Функции сосудов. Роль кровеносных сосудов в организме человека

Стенка кровеносного сосуда состоит из нескольких слоев: внутреннего (tunica intima), содержащего эндотелий, подэндотелиальный слой и внутреннюю эластическую мембрану; среднего (tunica media), образованного гладкомышечными клетками и эластическими волокнами; наружного (tunica externa), представленного рыхлой соединительной тканью, в которой находятся нервные сплетения и vasa vasorum. Стенка кровеносного сосуда получает питание за счет ветвей, отходящих от главного ствола этой же артерии или рядом лежащей другой артерии. Эти ветви проникают в стенку артерии или вены через наружную оболочку, образуя в ней сплетение артерий, поэтому они получили название «сосуды сосудов» (vasa vasorum).

Кровеносные сосуды, направляющиеся к сердцу, принято называть венами, а отходящие от сердца - артериями, независимо от состава крови, которая протекает по ним. Артерии и вены отличаются особенностями внешнего и внутреннего строения.
1. Различают следующие типы строения артерий: эластический, эластическо-мышечный и мышечно-эластический.

К артериям эластического типа относятся аорта, плечеголовной ствол, подключичная, общая и внутренняя сонная артерии, общая подвздошная артерия. В среднем слое стенки преобладают над коллагеновыми эластические волокна, лежащие в виде сложной сети, образующей мембраны. Внутренняя оболочка сосуда эластического типа более толстая, чем у артерии мышечно-эластического типа. Стенка сосудов эластического типа состоит из эндотелия, фибробластов, коллагеновых, эластических, аргирофильных и мышечных волокон. В наружной оболочке много коллагеновых соединительнотканных волокон.

Для артерий эластическо-мышечного и мышечно-эластического типов (верхние и нижние конечности, экстраорганные артерии) характерно наличие в их среднем слое эластических и мышечных волокон. Мышечные и эластические волокна переплетаются в виде спиралей по всей длине сосуда.

2. Мышечный тип строения имеют внутриорганные артерии, артериолы и венулы. Их средняя оболочка образована мышечными волокнами (рис. 362). На границе каждого слоя сосудистой стенки имеются эластические мембраны. Внутренняя оболочка в области разветвления артерий утолщается в виде подушечек, которые противостоят вихревым ударам потока крови. При сокращении мышечного слоя сосудов совершается регуляция кровотока, что ведет к нарастанию сопротивления и повышению кровяного давления. При этом возникают условия, когда кровь направляется в другое русло, где давление ниже вследствие расслабления сосудистой стенки, или поток крови сбрасывается по артериоловенулярным анастомозам в венозную систему. В организме постоянно происходит перераспределение крови, и в первую очередь она направляется к более нуждающимся органам. Например, при сокращении, т. е. работе, поперечнополосатых мышц кровоснабжение их увеличивается в 30 раз. Зато в других органах компенсаторно наступает замедление кровотока и уменьшение кровоснабжения.

362. Гистологический срез артерии эластическо-мышечного типа и вены.
1 - внутренний слой вены; 2 - средний слой вены; 3 - наружный слой вены; 4 - наружный (адвентициальный) слой артерии; 5 - средний слой артерии; 6 - внутренний слой артерии.


363. Клапаны в бедренной вене. Стрелка показывает направление тока крови (по Sthor).
1 - стенка вены; 2 - створка клапана; 3 - пазуха клапана.

3. Вены по строению отличаются от артерий, что зависит от низкого давления крови. Стенка вен (нижняя и верхняя полые вены, все экстраорганные вены) состоит из трех слоев (рис. 362). Внутренний слой хорошо развит я содержит, помимо эндотелия, мышечные и эластические волокна. Во многих венах встречаются клапаны (рис. 363), имеющие соединительнотканную створку и в основании клапана - валикообразное утолщение из мышечных волокон. Средний слой вен более толстый и состоит из спиральных мышечных, эластических и коллагеновых волокон. В венах отсутствует наружная эластическая мембрана. В местах слияния вен и дистальнее клапанов, выполняющих роль сфинктеров, мышечные пучки образуют циркулярные утолщения. Наружная оболочка состоит из рыхлой соединительной и жировой ткани, содержит более густую сеть околососудистых сосудов (vasa vasorum), чем артериальная стенка. Многие вены имеют паравенозное русло за счет хорошо развитого околососудистого сплетения (рис. 364).


364. Схематическое изображение сосудистого пучка, представляющего замкнутую систему, где пульсовая волна способствует движению венозной крови.

В стенке венул выявляются мышечные клетки, выполняющие роль сфинктеров, функционирующих под контролем гуморальных факторов (серотонин, катехоламин, гистамин и др.). Внутриорганные вены окружены соединительнотканным футляром, находящимся между стенкой вены и паренхимой органа. Часто в этой соединительнотканной прослойке располагаются сети лимфатических капилляров, например в печени, почках, яичке и других органах. В полостных органах (сердце, матка, мочевой пузырь, желудок и др.) гладкие мышцы их стенок вплетаются в стенку вены. Ненаполненные кровью вены спадаются из-за отсутствия в их стенке упругого эластического каркаса.

4. Кровеносные капилляры имеют диаметр 5-13 мкм, но встречаются органы и с широкими капиллярами (30-70 мкм), например в печени, передней доле гипофиза; еще более широкие капилляры в селезенке, клиторе и половом члене. Стенка капилляра тонка и состоит из слоя эндотелиальных клеток и базальной мембраны. С внешней стороны кровеносный капилляр окружен перицитами (клетки соединительной ткани). В стенке капилляра отсутствуют мышечные и нервные элементы, поэтому регуляция кровотока по капиллярам полностью находится под контролем мышечных сфинктеров артериол и венул (это их отличает от капилляров), а деятельность регулируется симпатической нервной системой и гуморальными факторами.

В капиллярах кровь течет постоянной струей без пульсирующих толчков со скоростью 0,04 см/с под давлением 15-30 мм рт. ст.

Капилляры в органах, анастомозируя друг с другом, образуют сети. Форма сетей зависит от конструкции органов. В плоских органах - фасции, брюшине, слизистых оболочках, конъюнктиве глаза - формируются плоские сети (рис. 365), в трехмерных - печень и другие железы, легкие - имеются трехмерные сети (рис. 366).


365. Однослойная сеть кровеносных капилляров слизистой оболочки мочевого пузыря.


366. Сеть кровеносных капилляров альвеол легкого.

Число капилляров в организме огромно и их суммарный просвет превосходит диаметр аорты в 600- 800 раз. 1 мл крови разливается по капиллярной площади 0,5 м 2 .

Функции кровеносных сосудов состоят в поддержании постоянного и непрерывного движения крови (оттока крови от сердца и возвращении ее к нему), распределения крови между разными органами и тканями и обеспечении их кровью в соответствии с их потребностями. Различные кровеносные сосуды выполняют неодинаковые функции,
ОС зависит от строения сосудов и их локализации по отношению к сердцу. По функциям выделяют амортизирующие сосуды, сосуды сопротивления, или резистивные, сфинктерных сосуды, обменные, емкостные и шунтирующие сосуды.
Амортизирующие сосуды – это сосуды эластичного типа – аорта легочная артерия. Благодаря хорошо выраженным упругим свойствам их стенки они сглаживают, амортизируют резкие колебания давления в артериальной системе при каждом выбросе сердцем крови и поддерживают непрерывный поток крови от аорты по всем сосудам.
Сосуды сопротивления (резистивные сосуды) – это преимущественно артерии мышечного типа – мелкие артерии и артериолы, которые оказывают наибольшее сопротивление движению крови. Сужаясь или расширяясь за счет сокращения или расслабления гладкой мускулатуры стенки, они меняют свое сопротивление и таким образом осуществляют перераспределение крови между органами и тканями. Конечно сопротивление движению крови поступают и другие кровеносные сосуды – магистральные артерии, капилляры, венулы и вены различного калибра. Но наибольший вклад в общий сосудистого сопротивления (почти 50%) создают конечные артерии и артериолы, почему их и назвали резистивными. Это прекапиллярные сосуды сопротивления. Капилляры тоже добавляют свою долю в общий сопротивления, тогда как сопротивление посткапиллярных сосудов – венул и вен очень незначительный – всего 6-7%.
Сосудисто-сфинктера – это участки артериол в месте отхождения от них капилляров, где находятся последние в артериальном русле гладенькомьзови клетки (всего 1-3), которые образуют сфинктер-образное кольцо. При их сокращении кольцо сжимается, и в капилляр перестает поступать кровь. Таким образом сосуды-сфинктеры регулируют количество открытых капилляров и их поверхность.
К обменных сосудов относятся сосуды, стенка которых лишена медиа и почти полностью адвентиции, благодаря чему через него может происходить обмен веществами между кровью и окружающими тканями. Это кровеносные капилляры и венулы, которые также не имеют гладенькомьзових клеток.
Емкостные, или аккумулирующие, сосуды. Этот тип сосудов включая мелкие, средние и крупные вены, их диаметр значительно больше, чем в соответствующих артерий, а кроме того, в зависимости от уровня давления в них они могут менять профиль поперечного сечения и, соответственно, свою емкость. Благодаря этому вены могут содержать довольно значительные объемы крови. Так, в условиях покоя организма в венах содержится более 70% общего объема крови, в артериях – 15 и в капиллярах – до 10% крови (табл.4.1.). Емкостного функцию выполняют также кровяные депо, которые, по сути, являются видоизмененными венами (см. ниже).
Шунтирующие сосуды, или артерио-венозные анастомозы – это довольно мелкие сосуды диаметром от 20 до 500 мкм с хорошо развитым мышечным слоем, которые соединяют артериолы с венулами. их функция заключается в шунтировании, опрокидывании артериальной крови в венозное русло в обход капилляров или поддержании обходного (коллатерального) кровотока в области ткани, где одна из сосудов была заблокирована тромбом или травмой. Они присутствуют в тех тканях, где по тем или иным причинам возникает необходимость прекратить движение крови через капилляры, не останавливая кровотока в данной области сосудистого русла. Например, в коже на холоде артерио-венозные анастомозы открываются, и кровь переходит из артерий в вены, не попадая в ближе к поверхности расположены капилляры, уменьшает потери тепла организмом. При необходимости отдать избыток тепла анастомозы, наоборот, закрываются, и тогда кровь течет через капилляры, идет теплоотдача, кожа приобретает розовый цвет.
Например, такие
органы, как селезенка, печень, легкие и кожа, несмотря на относительно небольшую массу, вместе вмещает почти половину всей крови организма и могут вытолкнуть от 40 до 75% удерживаемой в своих венах крови. В то же время в сосудах скелетных мышц и подкожной жировой ткани, масса которых достигает половины массы тела, содержится лишь четверть всей крови организма, и мобилизовать, то есть в случае необходимости эти ткани могут выбросить в кровеносное русло не более 5% удерживаемой крови. У человека кровяные депо менее развиты, но у большинства животных они могут содержать до 50% крови и при необходимости выбрасывать в сосудистое русло 25-30% всей крови организма.
Механизм депонирование крови во всех кровяных депо в принципе одинаков: тонкостенные мелкие сосуды – синусы, венулы или вены – легко растягиваются повышенным давлением и вмещает довольно значительные объемы крови. При этом сфинктера на выходе сосудов из органа, сокращаясь, частично или полностью перекрывают вены и обеспечивают содержание в органе депонированной крови. В случае необходимости (физическая нагрузка, эмоциональное напряжение, стресс) возбуждения симпатической нервной системы приводит к сужению депонированных сосудов, расслабление сфинктеров и выхода крови в сосудистое русло.
Селезенка. При массе, не превышает 1% массы тела человека, она удерживает около 15% всей крови и способна выбрасывать в системный кровоток до 75% депонированной крови. Кровь попадает в селезенки по одноименной артерии, расходится по ее капиллярах, а из них поступает в венозных синусов – тонкостенных образований, легко растягиваются и наполняются кровью. На границе между синусами и венулами находятся сфинктеры, которые при сокращении почти полностью перекрывают выход из синуса. Остается лишь узкая щель, сквозь которую постепенно профильтровывается плазма, а форменные элементы крови задерживаются. Капилляры, синусы и венулы селезенки не имеют мышечных клеток и способны к активному сокращению. Во время мобилизации депонированной крови под влиянием симпатической нервной системы раскрываются сфинктера и сокращаются гладкие мышцы соединительнотканной капсулы и трабекул, которые образуют каркас селезенки. В результате происходит быстрое изгнание обогащенной эритроцитами крови в венозное русло.
Печень также является важным депо крови. В ее сосудах, преимущественно воротной и печеночных венах и синусоида, содержится в
20% всей крови. Однако она не исключается из кровообращения, как это имеет место в селезенке, а постоянно, хоть и медленно, течет через печень. Скорость обновления крови в печени и процессы депонирования и мобилизации крови зависят от соотношения скоростей притока крови к печени и ее оттока. Последнее регулируется сфинктерами в печеночных венах. Адреналин и симпатические нервы раскрывают эти сфинктеры и сужают внутрипеченочные сосуды, что приводит к быстрому выбросу почти половины депонированной в печени крови. Гистамин, наоборот, сужает сфинктера и расширяет венозные сосуды печени, тем самым увеличивая объем депонированной крови в ней.
Легкие В легких содержится около 10% всей крови организма, причем распределяется она не только в венах, но также и в артериях, стенка которых значительно тоньше и способна больше растягиваться, чем в артериях большого круга. Мобилизация депонированной в легких крови происходит при физической нагрузке, гипоксии, но чаще всего это имеет место при ортостазе: переход человека из горизонтального положения в вертикальное головой вверх приводит к уменьшению объема крови в легких почти на 30%. При этом происходит выброс дополнительного объема крови в сосуды большого круга кровообращения. Когда человек ложится, кровенаполнение легких увеличивается, а объем циркулирующей крови соответственно уменьшается.
Кожа. Вены и капилляры кожи у человека могут содержать до 1 л крови. Депонирование крови кожей осуществляется не столько ради уменьшения объема циркулирующей крови, сколько для обеспечения терморегуляции. На холоде, когда возникает потребность уменьшить теплоотдачу, пре- и посткапиллярные сфинктера закрываются, а расположенные глубже в подкожной клетчатке артериовенозные анастомозы открываются и через них поддерживается кровообращение. Депонированные в капиллярах и венулах поверхностных слоев кожи кровь исключается из кровообращения и играет роль теплоизоляции. При необходимости отдать лишнее тепло кровоток в капиллярах кожи возрастает, но теперь кровь не депонируется, а быстро проходит сквозь капилляры в вены, отдает через поверхность тела свое тепло и возвращается к сердцу.

Кровеносные сосуды у позвоночных образуют густую замкнутую сеть. Стенка сосуда состоит из трех слоев:

  1. Внутренний слой очень тонкий, он образован одним рядом эндотелиальных клеток, которые придают гладкость внутренней поверхности сосудов.
  2. Средний слой самый толстый, в нем много мышечных, эластических и коллагеновых волокон. Этот слой обеспечивает прочность сосудов.
  3. Наружный слой соединительно-тканный, он отделяет сосуды от окружающих тканей.

Соответственно кругам кровобращения кровеносные сосуды можно разделить на:

  • Артерии большого круга кровообращения [показать]
    • Самый крупный артериальный сосуд в теле человека - аорта, которая выходит из левого желудочка и дает начало всем артериям, образующим большой круг кровообращения. Аорта делится на восходящую аорту, дугу аорты и нисходящую аорту. Дуга аорты в свою очередь разделяется на грудную аорту и брюшную аорту.
    • Артерии шеи и головы

      Общая сонная артерия (правая и левая), которая на уровне верхнего края щитовидного хряща делится на наружную сонную артерию и внутреннюю сонную артерию.

      • Наружная сонная артерия дает ряд ветвей, которые по своим топографическим особенностям делятся на четыре группы - переднюю, заднюю, медиальную и группу концевых ветвей, кровоснабжающих щитовидную железу, мышцы подъязычной кости, грудино-ключично-сосцевидную мышцу, мышцы слизистой гортани, надгортанника, язык, небо, миндалины, лицо, губы, ухо (наружное и внутреннее), нос, затылок, твердую мозговую оболочку.
      • Внутрення сонная артерия по своему ходу явлется продолжением обей сонной артерии. В ней различают шейную и внутричерепную (головную) части. В шейной части внутренняя сонная артерия ветвей обычно не дает.В полости черепа от внутренней сонной артерии отходят ветви к большому мозгу и глазничная артерия, кровоснабжающие головной мозг и глаз.

      Подключичная артерия - парная, начинаются в переднем средостении: правая - от плече-головного ствола, левая - непосредственно от дуги аорты (поэтому левая артерия длиннее правой). В подключичной артерии топографически различают три отдела, каждый из которых дает свои ветви:

      • Ветви первого отдела - позвоночная артерия, внутренняя грудная артерия, щито-шейный ствол, - каждый из которых дает свои веточки, кровоснабжающие головной мозг, мозжечок мышцы шеи, щитовидную железу и пр.
      • Ветви второго отдела - здесь от подключичной артерии отходит только одна ветвь - реберно-шейный ствол, который дает начало артериям, кровоснабжающим глубокие мышцы затылка, спинной мозг, мышцы спины, межреберные промежутки
      • Ветви третьего отдела - здесь также отходит одна ветвь - поперечная артерия шеи, кровоснабжающая часть мышц спины
    • Артерии верхней конечности, предплечья и кисти
    • Артерии туловища
    • Артерии таза
    • Артерии нижней конечности
  • Вены большого круга кровообращения [показать]
    • Система верхней полой вены
      • Вены туловища
      • Вены головы и шеи
      • Вены верхней конечности
    • Система нижней полой вены
      • Вены туловища
    • Вены таза
      • Вены нижних конечностей
  • Сосуды малого круга кровообращения [показать]

    К сосудам малого, легочного, круга кровообращения относятся:

    • легочной ствол
    • легочные вены в количестве двух пар, правой и левой

    Легочной ствол делится на две ветви: правую легочную артерию и левую легочную артерию, каждая их которых направляется в ворота соответствующего легкого, принося к нему венозную кровь из правого желудочка.

    Правая артерия несколько длиннее и шире левой. Войдя в корень легкого она делится на три основные ветви, каждая из которых вступает в ворота соответствующей доли правого легкого.

    Левая артерия в корне легкого делиться на две основные ветви, вступающие в ворота соответствующей доли левого легкого.

    От легочного ствола к дуге аорты идет фиброзно-мышечный тяж (артериальная связка). В периоде внутриутробного развития эта связка представляет собой артериальный проток, по которому большая часть крови из легочного ствола плода переходит в аорту. После рождения этот проток облитерируется и превращается в указанную связку.

    Легочные вены , правые и левые, - выносят артериальную кровь из легких. Они выходят из ворот легких, обычно по две из каждого легкого (хотя число легочных вен может достигать 3-5 и даже более), правые вены длиннее левых, и впадают в левое предсердие.

Соответственно особенностям строения и функциям кровеносные сосуды можно разделить на:

Группы сосудов по особенностям строения стенки

Артерии

Кровеносные сосуды, идущие от сердца к органам и несущие к ним кровь, называются артериями (аеr - воздух, tereo - содержу; на трупах артерии пусты, отчего в старину считали их воздухоносными трубками). По артериям кровь от сердца течет под большим давлением, поэтому артерии имеют толстые упругие стенки.

По строению стенок артерии делятся на две группы:

  • Артерии эластического типа - ближайшие к сердцу артерии (аорта и ее крупные ветви) выполняют главным образом функцию проведения крови. В них на первый план выступает противодействие растяжению массой крови, которая выбрасывается сердечным толчком. Поэтому в стенке их относительно больше развиты структуры механического характера, т.е. эластические волокна и мембраны. Эластические элементы артериальной стенки образуют единый эластический каркас, работающий, как пружина, и обусловливающий эластичность артерий.

    Эластические волокна придают артериям упругие свойства, которые обусловливают непрерывный ток крови по всей сосудистой системе. Левый желудочек во время сокращения выталкивает под высоким давлением больше крови, чем ее оттекает из аорты в артерии. При этом стенки аорты растягиваются, и она вмещает всю кровь, выброшенную желудочком. Когда желудочек расслабляется, давление в аорте падает, а ее стенки благодаря упругим свойствам немного спадаются. Избыток крови, содержавшийся в растянутой аорте, проталкивается из аорты в артерии, хотя из сердца в это время кровь не поступает. Так, периодическое выталкивание крови желудочком благодаря упругости артерий превращается в непрерывное движение крови по сосудам.

    Упругость артерий обеспечивает еще одно физиологическое явление. Известно, что в любой упругой системе механический толчок вызывает колебания, распространяющиеся по всей системе. В кровеносной системе таким толчком служит удар крови, выбрасываемой сердцем, о стенки аорты. Возникающие при этом колебания распространяются по стенкам аорты и артерий со скоростью 5-10 м/с, которая значительно превышает скорость движения крови в сосудах. На участках тела, где крупные артерии подходят близко к коже, - на запястьи висках, шее - пальцами можно ощутить колебания стенок артерий. Это артериальный пульс.

  • Артерии мышечного типа - средние и мелкие артерии, в которых инерция сердечного толчка ослабевает и требуется собственное сокращение сосудистой стенки для дальнейшего продвижения крови, которое обеспечивается относительно большим развитием в сосудистой стенке гладкой мышечной ткани. Гладкомышечные волокна, сокращаясь и расслабляясь, суживают и расширяют артерии и таким образом регулируют ток крови в них.

Отдельные артерии снабжают кровью целые органы или их части. По отношению к органу различают артерии, идущие вне органа, до вступления в него - экстраорганные артерии - и их продолжения, разветвляющиеся внутри него - внутриорганные или интраорганные артерии. Боковые ветви одного и того же ствола или ветви различных стволов могут соединяться друг с другом. Такое соединение сосудов до распадения их на капилляры носит название анастомоза или соустья. Артерии, образующие анастомозы, называются анастомозирующими (их большинство). Артерии, не имеющие анастомозов с соседними стволами до перехода их в капилляры (см. ниже), называются конечными артериями (например, в селезенке). Конечные, или концевые, артерии легче закупориваются кровяной пробкой (тромбом) и предрасполагают к образованию инфаркта (местного омертвения органа).

Последние разветвления артерий становятся тонкими и мелкими и потому выделяются под названием артериол. Они непосредственно переходят в капилляры, причем благодаря наличию в них сократительных элементов выполняют регулирующую функцию.

Артериола отличается от артерии тем, что стенка ее имеет лишь один слой гладкой мускулатуры, благодаря которому она осуществляет регулирующую функцию. Артериола продолжается непосредственно в прекапилляр, в котором мышечные клетки разрозненны и не составляют сплошного слоя. Прекапилляр отличается от артериолы еще и тем, что он не сопровождается венулой, как это наблюдается в отношении артериолы. От прекапилляра отходят многочисленные капилляры.

Капилляры - самые мелкие кровеносные сосуды, расположенные во всех тканях между артериями и венами; их диаметр - 5-10 мкм. Основная функция капилляров - обеспечение обмена газами и питательным веществом между кровью и тканями. В связи с этим стенка капилляров образована только одним слоем плоских эндотелиальных клеток, проницаемым для растворенных в жидкости веществ и газов. Через нее кислород и питательные вещества легко проникают из крови к тканям, а углекислый газ и продукты жизнедеятельности в обратном направлении.

В каждый данный момент функционирует только часть капилляров (открытые капилляры), а другая остается в резерве (закрытые капилляры). На площади 1 мм 2 поперечного сечения скелетной мышцы в покое насчитывается 100-300 открытых капилляров. В работающей мышце, где потребность в кислороде и питательных веществах возрастает, количество открытых капилляров достигает 2 тыс. на 1 мм 2 .

Широко анастомозируя между собой, капилляры образуют сети (капиллярные сети), которые включают 5 звеньев:

  1. артериолы как наиболее дистальные звенья артериальной системы;
  2. прекапилляры, являющиеся промежуточным звеном между артериолами и истинными капиллярами;
  3. капилляры;
  4. посткапилляры
  5. венулы, являющиеся корнями вен и переходящие в вены

Все эти звенья снабжены механизмами, обеспечивающими проницаемость сосудистой стенки и регуляцию кровотока на микроскопическом уровне. Микроциркуляция крови регулируется работой мускулатуры артерий и артериол, а также особых мышечных сфинктеров, которые находятся в пре- и посткапиллярах. Одни сосуды микроциркуляторного русла (артериолы) выполняют преимущественно распределительную функцию, а остальные (прекапилляры, капилляры, посткапилляры и венулы) - преимущественно трофическую (обменную).

Вены

В отличие от артерий вены (лат. vena, греч. phlebs; отсюда флебит - воспаление вен) не разносят, а собирают кровь из органов и несут ее в противоположном по отношению к артериям направлении: от органов к сердцу. Стенки вен устроены по тому же плану, что и стенки артерий, однако давление крови в венах очень низкое, поэтому стенки вен тонкие, в них меньше эластической и мышечной ткани, благодаря чему пустые вены спадаются. Вены широко анастомозируют между собой, образуя венозные сплетения. Сливаясь друг с другом, мелкие вены образуют крупные венозные стволы - вены, впадающие в сердце.

Движение крови по венам осуществляется благодаря присасывающему действию сердца и грудной полости, в которой во время вдоха создается отрицательное давление благодаря разности давления в полостях, сокращению поперечнополосатой и гладкой мускулатуры органов и другим факторам. Имеет значение и сокращение мышечной оболочки вен, которая в венах нижней половины тела, где условия для венозного оттока труднее, развита сильнее, нежели в венах верхней части тела.

Обратному току венозной крови препятствуют особые приспособления вен - клапаны, составляющие особенности венозной стенки. Венозные клапаны состоят из складки эндотелия, содержащей слой соединительной ткани. Они обращены свободным краем в сторону сердца и поэтому не препятствуют току крови в этом направлении, но удерживают ее от возвращения обратно.

Артерии и вены обычно идут вместе, причем мелкие и средние артерии сопровождаются двумя венами, а крупные - одной. Из этого правила, кроме некоторых глубоких вен, составляют исключение главным образом поверхностные вены, идущие в подкожной клетчатке и почти никогда не сопровождающие артерий.

Стенки кровеносных сосудов имеют собственные обслуживающие их тонкие артерии и вены, vasa vasorum. Они отходят или от того же ствола, стенку которого снабжают кровью, или от соседнего и проходят в соединительнотканном слое, окружающем кровеносные сосуды и более или менее тесно связанном с адвентицией их; этот слой носит название сосудистого влагалища, vagina vasorum.

В стенке артерий и вен заложены многочисленные нервные окончания (рецепторы и эффекторы), связанные с центральной нервной системой, благодаря чему по механизму рефлексов осуществляется нервная регуляция кровообращения. Кровеносные сосуды представляют обширные рефлексогенные зоны, играющие большую роль в нейрогуморальной регуляции обмена веществ.

Функциональные группы сосудов

Все сосуды в зависимости от выполняемой ими функции можно подразделить на шесть групп:

  1. амортизирующие сосуды (сосуды эластического типа)
  2. резистивные сосуды
  3. сосуды-сфинктеры
  4. обменные сосуды
  5. емкостные сосуды
  6. шунтирующие сосуды

Амортизирующие сосуды. К этим сосудам относятся артерии эластического типа с относительно большим содержанием эластических волокон, такие, как аорта, легочная артерия и прилегающие к ним участки больших артерий. Выраженные эластические свойства таких сосудов, в частности аорты, обусловливают амортизирующий эффект, или так называемый Windkessel-эффект (Windkessel по-немецки означает "компрессионная камера"). Этот эффект заключается в амортизации (сглаживании) периодических систолических волн кровотока.

Windkessel-эффект для выравнивания движения жидкости можно пояснить следующим опытом: из бака пускают воду прерывистой струей одновременно по двум трубкам - резиновой и стеклянной, которые заканчиваются тонкими капиллярами. При этом из стеклянной трубки вода вытекает толчками, тогда как из резиновой она течет равномерно и в большем количестве, чем из стеклянной. Способность эластической трубки выравнивать и увеличивать ток жидкости зависит от того, что в тот момент, когда ее стенки растягиваются порцией жидкости, возникает энергия эластического напряжения трубки, т. е. происходит переход части кинетической энергии давления жидкости в потенциальную энергию эластического напряжения.

В сердечно-сосудистой системе часть кинетической энергии, развиваемой сердцем во время систолы, затрачивается на растяжение аорты и отходящих от нее крупных артерий. Последние образуют эластическую, или компрессионную, камеру, в которую поступает значительный объем крови, растягивающий ее; при этом кинетическая энергия, развитая сердцем, переходит в энергию эластического напряжения артериальных стенок. Когда же систола заканчивается, то это созданное сердцем эластическое напряжение сосудистых стенок поддерживает кровоток во время диастолы.

В более дистально расположенных артериях больше гладкомышечных волокон, поэтому их относят к артериям мышечного типа. Артерии одного типа плавно переходят в сосуды другого типа. Очевидно, в крупных артериях гладкие мышцы влияют главным образом на эластические свойства сосуда, фактически не изменяя его просвет и, следовательно, гидродинамическое сопротивление.

Резистивные сосуды. К резистивным сосудам относят концевые артерии, артериолы и в меньшей степени капилляры и венулы. Именно концевые артерии и артериолы, т. е. прекапиллярные сосуды, имеющие относительно малый просвет и толстые стенки с развитой гладкой мускулатурой, оказывают наибольшее сопротивление кровотоку. Изменения степени сокращения мышечных волокон этих сосудов приводят к отчетливым изменениям их диаметра и, следовательно, общей площади поперечного сечения (особенно когда речь идет о многочисленных артериолах). Если учесть, что гидродинамическое сопротивление в значительной степени зависит от площади поперечного сечения, то неудивительно, что именно сокращения гладких мышц прекапиллярных сосудов служат основным механизмом регуляции объемной скорости кровотока в различных сосудистых областях, а также распределения сердечного выброса (системного дебита крови) по разным органам.

Сопротивление посткапиллярного русла зависит от состояния венул и вен. Соотношение между прекапиллярным и посткапиллярным сопротивлением имеет большое значение для гидростатического давления в капиллярах и, следовательно, для фильтрации и реабсорбции.

Сосуды-сфинктеры. От сужения или расширения сфинктеров - последних отделов прекапиллярных артериол - зависит число функционирующих капилляров, т. е. площадь обменной поверхности капилляров (см. рис.).

Обменные сосуды. К этим сосудам относятся капилляры. Именно в них происходят такие важнейшие процессы, как диффузия и фильтрация. Капилляры не способны к сокращениям; диаметр их изменяется пассивно вслед за колебаниями давления в пре- и посткапиллярных резистивных сосудах и сосудах-сфинктерах. Диффузия и фильтрация происходят также в венулах, которые следует поэтому относить к обменным сосудам.

Емкостные сосуды. Емкостные сосуды - это главным образом вены. Благодаря своей высокой растяжимости вены способны вмещать или выбрасывать большие объемы крови без существенного влияния на другие параметры кровотока. В связи с этим они могут играть роль резервуаров крови.

Некоторые вены при низком внутрисосудистом давлении уплощены (т. е. имеют овальный просвет) и поэтому могут вмещать некоторый дополнительный объем, не растягиваясь, а лишь приобретая более цилиндрическую форму.

Некоторые вены отличаются особенно высокой емкостью как резервуары крови, что связано с их анатомическим строением. К таким венам относятся прежде всего 1) вены печени; 2) крупные вены чревной области; 3) вены подсосочкового сплетения кожи. Вместе эти вены могут удерживать более 1000 мл крови, которая выбрасывается при необходимости. Кратковременное депонирование и выброс достаточно больших количеств крови могут осуществляться также легочными венами, соединенными с системным кровообращением параллельно. При этом изменяется венозный возврат к правому сердцу и/или выброс левого сердца [показать]

Внутригрудные сосуды как депо крови

В связи с большой растяжимостью легочных сосудов объем циркулирующей в них крови может временно увеличиваться или уменьшаться, причем эти колебания могут достигать 50% среднего общего объема, равного 440 мл (артерии-130 мл, вены - 200 мл, капилляры - 110 мл). Трансмуральное давление в сосудах легких и их растяжимость при этом меняются незначительно.

Объем крови в малом круге кровообращения вместе с конечнодиастолическим объемом левого желудочка сердца составляет так называемый центральный резерв крови (600-650 мл) - быстромобилизуемое депо.

Так, если необходимо в течение короткого времени увеличить выброс левого желудочка, то из этого депо может поступать около 300 мл крови. В результате равновесие между выбросами левого и правого желудочков будет поддерживаться до тех пор, пока не включится другой механизм поддержания этого равновесия - увеличение венозного возврата.

У человека в отличие от животных нет истинного депо, в котором кровь могла бы задерживаться в специальных образованиях и по мере необходимости выбрасываться (примером такого депо может служить селезенка собаки).

В замкнутой сосудистой системе изменения емкости какого-либо отдела обязательно сопровождаются перераспределением объема крови. Поэтому изменения емкости вен, наступающие при сокращениях гладких мышц, влияют на распределение крови во всей кровеносной системе и тем самым прямо или косвенно на общую функцию кровообращения.

Шунтирующие сосуды - это артериовенозные анастомозы, присутствующие в некоторых тканях. Когда эти сосуды открыты, кровоток через капилляры либо уменьшается, либо полностью прекращается (см. рис. выше).

Соответственно функции и строению различных отделов и особенностям иннервации все кровеносные сосуды в последнее время стали делить на 3 группы:

  1. присердечные сосуды, начинающие и заканчивающие оба круга кровообращения, - аорта и легочный ствол (т. е. артерии эластичного типа), полые и легочные вены;
  2. магистральные сосуды, служащие для распределения крови по организму. Это - крупные и средние экстраорганные артерии мышечного типа и экстраорганные вены;
  3. органные сосуды, обеспечивающие обменные реакции между кровью и паренхимой органов. Это - внутриорганные артерии и вены, а также капилляры

Учение о сердечно-сосудистой системе называется ангиокардиологией.

Впервые точное описание механизма кровообращения и значение сердца дано английским врачом – В. Гарвеем. А. Везалий – основоположник научной анатомии – описал строение сердца. Испанский врач – М. Сервет – правильно описал малый круг кровообращения.

Виды кровеносных сосудов.

Анатомически кровеносные сосуды делятся на артерии, артериолы, прекапилляры, капилляры, посткапилляры, венулы, вены. Артерии и вены – это магистральные сосуды, остальные – микроциркуляторное русло.

Артерии – сосуды, несущие кровь от сердца, независимо от того, какая это кровь.

Строение:

Большинство артерий имеет между оболочками эластическую мембрану, что придает стенке эластичность, упругость.

Виды артерий

I. В зависимости от диаметра:

Крупные;

Средние;

II. В зависимости от нахождения:

Внеорганные;

Внутриорганные.

III. В зависимости от строения:

Эластического типа – аорта, легочной ствол.

Мышечно-эластического типа – подключичная, общая сонная.

Мышечного типа – более мелкие артерии способствуют своим сокращением продвижению крови. Длительное повышение тонуса этих мышц приводит к артериальной гипертонии.

Капилляры – микроскопические сосуды, которые находятся в тканях и соединяют артериолы с венулами (через пре- и посткапилляры). Через их стенки происходят обменные процессы, видимые только под микроскопом. Стенка состоит из одного слоя клеток – эндотелия, расположенного на базальной мембране, образованной рыхлой волокнистой соединительной тканью.

Вены – сосуды, несущие кровь к сердцу, независимо от того, какая она. Состоят из трех оболочек:

· Внутренняя оболочка – состоит из эндотелия.

· Средняя оболочка – гладкомышечная.

· Наружная оболочка – адвентиция.

Особенности строения вен:

Стенки тоньше и слабее.

Эластические и мышечные волокна развиты слабее, поэтому стенки их могут спадаться.

Наличие клапанов (полулунные складки слизистой оболочки), препятствующих току крови. Клапанов не имеют: полые вены, воротная вена, легочные вены, вены головы, почечные вены.

Анастомозы – разветвления артерий и вен; могут соединяться и образовывать анастомозу.

Коллатерали – сосуды, обеспечивающие окольный отток крови в обход основному.

Функционально различают следующие сосуды:

· Магистральные сосуды – наиболее крупные – сопротивление кровотока небольшое.

· Резистивные сосуды (сосуды сопротивления) – это мелкие артерии и артериолы, которые могут изменять кровоснабжение тканей и органов. Они имеют хорошо развитую мышечную оболочку, могут сужаться.

· Истинные капилляры (обменные сосуды) – обладают высокой проницаемостью, благодаря чему происходит обмен веществ между кровью и тканями.

· Емкостные сосуды – венозные сосуды (вены, венулы), вмещающие 70-80% крови.

· Шунтирующие сосуды – артериовенулярные анастомозы, обеспечивающие прямую связь между артериолами и венулами в обход капиллярного русла.

Кровеносные сосуды по функции и строению разделяются на проводящие и питающие. Проводящие - артерии - arteria - проводят кровь от сердца, вены - vena (phlebos) - к сердцу и питающие, трофические, - капилляры - микроскопические сосуды, расположены в тканях органа. Основная функция сосудистого русла двоякая: проведение крови (по артериям и венам), а также (Обеспечение обмена веществ между кровью и тканями (звенья микроциркуляторного русла) и перереспределение крови. Строение стенки сосудов крайне разнообразно и обусловлено их функциональным назначением. Артерии (аег - воздух, tereo - содержу) - сосуды, по которым кровь выносится из сердца. На трупе они пусты, отчего Гиппократ считал их воздухоносными трубками. Эти сосуды не только транспортируют кровь, но и помогают сердцу в ее продвижении к органам.

Артерии в зависимости от калибра подразделяются на крупные, средние и мелкие. Стенки артерий (рис. 293) состоят из трех оболочек. Внутренняя оболочка - tunica intima образована эндотелием, базальной мембраной и подэндотелиальным слоем. Эта оболочка" является общей для всех сосудов и сердца. Она отделяется от средней оболочки внутренней эластической мембраной. Средняя оболочка - tunica media образована мышечными клетками, ориентированными в разных направлениях, а также эластическими и коллагеновыми волокнами. От наружной оболочки ее отделяют наружная эластическая мембрана. Наружная оболочка - адвентиция - tunica adventitia образована рыхлой соединительной тканью. Она фиксирует артерию в определенном положении и ограничивает ее растяжение. Содержит сосуды, питающие стенку артерии, - сосуды сосудов - vasa vasorum и нервы - nervi vasorum.

Рис. 293. Строение стенки сосуда (по Н. Gray, 1967)

Чувствительная иннервация сосудов - ангиоиннервация осуществляется чувствительными нервными волокнами, являющимися отростками клеток спинальных или черепно-мозговых узлов. Это - волокна, покрытые миелиновой оболочкой. Двигательная - эффекторная иннервация обеспечивается от центров симпатической нервной системы, "расположенных в боковых рогах грудопоясничного отдела спинного мозга. Путь симпатической иннервации складывается из двух нейронов, лежащих в спинном мозге и симпатических ганглиях. Их эфферентные волокна оканчиваются на гладкой мускулатуре сосудов, через них регулируется движение сосудистой стенки - сосудистый тонус.

В некоторых сосудах имеются специальные рефлексогенные зоны, например у начала внутренней сонной артерии, в дуге аорты и др. Из них импульсы передаются рефлекторным путем на сердце и периферические сосуды через центральную нервную систему. Мнение о том, что чувствительная иннервация сконцентрирована только в рейлексогенных зонах возникновения рефлексов на кровообращение, в настоящее время признается ошибочным, так как чувствительные нервные аппараты распространены по всей сосудистой системе в виде различных ангиорецепторов, пластинчатых телец, кустиков или древовидных разветвлений нервных волокон.

Строение артерий изменяется в зависимости от их топографии. Ближайшие к сердцу артерии (аорта и ее крупные ветви) выполняют главным образом функцию проведения крови. В них на первый план выступает противодействие растяжению массой крови, которая выбрасывается под большим давлением сердечным толчком, поэтому в стенке этих сосудов относительно больше развиты структуры механического характера, т. е. эластические волокна и мембраны. Эластические элементы артериальной стенки образуют единый эластический каркас, работающий как пружина и обусловливающий эластичность артерий. Такие артерии называются артериями эластического типа. Они могут выдерживать высокое давление (до 200 мм Hg). В средних и мелких артериях, в которых инерция сердечного толчка ослабевает и требуется сокращение сосудистой стенки для дальнейшего продвижения крови, преобладают сократительные элементы. Оно обеспечивается сравнительно мощным развитием в сосудистой стенке гладкой мышечной ткани. Такие артерии Называются артериями мышечного типа. Артерии переходного типа характеризуются тем, что по мере удаления от сердца в них уменьшается количество эластических элементов и увеличивается количество мышечных. На этом основании различают эластическо-мышечный и мышечно-эластический типы артерий.

Диаметр артерий и толщина стенок зависят от функций органа. Так, у наиболее подвижных млекопитающих толщина стенки плечевой артерии равна V3-V4 диаметра ее просвета, у птиц даже целому диаметру, в то время как у менее подвижных она составляет лишь диаметра просвета сосуда (П. М. Мажуга, 1964). Практическое знание артериальных сосудов как своеобразного периферического «сердца» фомадно, нарушение его функций влечет за собой расстройство деятельности всей сосудистой системы. При нарушении структуры стенки (склерозе сосудов) исключаются возможности их полноценного сокращения и растяжения, что создает непосильные условия для работы сердца и приводит к его заболеванию. Так, стенозирование артерий сопровождается перемещением миоцитов из средней (мышечной) оболочки во внутреннюю (интиму), что приводит к утолщению интимы и сужению просвета сосуда (М. Д. Рихтер, 1990).

Стенки кровеносных сосудов обеспечивают: 1) скорость кровотока; 2) высоту кровяного давления; 3) емкость сосудистого русла. Все это обусловлено движением сосудистой стенки. Если она изменена патологически, то происходит, как правило, нарушение обменных процессов. Стенка сосуда очень чувствительна к гравитационным перегрузкам, изменениям атмосферного давления. Она - барометр организма.

Войдя в орган, артерии многократно ветвятся в артериолы; прекапилляры, переходящие в капилляры и далее в посткапилляры и венулы (рис. 294). Венулы, являющиеся последним звеном микроворкуляторного русла, сливаясь между собой и укрупняясь, образуют вены, выносящие кровь из органа.

Рис. 294. Схема строения и кровоснабжения дольки застенной слюнной железы (по Н. В. Зеленевскому)

Капилляры - vasa cnpillaria - мельчайшие сосуды, расположенные между артериолами и венулами и являющиеся путями трансорганной циркуляции крови. Они выполняют трофическую, обменную функции. Стенка капилляров состоит из одного слоя эндотелиальных клеток, периваскулярной оболочки с перицитами и нервными волокнами. Строение стенки тесно связано с обслуживанием обмена веществ в органе. Диаметр капилляров не-значительный и может колебаться в пределах от 4 до 50 мкм. Они отличаются прямолинейностью хода. Их число в каждом органе зависит от его функциональной нагрузки и интенсивности обмена веществ в нем. Например, у лошади на 1 мм2 насчитывается до 1350 капилляров, у собаки - до 2650. Особенно много капилляров в железах, сером веществе мозга, в легких, меньше всего в сухожилиях и связках. В филогенезе капилляры возникли в результате замены внесосудистой циркуляции внутрисосудистой.

В состоянии покоя органов функционируют далеко не все капилляры, только 10% от общего числа. Часть капилляров находится в резерве и включается в кровоток в случае функциональной необходимости. Капилляры распространены повсюду, где есть соединительная ткань. Они отсутствуют в эпителиальной ткани и в роговых ее производных, дентине и эмали зубов, роговице и хрусталике глаза, в суставном хряще. Широко анастомозируя между собой, капилляры образуют сети, переходящие в посткапилляр. Посткапилляр продолжается в венулу, сопровождающую артериолу. Венулы образуют тонкие начальные отрезки венозного русла, составляющие корни вен и переходящие в вены.

Вены - сосуды, по которым кровь течет к сердцу, стенки их устроены по тому же плану, что и стенки артерий, но они тоньше, в них меньше эластической и мышечной ткани, благодаря чему пустые вены спадаются, просвет же артерии на поперечном разрезе зияет.

Кровообращение начинается в тканях, где совершается обмен веществ через стенки капилляров (кровеносных и лимфатических). Микроциркуляция - движение крови и лимфы по микроскопическим сосудам, расположенным в органах. Эта часть сосудистого русла располагается между артериями и венами. Через микроциркуляторное русло происходит фильтрация плазмы в ткани организма Оно подразделяется на звенья: притока и распределения (артериола и прекапилляр), обмена (капилляр), дренажно-депонирующее звено (посткапилляр и венула). В стенке артериолы различают ицтиму, медию и наружную соединительнотканную оболочку. Основным критерием, определяющим прекапилляр, является отсутствие в стенке эластических элементов. Им принадлежит важная роль в сопротивлении кровотоку. В месте ответвления артериол капилляр окружен гладкомышечными клетками, формирующими сфинктер. Посткапилляры построены аналогично прекапиллярам. Вместе с венулами они первыми включаются в дренаж тканей, удаляют ядовитые вещества, продукты метаболизма, регулируют равновесие между объемами артериальной и венозной крови. Посткапилляры, сливаясь, образуют собирательные венулы, в стенках которых уже появляются мышечные клетки (миоциты). Посткапиллярами и венулами заканчивается микроциркуляторное русло. Венулы переходят в вены.

Кроме названных сосудов, анатомами нашей страны Доказана принадлежность к микроциркуляторному руслу артериовенулярных анастомозов, представляющих пути укороченного тока крови из артериального в везнозное русло, минуя капилляр. Благодаря их наличию терминальный кровоток делится на два пути движения крови: транскапиллярный (через капилляры); юкстакапиллярный (через артериовенулярные анастомозы). Благодаря последнему происходят разгрузка капиллярного русла и ускорение транспорта крови в органе.

Микроциркуляторное русло представляет не механическую сумму различных сосудов, а сложный анатомо-физиологический комплекс, обеспечивающий основной процесс организма - обмен веществ! Строение микроциркуляторного русла различно в разных органах и зависит от их морфофункционального состояния. Так, в печени встречаются широкие капилляры - синусоиды, в которые поступает артериальная и венозная кровь, в почках - артериальные капиллярные клубочки, особые синусоиды - в костном мозгу.

Закономерности распределения сосудов в организме. Распределение сосудов в организме животных подчинено определенным закономерностям. Они были изложены основоположником функциональной анатомии П. Ф. Лесгафтом (1837-1909) в его книге «Основы теоретической анатомии».

1. Общий план расположения главных сосудистых стволов соответствует строению основных опорных скелетных частей организма: а) одноосевому расположению основного стержня тела (головы и туловища); б) двусторонней симметрии; в) сегментации. Продольными сосудами являются аорта и ее продолжение - срединная крестцовая и хвостовая артерии. Сегментарные сосуды присутствуют там, где выражена метамерия (скелет и мускулатура туловища): межреберные, поясничные, крестцовые артерии и вены. Наличие одноименных правых и левых артерий в области стенок туловища и конечностей является отражением двусторонней симметрии тела.

2 Сосуды идут, как правило, совместно с нервными стволами, образуя сосудисто-нервные пучки, заключенные в фасциальные влагалища.

3. Топография сосудов строго закономерна. Они проходят в области туловища, головы и конечностей магистралями, т. е. кратчайшим путем. В этой связи на туловище крупные сосуды следуют вентрально от позвоночного столба, на конечностях - на их медиальной поверхности, внутри угла сустава, как сторонах, наиболее защищенных и менее травмируемых. Название магистрали соответствует тому участку тела и конечности, по которому они следуют. Например, в области плеча проходят плечевая артерия и вена, в области бедра - соответственно бедренная артерия и вена и т. д.

4. Порядок отхождения сосудов к органам, их количество, диаметр тесно связаны с функциональной активностью органов и эмбриональной закладкой. Так, первыми от аорты отходят правая и левая венечные артерии, кровоснабжающие сердце, затем плечеголовной ствол, посылающий кройь к голове, холке, шее, грудным конечностям, последними сосудами, отходящими от аорты, являются парные подвздошные артерии, кровоснабжающие тазовые конечности и органы тазовой полости. К внутренним органам сосуды подходят со стороны, обращенной к источнику кровоснабжения, а в орган входят через его ворота.

5. Различают четыре типа ветвления артерий: рассыпной, магистральный, дихокомический и концевой, которые обусловлены развитием и функцией кровоснабжаемых органов. Рассыпной тип характеризуется делением нисходящего сосуда на несколько мелких ветвлений разного калибра (наподобие кроны дерева) - это сосуды внутренних органов. При магистральном типе имеется основная магистральная артерия и последовательно отходящие от нее ветви (париетальные и висцеральные сосуды аорты). При дихотомическом ветвлении один артериальный ствол делится вилкообразно на два одинаковых стволика, чем достигается равномерное кровоснабжение участка тела (деление легочного ствола). Концевой тип ветвления отличается отсутствием анастомозов между ветвями соседних артерий (в мозге, сердце, легких, печени), такие сосуды часто закупориваются тромбами (например при инсульте).

6. Помимо магистралей в организме есть сосуды, сопровождающие магистрали и обеспечивающие окольный ток крови в обход основного пути (боковые коллатеральные сосуды). При выключении основной магистрали благодаря наличию анастомозов за счет коллатерали может быть компенсировано кровоснабжение органа или участка тела. Большое количество коллатералей в области конечностей. Они представляют практический интерес при оперативных вмешательствах. К числу коллатералей относятся и обходные сети. Они находятся в области суставов и лежат на их разгибательной стороне. Значение обходных сетей заключается в том, что при сгибании суставов происходит сильное растяжение сосудов, что затрудняет ток крови в них. В качестве противодействующего механизма в таких участках и формируются сосудистые сети, получающие кровь из разных источников, в результате чего при любом положении сустава создаются благоприятные условия для тока крови, если не из одного, то из другого сосуда.

7. Боковые ветви магистралей образуют друг с другом соединения - анастомозы, которые являются важным компенсаторным приспособлением для выравнивания кровяного давления, регуляции и перераспределения тока крови и обеспечения кровоснабжения организма. Они присутствуют во всех участках и органах, отличающихся значительной подвижностью. Анастомозы бывают между крупными, средними и мелкими сосудами. Различают межсистемные артериальные анастомозы - соединения между ветвями разных артерий и внутрисистемные анастомозы - между ветвями одной артерии. В состав анастомозов входят также артериальные дуги, которые образуются между артериальными стволами, идущими к одному и тому же органу (например, концевая дуга, образованная у лошади внутри копытной кости между пальцевыми артериями, артериальные дуги между сосудами кишечника и др.), а также артериальные сети - сплетения концевых ветвей сосудов (дорсальная сеть запястья).

Имеют место также артериовенозные анастомозы (между артериями и венами), а также артериовенулярные (шунты). Они выступают в роли укороченного тока крови от артерий или артериол до вен или венул, минуя микроциркуляторное или капиллярное русло, т. е. участвуют в перераспределении, крови как в норме, так и при перегрузках организма.

8. Функциональная обусловленность архитектуры сосудистого русла, строение его стенок находятся в прямой зависимости от особенностей гемодинамики и связаны с экологической характеристикой животных.

Вопросы для самопроверки

1. Каковы значение и функции сердечно-сосудистой системы?

2. Каков анатомический состав сердечно-сосудистой системы?

3. Каковы закономерности распределения сосудов в организме?

4. Как называются сосуды, несущие кровь к сердцу и от сердца, и каковы отличительные особенности их строения?

5. Какие сосуды осуществляют обменную (трофическую) функцию и в чем особенности их строения в связи с этим? Что они формируют в органе?

6. Что такое анастомозы и коллатералли (особенности их строения, топографии и значение)?

7. Назовите круги кровообращения.

8. Как осуществляется иннервация стенки сосуда?

9. Назовите основные типы развития сосудистой системы в фило- и онтогенезе.

10. Каковы особенности кровообращения у плода?

Читайте также: