваясь, как это ни странно, на протесты со стороны «зеленых». Дело в том, что хотя в долгосрочной перспективе такие станции идут на пользу экологии, по факту само строительство станций загрязняет отведенные под них участки, лишая черепах и других представителей фауны пустыни привычных мест обитания.

Тем не менее, США планируют стать мировым лидером по использованию экологически чистой энергии. Сейчас она занимает не более 1% от общего объема рынка энергетики в стране, однако к 2020 году, согласно принятой государственной программе, треть объема всей добываемой энергии должна быть переведена на возобновляемые источники.

Эта станция является самой большой в мире, ее площадь - 14,24 квадратных километра (5,5 квадратных мили). Называется этот объект - Ivanpah Solar Electric Generating System. Станция эта относится к типу термальных солнечных электростанций.

Данная станция способна производить около 30% всей «термальной энергии», производимой в США. На объекте установлено 3 башни высотой в 140 метров, окруженных 300000 зеркал размером с гаражную дверь. Все эти зеркала фокусируют солнечные лучи на коллекторе, расположенном в верхней части башни. В верхней же части башни находится и водный резервуар, куда и направляется вся тепловая энергия, собранная зеркалами.

Для каждой башни построен и свой центр управления, плюс есть и общий центр управления, откуда контролируется работа всей системы. При этом, по словам компании, создававшей станцию, в системе нет хранилища для расплавленной соли-теплоносителя, как в случае более мелких проектов, типа Crescent Dunes.

Стоит отметить, что каждое из зеркал может изменять угол наклона и направление наклона по команде из центра. Раз в две недели зеркала омываются. Насколько можно понять, используется специальная система омывания зеркал + специальная команда мойщиков, очищающих зеркала по ночам. Для управления всеми зеркалами была создана проприетарная система SFINCS (Solar Field Integrated Control System).

Вся система состоит из 22 миллионов отдельных деталей (заклепки, болты и прочее не считается).

Общая стоимость проекта составила 2,2 миллиарда долларов США, из которых 1,4 - это федеральный займ.

При этом в системе образуется водяной пар, направляемый на лопатки турбин, производящих энергию, которой вполне достаточно для нужд 140 тысяч домохозяйств Калифорнии.

Правда, не обошлось и без проблем. К примеру, сфокусированные солнечные лучи обжигают птиц, пролетающих над станцией. Этот факт является причиной протестов природоохранных организаций США. Но, несмотря на все протесты, проект удалось завершить и запустить в работу.

Наконец, конструкцию еще есть куда развивать. Инженеры BrightSource Energy уже предлагают отказаться от водяных бойлеров и использовать специальные солевые растворы, что еще более повысить эффективность системы при сохранении ее экологических и энергетических качеств.

В обслуживании станции занято 86 сотрудников. Расчетный период эксплуатации составляет 30 лет, в течении которых станция обеспечит электричеством 140 тысяч домов из городов округа.

Читайте также: