О радиации, как главном «препятствии» в освоении космоса. Какой вред космическая радиация наносит астронавтам

Одним из основных негативных биологических факторов космического пространства, наряду с невесомостью, является радиация. Но если ситуация с невесомостью на различных телах Солнечной системы (например, на Луне или Марсе) будет лучше, чем на МКС, то с радиацией дела обстоят сложнее.

По своему происхождению космическое излучение бывает двух типов. Оно состоит из галактических космических лучей (ГКЛ) и тяжелых положительно заряженных протонов, исходящих от Солнца. Эти два типа излучения взаимодействуют друг с другом. В период солнечной активности интенсивность галактических лучей уменьшается, и наоборот. Наша планета защищена от солнечного ветра магнитным полем. Несмотря на это, часть заряженных частиц достигает атмосферы. В результате возникает явление, известное как полярное сияние. Высокоэнергетические ГКЛ почти не задерживаются магнитосферой, однако они не достигают поверхности Земли в опасном количестве благодаря ее плотной атмосфере. Орбита МКС находится выше плотных слоев атмосферы, однако внутри радиационных поясов Земли. Из-за этого уровень космического облучения на станции намного выше, чем на Земле, но существенно ниже, чем в открытом космосе. По своим защитным свойствам атмосфера Земли приблизительно эквивалентна 80-сантиметровому слою свинца.

Единственным достоверным источником данных о дозе излучения, которую можно получить во время длительного космического перелета и на поверхности Марса, является прибор RAD на исследовательской станции Mars Science Laboratory, более известной как Curiosity. Чтобы понять, насколько точны собранные им данные, давайте для начала рассмотрим МКС.

В сентябре 2013 года в журнале Science была опубликована статья, посвященная результатам работы инструмента RAD. На сравнительном графике, построенном Лабораторией реактивного движения НАСА (организация не связана с экспериментами, проводимыми на МКС, но работает с инструментом RAD марсохода Curiosity), указано, что за полгода пребывания на околоземной космической станции человек получает дозу излучения, примерно равную 80 мЗв (миллизиверт). А вот в издании Оксфордского университета от 2006 года (ISBN 978-0-19-513725-5) говорится, что в сутки космонавт на МКС получает в среднем 1 мЗв, т. е. полугодовая доза должна составить 180 мЗв. В результате мы видим огромный разброс в оценке уровня облучения на давно изученной низкой орбите Земли.

Основные солнечные циклы имеют период 11 лет, и, поскольку ГКЛ и солнечный ветер взаимосвязаны, для статистически надежных наблюдений нужно изучить данные о радиации на разных участках солнечного цикла. К сожалению, как говорилось выше, все имеющиеся у нас данные о радиации в открытом космосе были собраны за первые восемь месяцев 2012 года аппаратом MSL на его пути к Марсу. Информация о радиации на поверхности планеты накоплена им же за последующие годы. Это не значит, что данные неверны. Просто нужно понимать, что они могут отражать лишь характеристики ограниченного периода времени.

Последние данные инструмента RAD были опубликованы в 2014 году. Как сообщают ученые из Лаборатории реактивного движения НАСА, за полгода пребывания на поверхности Марса человек получит среднюю дозу излучения около 120 мЗв. Эта цифра находится посередине между нижней и верхней оценками дозы облучения на МКС. За время перелета к Марсу, если он также займет полгода, доза облучения составит 350 мЗв, т. е. в 2-4,5 раза больше, чем на МКС. За время полета MSL пережил пять вспышек на Солнце умеренной мощности. Мы не знаем наверняка, какую дозу облучения получат космонавты на Луне, поскольку во времена программы «Аполлон» не проводились эксперименты, изучавшие отдельно космическую радиацию. Ее эффекты изучались лишь совместно с эффектами других негативных явлений, таких как влияние лунной пыли. Тем не менее, можно предположить, что доза будет выше, чем на Марсе, поскольку Луна не защищена даже слабой атмосферой, но ниже, чем в открытом космосе, т. к. человек на Луне будет облучаться только «сверху» и «с боков», но не из-под ног./

В заключение можно отметить, что радиация – это та проблема, которая обязательно потребует решения в случае колонизации Солнечной системы. Однако широко распространенное мнение, что радиационная обстановка за пределами магнитосферы Земли не позволяет совершать длительные космические полеты, просто не соответствует действительности. Для полета к Марсу придется установить защитное покрытие либо на весь жилой модуль космического перелетного комплекса, либо на отдельный особо защищенный «штормовой» отсек, в котором космонавты смогут пережидать протонные ливни. Это не значит, что разработчикам придется использовать сложные антирадиационные системы. Для существенного снижения уровня облучения достаточно теплоизоляционного покрытия, которое применяют на спускаемых аппаратах космических кораблей для защиты от перегрева при торможении в атмосфере Земли.

Космическая лента

Кто же не мечтал о полётах в космос, даже зная, что такое космическая радиация? Хотя бы на орбиту Земли или на Луну улететь, а ещё лучше - подальше, на Орион какой-нибудь. На самом деле, человеческий организм очень мало приспособлен к подобным путешествиям. Даже при полёте на орбиту космонавты сталкиваются со многими опасностями, угрожающими их здоровью, а иногда и жизни. Все смотрели культовый сериал "Звёздный путь". Один из замечательных персонажей там дал очень точную характеристику такому явлению, как космическая радиация. "Это опасности и болезни во тьме и безмолвии" - сказал Леонард Маккой, он же Костлявый, он же Костоправ. Точнее выразиться очень трудно. Космическая радиация в путешествии сделает человека усталым, слабым, больным, страдающим от депрессии.

Ощущения в полёте

Человеческий организм к жизни в безвоздушном пространстве не приспособлен, поскольку эволюция не включала в свой арсенал такие способности. Об этом написаны книги, этот вопрос во всех подробностях изучается медициной, созданы во всём мире центры, исследующие проблемы медицины в космосе, в экстремальных условиях, на больших высотах. Конечно, забавно смотреть, как улыбается на экране космонавт, вокруг которого плавают в воздухе различные предметы. На самом деле, его экспедиция гораздо более серьёзна и чревата последствиями, чем представляется простому жителю с Земли, и здесь не только космическая радиация создаёт неприятности.

По просьбе журналистов астронавты, инженеры, учёные, на собственном опыте испытавшие всё, что происходит с человеком в космосе, рассказали о последовательности разнообразных новых ощущений в чуждой для организма искусственно созданной среде. Буквально через десять секунд после начала полёта неподготовленный человек теряет сознание, потому что ускорение космического аппарата возрастает, отделяя его от пускового комплекса. Человек пока не так сильно, как в открытом космосе, ощущает космические лучи - радиация поглощается атмосферой нашей планеты.

Основные неприятности

Но хватает и перегрузок: человек становится раза в четыре тяжелее собственного веса, в кресло его буквально вдавливает, даже рукой пошевелить трудно. Все видели эти специальные кресла, например, в космическом аппарате "Союз". Но не все поняли, почему у космонавта такая странная поза. Однако она необходима, потому что перегрузки отправляют почти всю кровь в организме вниз, в ноги, и мозг остаётся без кровоснабжения, отчего и случаются обмороки. Но изобретённое в Советском Союзе кресло помогает избежать хотя бы этой неприятности: поза с приподнятыми ногами заставляет кровь снабжать кислородом все участки головного мозга.

Через десять минут после начала полёта отсутствие гравитации заставит человека почти утратить чувство равновесия, ориентацию и координацию в пространстве, человек даже движущиеся объекты может не отследить. Его тошнит и рвёт. То же самое могут вызвать и космические лучи - радиация здесь уже значительно сильнее, а если случается выброс плазмы на солнце, угроза жизни космонавтов на орбите реальна, даже пассажиры авиалайнеров могут пострадать в полёте на большой высоте. Изменяется зрение, случаются отёк и изменения на сетчатке глаз, глазное яблоко деформируется. Человек становится слабым и не может выполнять задачи, которые перед ним стоят.

Загадки

Однако время от времени люди ощущают и на Земле высокую космическую радиацию, им для этого совершенно не обязательно бороздить космические просторы. Нашу планету постоянно бомбардируют лучи космического происхождения, и учёные предполагают, что далеко не всегда наша атмосфера обеспечивает достаточную защиту. Есть множество теорий, которые наделяют эти энергетические частицы такой силой, которая значительно ограничивает шансы планет на возникновение жизни на них. Во многом природа этих космических лучей всё ещё является для наших учёных неразрешимой загадкой.

Субатомные заряженные частицы в космосе движутся практически со скоростью света, их уже зарегистрировали неоднократно и на спутниках, и даже на Это ядра химических элементов, протоны, электроны, фотоны и нейтрино. Также не исключается присутствие в атаке космической радиации частиц - тяжёлой и сверхтяжёлой. Если бы удалось их обнаружить, был бы разрешён целый ряд противоречий в космологических и астрономических наблюдениях.

Атмосфера

Что нас защищает от космической радиации? Только наша атмосфера. Угрожающие гибелью всему живому космические лучи сталкиваются в ней и генерируют потоки других частиц - безвредных, в том числе и мюонов, значительно более тяжёлых родственников электронов. Потенциальная опасность всё-таки существует, поскольку некоторые частицы достигают поверхности Земли и проникают на многие десятки метров в её недра. Уровень радиации, который получает любая планета, показывает пригодность или непригодность её для жизни. Высокая которую несут с собой космические лучи, намного превышает излучение от собственной звезды, потому что энергия протонов и фотонов, например, нашего Солнца - ниже.

А с высокой жизнь невозможна. На Земле эта доза контролируется силой магнитного поля планеты и толщиной атмосферы, именно они значительно уменьшают опасность космической радиации. Например, на Марсе вполне могла бы быть жизнь, но атмосфера там ничтожно мала, собственного магнитного поля нет, а значит нет и защиты от космических лучей, которые пронизывают весь космос. Уровень радиации на Марсе огромен. А влияние космической радиации на биосферу планеты таково, что всё живое на ней погибает.

Что важнее?

Нам повезло, у нас есть и толща атмосферы, окутывающая Землю, и собственное достаточно мощное магнитное поле, поглощающее зловредные частицы, долетевшие до земной коры. Интересно, чья защита для планеты работает активнее - атмосферы или магнитного поля? Исследователи экспериментируют, создавая модели планет, снабжая их магнитным полем или не снабжая. И само магнитное поле отличается у этих моделей планет по силе. Ранее учёные были уверены, что именно оно является главной защитой от космической радиации, поскольку контролируют её уровень на поверхности. Однако обнаружилось, что количество облучения определяет в большей степени толщина атмосферы, которая укрывает планету.

Если на Земле "отключить" магнитное поле, доза облучения вырастет всего в два раза. Это очень много, но даже на нас отразится довольно малоощутимо. А если оставить магнитное поле и убрать атмосферу до одной десятой общего её количества, тогда доза возрастёт убийственно - на два порядка. Страшная космическая радиация убьёт на Земле всё и вся. Наше Солнце - желтая карликовая звезда, именно вокруг них планеты считаются основными претендентами на обитаемость. Это звёзды относительно тусклые, их много, около восьмидесяти процентов от общего количества звёзд в нашей Вселенной.

Космос и эволюция

Теоретики подсчитали, что такие планеты на орбитах желтых карликов, которые находятся в зонах, пригодных для жизни, имеют гораздо более слабые магнитные поля. Особенно этим отличаются так называемые супер-Земли - большие скалистые планеты массой в десять раз больше нашей Земли. Астробиологи были уверены, что слабость магнитных полей значительно снижает шансы на пригодность для жизни. И теперь новые открытия говорят о том, что это не настолько масштабная проблема, как привыкли думать. Главное - была бы атмосфера.

Учёными всесторонне изучается влияние возрастающего излучения на существующие живые организмы - животных, а также на разнообразные растения. Связанные с радиацией исследования заключаются в том, что их подвергают облучению в разной степени, от малых до предельных, и затем определяют - выживут ли они и насколько иначе будут себя чувствовать, если выживут. Микроорганизмы, на которые влияет постепенно возрастающая радиация, возможно, покажут нам, как происходила на Земле эволюция. Именно космические лучи, высокая радиация их когда-то заставили будущего человека слезть с пальмы и заняться изучением космоса. И больше уже никогда человечество на деревья не вернётся.

Космическая радиация 2017 года

В начале сентября 2017-го вся наша планета была сильно встревожена. Солнце внезапно выбросило тонны солнечного вещества после слияния двух больших групп тёмных пятен. И этот выброс сопровождался вспышками класса Х, которые заставили магнитное поле планеты работать буквально на износ. Последовала большая магнитная буря, вызвавшая недомогания у многих людей, а также исключительно редкие, практически небывалые природные явления на Земле. Например, под Москвой и в Новосибирске были зафиксированы мощные картины северного сияния, никогда не бывавшие в этих широтах. Однако красота таких явлений не заслонила последствия убийственной солнечной вспышки, пронизавшей планету космической радиацией, которая оказалась по-настоящему опасна.

Мощность её была близка к максимальной, Х-9,3, где буква - класс (экстремально большая вспышка), а число - сила вспышки (из десяти возможных). Вместе с этим выбросом появилась угроза отказа систем космической связи и всей техники, находящейся на Космонавты были вынуждены пережидать этот поток страшной космической радиации, которую несут космические лучи, в специальном убежище. Качество связи в эти двое суток значительно ухудшилось и в Европе, и в Америке, именно там, куда был направлен поток заряженных частиц из космоса. Примерно за сутки до момента, когда частицы достигли поверхности Земли, было сделано предупреждение о космической радиации, которое прозвучало на всех континентах и в каждой стране.

Мощь Солнца

Энергия, выбрасываемая нашим светилом в окружающее космическое пространство, поистине огромна. В течение нескольких минут в космос улетают многие миллиарды мегатонн, если считать в тротиловом эквиваленте. Человечество столько энергии сможет выработать современными темпами только за миллион лет. Всего лишь пятая часть всей энергии, излучаемой Солнцем в секунду. И это наш маленький и не слишком горячий карлик! Если только представить себе, сколько губительной энергии вырабатывают остальные источники космической радиации, рядом с которыми наше Солнышко покажется практически невидимой песчинкой, голова пойдёт кругом. Какое счастье, что у нас хорошее магнитное поле и отличная атмосфера, которые не дают нам погибнуть!

Люди ежедневно подвергаются такой опасности, поскольку радиоактивное излучение в космосе никогда не иссякает. Именно оттуда к нам приходит большая часть радиации - из чёрных дыр и от скоплений звёзд. Она способна убивать при большой дозе облучения, а при малой - делать из нас мутантов. Однако нужно помнить и то, что эволюция на Земле произошла благодаря таким потокам, радиация изменила структуру ДНК до того состояния, которое мы наблюдаем сегодня. Если же перебрать этого "лекарства", то есть, если испускаемая звёздами радиация превысит допустимые отметки, процессы будут необратимы. Ведь если существа мутируют, к первоначальному состоянию они уже не вернутся, нет здесь никакого обратного эффекта. Поэтому мы уже никогда не увидим те живые организмы, которые присутствовали в новорождённой на Земле жизни. Любой организм пытается подстроиться под изменения, происходящие в окружающей среде. Или погибает, или подстраивается. Но обратной дороги нет.

МКС и солнечная вспышка

Когда Солнце послало нам свой приветик с потоком заряженных частиц, МКС как раз проходила между Землёй и светилом. Высокоэнергичные протоны, высвобожденные при взрыве, создали абсолютно нежелательный радиационный фон в пределах станции. Эти частицы пробивают насквозь совершенно любой космический корабль. Тем не менее, космическую технику это излучение пощадило, поскольку удар был мощным, но слишком коротким, чтобы вывести её из строя. Однако экипаж всё это время прятался в специальном укрытии, потому что человеческий организм гораздо уязвимее современной техники. Вспышка была не одна, они шли целой серией, а началось всё это 4 сентября 2017 года, чтобы 6 сентября потрясти космос экстремальным выбросом. За последние двенадцать лет более сильного потока на Земле ещё не наблюдали. Облако плазмы, которое выбросило Солнце, настигло Землю гораздо раньше намеченного срока, значит, скорость и мощность потока превысили ожидаемую в полтора раза. Соответственно и удар по Земле был гораздо более сильным, чем рассчитывали. На двенадцать часов облако опередило все расчёты наших учёных, и соответственно сильнее возмутило магнитное поле планеты.

Мощность магнитной бури получилась на оценку четыре из пяти возможных, то есть - в десять раз больше предполагаемой. В Канаде полярные сияния тоже наблюдались даже в средних широтах, как и в России. Планетарного характера магнитная буря случилась на Земле. Можно себе представить, что там творилось в космосе! Радиация - самая значительная опасность из всех там существующих. Защита от неё нужна немедленно, как только космический корабль покидает верхние слои атмосферы и оставляет далеко внизу магнитные поля. Потоки незаряженных и заряженных частиц - радиационное излучение - постоянно пронизывают космос. Такие же условия нас ждут на любой планете Солнечной системы: магнитного поля и атмосферы на наших планетах нет.

Виды радиации

В космосе самой опасной считается ионизирующая радиация. Это гамма-излучение и рентгеновские лучи Солнца, это частицы, летящие после хромосферных солнечных вспышек, это внегалактические, галактические и солнечные космические лучи, солнечный ветер, протоны и электроны радиационных поясов, альфа-частицы и нейтроны. Есть и неионизирующая радиация - это ультрафолетовое и инфракрасное излучения от Солнца, это электромагнитное излучение и видимый свет. В них большой опасности нет. Нас защищает атмосфера, а космонавта - скафандр и обшивка корабля.

Ионизирующая радиация же доставляет непоправимые беды. Это вредное действие на все жизненные процессы, которые протекают в человеческом организме. Когда частица высокой энергии или фотон проходят через вещество, находящееся на их пути, они образуют в результате взаимодействия с этим веществом пару заряженных частиц - ион. Даже на неживом веществе это сказывается, а живое реагирует наиболее бурно, поскольку организация высокоспециализированных клеток требует обновления, и процесс этот, покуда жив организм, происходит динамически. И чем выше уровень эволюционного развития организма, тем более необратимым получается радиационное поражение.

Защита от облучения

Учёные ищут такие средства в самых разных областях современной науки, в том числе и в фармакологии. Пока что ни один препарат эффективных результатов не даёт, и подвергшиеся радиационному облучению люди продолжают погибать. Эксперименты проводятся на животных и на земле, и в космосе. Единственное, что стало понятно, - это то, что любой препарат должен быть принят человеком до начала облучения, а не после.

А если учесть, что все такие лекарства токсичны, то можно считать, что борьба с последствиями радиации пока ни к одной победе не привела. Даже если фармакологические средства приняты вовремя, они обеспечивают защиту только от гамма-излучения и рентгеновских лучей, но не защищают от ионизирующего излучения протонов, альфа-частиц и быстрых нейтронов.

Такое понятие как солнечная радиация стало известным довольно-таки давно. Как показали многочисленные исследования, оно далеко не всегда виновно в повышении уровня ионизации воздуха.

Данная статья предназначена для лиц старше 18 лет

А вам уже исполнилось 18?

Космическая радиация: правда или миф?

Космические лучи — это излучение, которое появляется при взрыве сверхновой звезды, а также как следствие термоядерных реакций на Солнце. Разная природа происхождения лучей влияет и на их основные характеристики. Космические лучи, которые проникают из космоса вне нашей Солнечной системы условно можно поделить на два вида — галактические и межгалактические. Последний вид остается наименее изученным, так как концентрация первичной радиации в нем минимальна. То есть особого значения межгалактическое излучение не имеет, так как полностью нейтрализуется в нашей атмосфере.

К сожалению, так же немного можно сказать и о лучах, пришедших к нам из нашей галактики под названием Млечный Путь. Несмотря на то, что ее размер превышает 10000 световых лет, любые изменения радиационного поля в одном конце галактики немедленно аукнутся в другом.

Опасность радиации из космоса

Прямая космическая радиация губительна для живого организма, поэтому ее влияние крайне опасно для человека. К счастью, наша Земля надежно защищена от этих космических пришельцев плотным куполом из атмосферы. Он служит прекрасной защитой всего живого на земле, так как нейтрализует прямую космическую радиацию. Но не полностью. При столкновении с воздухом она распадается на более мелкие частички ионизирующего излучения, каждая из которых вступает в индивидуальную реакцию с его атомами. Таким образом, высокоэнергетическое излучение из космоса ослабевает, и образует вторичное излучение. При этом оно теряет свою смертоносность — уровень радиации становится приблизительно таким же, как и в рентгеновских лучах. Но пугаться не стоит — это излучение полностью исчезает во время прохождения через атмосферу Земли. Какими бы ни были источники космических лучей, и какую мощь они бы не имели — опасность для человека, который находится на поверхности нашей планеты, минимальна. Ощутимый вред она может принести только космонавтам. Они подвержены прямому космическому излучению, так как не имеют естественной защиты в виде атмосферы.



Энергия, выделяемая космическими лучами, в первую очередь влияет на магнитное поле Земли. Заряженные ионизирующие частицы буквально бомбардируют его и становятся причиной самого красивого атмосферного явления — . Но это еще не все — радиоактивные частицы, в виду своей природы, способны вызывать сбои в работе различной электроники. И если в прошлом веке это не вызывало особого дискомфорта, то в наше время это весьма серьезная проблема, так как на электрике завязаны самые важные аспекты современной жизни.

Люди также восприимчивы к этим гостям из космоса, хотя механизм воздействия космических лучей весьма специфичен. Ионизированные частички (то есть вторичное излучение) воздействует на магнитное поле Земли, вызывая тем самым бури в атмосфере. Всем известно, что организм человека состоит из воды, которая очень восприимчива к магнитным колебаниям. Таким образом, космическое излучение влияет на сердечнососудистую систему, и становится причиной плохого самочувствия у метеозависимых людей. Это, конечно же, неприятно, но отнюдь не смертельно.

Что защищает Землю от солнечной радиации?

Солнце — это звезда, в недрах которой постоянно проходят разнообразные термоядерные реакции, которые сопровождаются сильными энергетическими выбросами. Эти заряженные частицы называются солнечный ветер и достаточно сильно влияют на нашу Землю, вернее на ее магнитное поле. Именно с ним взаимодействуют ионизированные частицы, которые составляют основу солнечного ветра.

Согласно новейшим исследованиям ученых со всего мира, особую роль в нейтрализации солнечного ветра отыгрывает плазменная оболочка нашей планеты. Происходит это следующим образом: солнечное излучение сталкивается с магнитным полем Земли и рассеивается. Когда его слишком много, удар на себя принимает плазменная оболочка, происходит процесс взаимодействия, схожий с коротким замыканием. Следствием такой борьбы могут стать трещины в защитном щите. Но природа и это предусмотрела — потоки холодной плазмы поднимаются с поверхности Земли и устремляются в места ослабленной защитой. Таким образом, магнитное поле нашей планеты отражает удар из космоса.

Но стоит констатировать тот факт, что солнечная радиация, в отличие от космической, все же попадает на Землю. При этом не стоит переживать понапрасну, ведь по сути это энергия Солнца, которая должна попадать на поверхность нашей планеты в рассеянном состоянии. Таким образом, она нагревает поверхность Земли и помогает развивать жизнь на ней. Так, стоит четко разграничивать разные виды радиации, ведь некоторые из них не только не имеют негативного воздействия, но и необходимы для нормального функционирования живых организмов.

Однако на Земле далеко не все вещества одинаково восприимчивы к солнечной радиации. Существуют поверхности, которые больше других поглощают ее. Это, как правило, подстилающие поверхности с минимальным уровнем альбедо (способность к отражению солнечной радиации) — это земля, лес, песок.

Таким образом, температура на поверхности Земли, а также продолжительность светового дня напрямую зависит от того, какое количество солнечной радиации поглощает атмосфера. Хочется сказать, что основной объем энергии все же доходит до поверхности нашей планеты, ведь воздушная оболочка Земли служит преградой лишь для лучей инфракрасного спектра. А вот УФ лучи нейтрализуются лишь частично, что приводит к некоторым проблемам с кожными покровами у людей и животных.

Влияние солнечной радиации на организм человека

При воздействии лучей инфракрасного спектра солнечной радиации однозначно проявляется тепловой эффект. Он способствует расширению сосудов, стимуляции работы сердечнососудистой системы, активизирует кожное дыхание. Как следствие происходит расслабление основных систем организма, усиливается выработка эндорфинов (гормонов счастья), обладающих болеутоляющим и противовоспалительным эффектом. Тепло также влияет на обменные процессы, активизируя метаболизм.

Световое излучение солнечной радиации оказывает значительное фотохимическое воздействие, которое активизирует важные процессы в тканях. Этот вид солнечной радиации позволяет человеку использовать одну из самых важных систем осязания внешнего мира — зрение. Именно этим квантам мы должны быть благодарны за то, что видим все в красках.

Важные факторы влияния

Солнечное излучение инфракрасного спектра также стимулирует мозговую деятельность и отвечает за психическое здоровье человека. Немаловажно и то, что именно этот вид солнечной энергии влияет на наши биологические ритмы, то есть на фазы активной деятельности и сна.

Без световых частиц многие жизненно важные процессы оказались бы под угрозой, что чревато развитием различных заболеваний, в том числе бессонницы и депрессии. Так же при минимальном контакте со световой солнечной радиацией существенно снижается трудоспособность человека, а также замедляется большинство процессов в организме.

УФ-излучение достаточно полезно для нашего организма, так как оно запускает также иммунологические процессы, то есть стимулирует защитные силы организма. Также оно нужно для выработки порфирита — аналога растительного хлорофилла в нашей коже. Однако избыток УФ-лучей может привести к ожогам, поэтому очень важно знать, как правильно защититься от этого в период максимальной солнечной активности.

Как видите, польза солнечной радиации для нашего организма несомненна. Многие очень переживают, впитывает ли еда этот вид радиации и не опасно ли есть зараженные продукты. Повторюсь — солнечная энергия не имеет ничего общего с космическим или атомным излучением, а значит, и опасаться ее не стоит. Да и было бы бессмысленно избегать ее... Способа того, как спастись от Солнца никто пока не искал.

Космос радиоактивен. Укрыться от радиации просто невозможно. Представьте себе, что вы стоите посреди песчаной бури, и вокруг вас постоянно кружит водоворот из мелких камешков, которые ранят вашу кожу. Примерно так выглядит космическая радиация. И эта радиация наносит немалый вред. Но проблема в том, что в отличие от камушков и кусочков земли ионизирующее излучение не отскакивает от человеческой плоти. Оно проходит сквозь нее, как пушечное ядро пробивает насквозь здание. И эта радиация наносит немалый вред.

На прошлой неделе ученые из медицинского центра при университете города Рочестера опубликовали результаты исследования, свидетельствующие о том, что длительное воздействие галактической радиации, которому могут подвергнуться астронавты, отправившиеся на Марс, способно повысить риск заболевания болезнью Альцгеймера.

Читая сообщения СМИ об этом исследовании, я начала любопытствовать. Мы отправляем людей в космос уже более полувека. Мы имеем возможность следить за целым поколением астронавтов - как эти люди старятся и умирают. И мы постоянно отслеживаем состояние здоровья тех, кто сегодня летает в космос. Научные работы, подобные осуществленным в университете Рочестера, проводятся на лабораторных животных, таких, как мыши и крысы. Они призваны помочь нам подготовиться к будущему. Но что мы знаем о прошлом? Повлияла ли радиация на людей, которые уже побывали в космосе? Как она воздействует на находящихся на орбите в данный момент?

Существует одно ключевое отличие астронавтов сегодняшнего дня от астронавтов будущего. Отличие это - сама Земля.

Галактическое космическое излучение, называемое иногда космической радиацией, это как раз то, что вызывает наибольшую тревогу у исследователей. Оно состоит из частиц и кусочков атомов, которые могли появиться в результате образования сверхновой звезды. Большая часть этого излучения, примерно 90%, состоит из протонов, оторванных от атомов водорода. Эти частицы летят через галактику почти что со скоростью света.

А потом они наносят удар по Земле. У нашей планеты имеется пара защитных механизмов, укрывающих нас от воздействия космической радиации. Во-первых, магнитное поле Земли отталкивает некоторые частицы, а некоторые полностью блокирует. Преодолевшие данный барьер частицы начинают сталкиваться с атомами, находящимися в нашей атмосфере.

Если вы сбросите вниз с лестницы большую башню, построенную из деталей конструктора «Лего», она разлетится на мелкие куски, которые будут отлетать от нее на каждой новой ступеньке. Примерно то же самое происходит в нашей атмосфере и с галактической радиацией. Частицы сталкиваются с атомами и распадаются на части, образуя новые частицы. Эти новые частицы снова обо что-нибудь ударяются и опять распадаются на части. С каждый шагом они теряют энергию. Частицы замедляются и постепенно слабеют. К тому времени, когда они «останавливаются» на поверхности Земли, у них уже нет того мощного запаса галактической энергии, какой они обладали прежде. Это излучение намного менее опасно. Маленькая деталь от «Лего» бьет намного слабее, чем собранная из них башня.

Всем тем астронавтам, которых мы отправляли в космос, защитные барьеры Земли во многом помогли, по крайней мере, частично. Об этом мне рассказал Фрэнсис Кучинотта (Francis Cucinotta). Он - научный руководитель программы НАСА по исследованию воздействия радиации на человека. Это как раз тот парень, который может рассказать, насколько вредна радиация для астронавтов. По его словам, за исключением полетов «Аполлона» на Луну, человек присутствует в космосе в пределах действия магнитного поля Земли. Международная космическая станция, например, находится выше атмосферы, но все равно в глубине первого эшелона обороны. Наши астронавты не подвергаются в полной мере воздействию космического излучения.

Кроме того, под таким воздействием они находятся довольно непродолжительное время. Самый длительный полет в космос продолжался чуть больше года. А это важно, потому что ущерб от радиации имеет кумулятивное действие. Ты рискуешь гораздо меньше, когда шесть месяцев проводишь на МКС, чем когда отправляешься (пока теоретически) в многолетнее путешествие на Марс.

Но интересно и довольно тревожно то, сказал мне Кучинотта, что даже имея все эти механизмы защиты, мы наблюдаем, как излучение негативно воздействует на астронавтов.

Очень неприятная вещь это катаракта - изменения в хрусталике глаза, вызывающие его помутнение. Поскольку через мутный хрусталик в глаз человека попадает меньше света, больные катарактой люди хуже видят. В 2001 году Кучинотта с коллегами изучил данные продолжающегося исследования состояния здоровья астронавтов и пришел к следующему выводу. Астронавты, подвергшиеся большей дозе радиации (потому что они совершили больше полетов в космос или из-за специфики их миссий*) имели больше шансов на развитие у них катаракты, чем те, у кого доза облучения была ниже.

Наверняка существует также повышенная опасность заболевания раком, хотя количественно и точно такую опасность проанализировать трудно. Дело в том, что у нас нет данных эпидемиологов о том, какому типу радиации подвергаются астронавты. Мы знаем количество заболевших раком после атомной бомбардировки Хиросимы и Нагасаки, однако эта радиация несопоставима с галактическим излучением. В частности, Кучинотту больше всего беспокоят ионы ВВЧ - высокоатомных высокоэнергетических частиц.

Это очень тяжелые частицы, и перемещаются они очень быстро. На поверхности Земли мы не испытываем на себе их воздействие. Их отсеивают, тормозят и разбивают на части защитные механизмы нашей планеты. Однако ионы ВВЧ могут наносить больший вред и вред более разнообразный, чем то излучение, с которым радиологи хорошо знакомы. Мы знаем об этом, потому что ученые сравнивают пробы крови астронавтов до и после полета в космос.

Кучинотта называет это предполетной поверкой. Ученые берут образец крови у астронавта перед отправлением на орбиту. Когда астронавт находится в космосе, ученые делят взятую кровь на части и подвергают ее воздействию гамма-излучения различной степени. Это вроде той вредной радиации, с которой мы порой сталкиваемся на Земле. Затем, когда астронавт возвращается, они сравнивают эти подвергнутые гамма-излучению образцы крови с тем, что реально произошло с ним в космосе. «Мы отмечаем двух- трехкратную разницу у разных астронавтов», - сказал мне Кучинотта.

Даже если бы межпланетные полеты были реальностью, ученые все чаще говорят о том, что человеческий организм с чисто биологической точки зрения поджидают все больше опасностей. Одной из главных опасностей специалисты называют жесткое космическое радиационное излучение. На других планетах, например на том же Марсе, это излучение будет таким, что оно в разы ускорит наступление болезни Альцгеймера.

"Космическое излучение представляет собой очень значительную угрозу для будущих космонавтов. Возможность того, что космическое радиационное облучение может привести к возникновению проблем со здоровьем, таких как рак, уже давно признана", - говорит Керри О"Банион, доктор неврологии из Медицинского центра при Университете Рочестера. "Наши опыты также достоверно установили, что жесткое излучение также провоцирует ускорение изменений в головном мозге, связанных с болезнью Альцгеймера".

По словам ученых, все космическое пространство буквально пронизано радиационным излучением, тогда как толстая земная атмосфера защищает нашу планету от него. Влияние радиации на себе могут ощутить уже и участники кратковременных полетов на МКС, хотя формально они находятся на низкой орбите, где защитный купол земной гравитации еще работает. Особенно активно радиационное излучение работает в те моменты, когда на Солнце происходят вспышки с последующими выбросами радиационных частиц.

Ученые говорят, что уже сейчас в НАСА вплотную работает над различными подходами, связанными с защитой человека от космической радиации. Впервые космическое ведомство начало финансирование "радиационных исследований" еще 25 лет назад. Сейчас значительная часть инициатив в этой области связана с исследованиями на предмет того, как уберечь будущих марсонавтов от жесткой радиации на Красной планете, где нет такого же атмосферного купола, как на Земле.

Уже сейчас специалисты говорят с очень большой вероятностью о том, что марсианская радиация провоцирует онкологические заболевания. Еще большие объемы излучения есть вблизи астероидов. Напомним, что миссию на астероид с участием человека НАСА планирует на 2021 год, а на Марс - не позже 2035 года. Полет на Марс и обратно с некоторым пребыванием там может занять около трех лет.

Как рассказали в НАСА, сейчас доказано, что космическая радиация провоцирует, помимо рака, также заболевания сердечно-сосудистой системы, костно-мышечной и эндокринной. Сейчас же специалисты из Рочестера выявили и еще один вектор опасности: в рамках исследований было установлено, что высокие дозы космической радиации провоцируют заболевания связанные с нейродегенерацией, в частности активируют процессы, которые способствуют развитию болезни Альцгеймера. Также специалисты изучили то, как космическая радиация влияет на центральную нервную систему человека.

Специалисты на основании опытов установили, что радиоактивные частицы в космосе имеют в своей структуре ядра атомов железа, которые имеют феноменальную проникающую способность. Именно поэтому защититься от них удивительно трудно.

На Земле исследователи проводили симуляцию космической радиации в американской Брукхевенской национальной лаборатории на Лонг-Айленде, где находится специальный ускоритель элементарных частиц. В процессе экспериментов исследователи определили, сроки, в течение которых болезнь возникает и прогрессирует. Впрочем, пока исследователи проводили эксперименты на лабораторных мышах, подвергая их дозам радиации, сопоставимых с теми, что получили бы люди во время полета на Марс. После опытов практически все мыши получили нарушения в работе когнитивной системы головного мозга. Также были отмечены нарушения в работе сердечно-сосудистой системы. В головном мозге выявлены очаги накопления бета-амилоида - белка, который является верным признаком надвигающейся болезни Альцгеймера.

Ученые говорят, что они пока не знают, как побороть космическую радиацию, но они уверены, что радиация - это тот фактор, который заслуживает самого серьезного внимания при планировании будущих космических полетов.

Читайте также: