Развитие нервной системы. Основные этапы развития нервной системы

второе высшее образование "психология" в формате MBA

предмет: Анатомия и эволюция нервной системы человека.

Методичка "Анатомия центральной нервной системы"

1) Введение
2)


Введение


Курс «Анатомия центральной нервной системы» предназначен для создания у студентов необходимой основы последующего изучения психологии. В результате его освоения будущие психологи должны четко уяснить неразрывную взаимосвязь структуры и функции, а также знать основные морфологические субстраты, ответственные за проявление психологических явлений. Таким образом, основная задача курса «Анатомия центральной нервной системы» — это формирование целостного представления о строении материальной основы психики — центральной нервной системы.

При написании данного курса авторы применяли несколько подходов: эволюционный, морфофизиологический и интегративный. Первый подход рассматривает мозг человека как продукт двоякого развития — в филогенезе и онтогенезе, причем оба эти процесса связаны воедино в биогенетическом законе. Эволюционный подход способствует созданию естественнонаучной основы для формирования у студентов целостного мировоззрения, которое позволяет понять феномены специфического поведения людей в обществе.

Морфофизиологический подход предполагает достаточно четкую детерминированную связь между нервными структурами и психическими функциями, за которые эти структуры отвечают, причем это касается не только таких простейших психических явлений, какими являются ощущения, но и более сложных психических феноменов: памяти, мышления и речи.

Третьим методическим приемом в этой работе является интегративный подход, показывающий организацию человека в виде сложной, иерархически устроенной, саморегулирующейся системы, которая обладает большими адаптационными возможностями благодаря накоплению повой информации центральной нервной системой. Изложение материала этого курса строится по принципу целостности и иерархичности нервной системы, начиная с клеточного уровня и завершая наиболее сложным этажом центральной нервной системы — корой больших полушарий, которая является материальным субстратом психики человека. Учебно-методический комплекс составлен на основе требований Государственного образовательного стандарта высшего профессионального образования. Студент, изучивший курс «Анатомия центральной нервной системы», должен иметь:

1) общее представление о:
. процессах филогенеза и онтогенеза центральной нервной системы человека на основе эволюционного подхода;
. методах, которые используются для изучения анатомии человека на всех уровнях — от микроскопического до макроскопического;
. микроструктуре нервной ткани и строении нервных клеток;
. функциях основных нервных центров головного мозга;
2) конкретные знания:
. структурной организации спинного мозга;
. основных отделов головного мозга;
. основных проводящих путей центральной нервной системы;
. черепно-мозговых нервов;
. сравнительной структурной организации соматической и вегетативной нервной системы;
3) умения:
. находить различные анатомические структуры на изображениях срезов головного мозга в анатомическом атласе;
. самому схематично нарисовать основные срезы головного мозга;
. указать порядок расположения черепных нервов;
. изобразить схему организации спинального соматического и вегетативного рефлекса.


Развитие ЦНС в фило- и онтогенезе


3.1. Филогенез центральной нервной системы


Под филогенезом (греч. рhylon — род, племя + genesis — зарождение, происхождение) понимается процесс исторического развития живой природы, отдельных групп организмов или органов и систем. Научной основой представлений о филогенезе является эволюционная теория. Схематически филогенез животных изображают в виде «филогенетического древа», отражающего пути эволюции организмов и родственные связи между ними (ствол соответствует примитивным формам организмов, ветви — всем последующим формам).

Впервые нервная система появляется у кишечнополостных животных. Нервная система кишечнополостных является диффузной , т. е. у них отсутствуют выраженные скопления нервных клеток, образующих более-менее равномерную сеть. Такая нервная система может организовывать только простые движения — например, гидра сжимается в комочек, если к ней прикоснуться иголкой. У медуз, в связи с их подвижным образом жизни, ожилась более совершенная нервная система: имеется скопление нервных клеток в виде кольца по краю зонтика. Также у медуз есть отолитовый аппарат (орган равновесия) и имеется функциональное разделение нейронов на две группы, отвечающие за плавательную и пищевую активность. Например, у медузы Аurelia под покровным эпителием находится сеть из мультиполярных нейронов, связанная с сенсорными клетками на поверхности и управляющая движениями при захвате пищи. Независимо от нее функционирует вторая нервная сеть, биполярные нейроны которой связаны с кольцевой и радиальной мускулатурой и вызывают ее ритмические сокращения при плавании.

У более высокоорганизованных животных нервные клетки располагаются более тесно друг к другу, образуя нервные узлы. Благодаря синаптическим контактам нервных клеток, образующих узлы, в них становится возможна обработка поступающей информации и выработка команд, поступающих к рабочим органам: железам и мышцам.

У плоских червей возникает билатеральная симметрия, соответственно, у них дифференцируется головной и хвостовой конец тела. К головному концу смещаются нервные элементы и органы чувств: тактильные рецепторы и хсморецепторы, а у свободноживущих червей — и световые рецепторы. Внешне нервная система этих животных напоминает лестницу: имеется несколько крупных ганглиев в головном конце тела и два (или больше) нервных ствола, соединенных друг с другом перемычками. Такая нервная система относится к лестничному типу.

У кольчатых червей обнаруживается симметричное строение тела и нервной системы, которая представлена двумя цепочками узлов, состоящих из нервных клеток и нервных волокон. У них впервые в процессе эволюции появляется нервная система узлового типа. В брюшной области узлы одной стороны соединяются с узлами другой стороны каждого сегмента, таким образом образуются своеобразные автономные «микропроцессоры», управляющие органами одного сегмента. Такое строение нервной системы обеспечивает высокую надежность жизнедеятельности кольчатых червей, что позволяет им сохранять жизнь даже при расчленении тела червя на несколько частей. Мощный надглоточный узел, соединенный с подглоточным узлом, а через него и с брюшными узлами, свидетельствует о зарождении центральной нервной системы у этих животных.

Узловая нервная система в процессе эволюции получила дальнейшее развитие у моллюсков и членистоногих. У моллюсков тело напоминает мышечный мешок, в котором обнаруживается нервных волокон, берущих начало от трех пар узлов. Цельные узлы являются сложным аппаратом и достигают наивысшего развития у головоногих моллюсков (кальмаров, осьминогов). Нервная система членистоногих (особенно насекомых) развивалась в направлении усложнения и усовершенствования различных функций. У некоторых видов насекомых (перепончатокрылых) не только нервная система, но и органы чувств достигают вершины развития среди беспозвоночных животных. Таким образом, нервная системау беспозвоночных способна не только обеспечивать различной сложности безусловно-рефлекторные двигательные акты, но и являться основой для некоторых форм научения.

У хордовых животных появляется «трубчатая» нервная система , образованная клетками эктодермы, которые формируют медуллярную трубку. Первоначально (у ланцетника) она не разделялась на головной и спинной мозг, но уже у круглоротых рыб это деление отмечается вполне отчетливо. Но мере эволюционного развития головной мозг все больше развивался, а внутри самого головного мозга все большее развитие получали отделы переднего мозга. Выход на сушу дал новый толчок и к развитию органов чувств, и к совершенствованию нервной системы у земноводных, а у рептилий впервые появляется кора конечного мозга. У птиц кора конечного мозга развита еще слабо, однако значительных размеров достигает полосатое тело, являющееся материальной основой высших форм нервной деятельности птиц. Наивысшего развития кора головного мозга и сам мозг получают у млекопитающих. Основное направление эволюции ЦНС этого класса заключается в усложнении межнейройных связей и увеличении количества нейронов. Наиболее сложные связи формируются в коре больших полушарий, которая, в свою очередь, дифференцируется по выполняемым функциям.

3.2. Онтогенез центральной нервной системы

Онтогенез (оntogenesis; греч. оп, ontos — сущее + genesis — зарождение, происхождение) — процесс индивидуального развития организма от момента его зарождения (зачатия) до смерти. В основе онтогенеза лежит цепь строго определенных последовательных биохимических, физиологических и морфологических изменений, специфичных для каждого из периодов индивидуального развития организма конкретного вида. В соответствии с этими изменениями выделяют:
эмбриональный (зародышевый, или пренатальный) - время от оплодотворения до рождения
постэмбриональный (послезародышевый, или постнатальный) периоды - от рождения до смерти:

Развитие ЦНС человека (по Ф.Булум А. Луйзерсонин и Л. Хофстендер, 1988):

Согласно биогенетическому закону, в онтогенезе нервная система повторяет этапы филогенеза. Вначале происходит диффереицировка зародышевых листков, затем из клеток эктодермалыюго зародышевого листка образуется мозговая, или медуллярная, пластинка. Ее края в результате неравномерного размножения ее клеток сближаются, а центральная часть, наоборот, погружается в тело зародыша. Затем края пластинки смыкаются — образуется медуллярная трубка:

Образование нервной трубки из эктодермы:

В дальнейшем из задней ее части, отстающей в росте, образуется спинной мозг, из передней, развивающейся более интенсивно, — головной мозг. Канал медуллярной трубки превращается в центральный канал спинного мозга и желудочки головного мозга.

Нервная трубка представляет собой эмбриональный зачаток всей нервной системы человека. Из нее в дальнейшем формируется головной и спинной мозг, а также периферические отделы нервной системы. При смыкании нервного желобка по бокам в области его приподнятых краев (нервных валиков) с каждой стороны выделяется группа клеток, которая по мере обособления нервной трубки от кожной эктодермы образует между нервными валиками и эктодермой сплошной слой — ганглиозную пластинку. Последняя служит исходным материалом для клеток чувствительных нервных узлов (сигнальных и краниальных) и узлов вегетативной нервной системы, иннервирующей внутренние органы.

Нервная трубка на ранней стадии своего развития состоит из одного слоя клеток цилиндрической формы, которые в дальнейшем интенсивно размножаются митозом и количество их увеличивается; в результате стенка нервной трубки утолщается. В этой стадии развития в ней можно выделить три слоя: внутренний эпендимный слой, характеризующийся активным митотическим делением клеток; средний слой - мантийный (плащевой), клеточный состав которого пополняется как за счет митотического деления клеток этого слоя, так и путем перемещения их из внутреннего эпендимного слоя; наружный слой, называемый краевой вуалью. Последний слой образуется отростками клеток двух предыдущих слоев. В дальнейшем клетки внутреннего слоя превращаются в эпендимоциты, выстилающие центральный канал спинного мозга. Клеточные элементы мантийного слоя дифференцируются в двух направлениях: часть их превращается в нейроны, другая часть — в глиальные клетки:

Схема дифференцировки нервной системы человека :

Вследствие интенсивного развития передней части медуллярной трубки образуются мозговые пузыри: вначале появляются два пузыря, затем задний пузырь делится еще на два. Образовавшиеся три пузыря дают начало переднему, среднему и ромбовидному мозгу. Впоследствии из переднего пузыря развиваются два пузыря, дающие начало конечному и промежуточному мозгу. А задний пузырь, в свою очередь, делится на два пузыря, из которых образуется задний мозг и продолговатый, или добавочный, мозг.

Таким образом, в результате деления нервной трубки и образования пяти мозговых пузырей с последующим их развитием формируются следующие отделы нервной системы:
передний мозг, состоящий из конечного и промежуточного мозга;
ствол мозга, включающий в себя ромбовидный и средний мозг.

Конечный, или большой, мозг представлен двумя полушариями (в него входят кора большого мозга, белое вещество, обонятельный мозг, базальные ядра).
К промежуточному мозгу относят эпиталамус, передний и задний тадамус, метапамус, гипоталамус.
Ромбовидный мозг состоит из продолговатого мозга и заднего, включающего в себя мост и мозжечок, средний мозг — из ножек мозга, покрышки и крышки среднего мозга. Из недифференцированной части медуллярной трубки развивается спинной мозг.
Полость конечного мозга образуют боковые желудочки, полость промежуточного мозга — III желудочек, среднего мозга - водопровод среднего мозга (сильвиев водопровод), ромбовидного мозга — IV желудочек и спинного мозга — центральный канал.

В дальнейшем идет быстрое развитие всей центральной нервной системы, но наиболее активно развивается конечный мозг, который начинает делиться продольной щелью большого мозга на два полушария. Затем на поверхности каждого из них появляются борозды, определяющие будущие доли и извилины.

На 4-м месяце развития плода человека появляется поперечная щель большого мозга, на 6-м — центральная борозда и другие главные борозды, в последующие месяцы — второстепенные и после рождения — самые мелкие борозды.

В процессе развития нервной системы важную роль играет миелинизация нервных волокон, в результате которой нервные волокна покрываются защитным слоем миелина и значительно вырастает скорость проведения нервных импульсов. К концу 4-го месяца внутриутробного развития миелин выявляется в нервных волокнах, составляющих восходящие, или афферентные (чувствительные), системы боковых канатиков спинного мозга, тогда как в волокнах нисходящих, или эфферентных (двигательных), систем миелин обнаруживается на 6-м месяце. Приблизительно в это же время наступает миелинизация нервных волокон задних канатиков. Миелинизация нервных волокон корково-спинномозговых путей начинается на последнем месяце внутриутробной жизни и продолжается в течение года после рождения. Это свидетельствуются о том, что процесс миелинизации нервных волокон распространяется вначале на филогенетически более древние, а затем — на более молодые структуры. От последовательности миелинизации определенных нервных структур зависит очередность формирования их функций. Формирование функции и также зависит и от дифференциации клеточных элементов и их постепенного созревания, которое длится в течение первого десятилетия.

В постнатальном периоде постепенно происходит окончательное созревание всей нервной системы, в частности ее самого сложного отдела — коры большого мозга, играющей особую роль в мозговых механизмах условно-рефлекторной деятельности, формирующейся с первых дней жизни. Еще один важный этап в онтогенезе это период полового созревания, когда проходит и половая дифференцировка мозга.

В течение всей жизни человека мозг активно изменяется, приспосабливаясь к условиям внешней и внутренней среды, часть этих изменений носит генетически запрограммированный характер, часть является относительно свободной реакцией на условия существования. Онтогенез нервноной системы заканчивается только со смертью человека.

Развитие центральной нервной системы и нервной регуляции функций.

Центральной нервной системе (ЦНС) принадлежит веду­щая роль в организации адаптационных процессов, протекаю­щих в ходе индивидуального развития. Поэтому динамика морфо-функциональных преобразований в этой системе ска­чивается на характере деятельности всех систем организма.

Количество нейронов ЦНС достигает максимального ко­личества у 24-недельного плода и остается постоянным до по­жилого возраста. Дифференцированные нейроны уже не спо­собны к делению, и постоянство их численности играет основ­ную роль в накоплении и хранении информации. Глиальные клетки продолжают оставаться незрелыми и после рождения, что обусловливает дефицит их защитной и опорной функций для ткани мозга, замедленные обменные процессы в мозге, его низкую электрическую активность и высокую проницаемость гемато-энцефалического барьера.

К моменту рождения мозг плода характеризуется низкой чувствительностью к гипоксии, низким уровнем обменных процессов (метаболизма) и преобладанием в этот период ана­эробного механизма получения энергии. В связи с медленным синтезом тормозных медиаторов в ЦНС плода и новорожден­ного легко возникает генерализованное возбуждение даже при небольшой силе раздражения. По мере созревания мозга активность тормозных процессов нарастает. На ранних стадиях внутриутробного развития нервный контроль функций осуществляется преимущественно спинным мозгом. В начале плодного периода (восьмая-десятая неде­ли развития) появляется контроль продолговатого мозга над спинным. С 13-14 недели появляются признаки мезенцефального контроля нижележащих отделов ЦНС. Корригирующие влияния коры на другие структуры ЦНС, механизмы, необхо­димые для выживания после рождения, выявляются в конце плодного периода. К этому времени определяются основные типы безусловных рефлексов: ориентировочный, защитный (избегание), хватательный и пищевой. Последний, в виде со­сательных и глотательных движений, наиболее выражен.

Развитию ЦНС ребенка в значительной мере способству­ют гормоны щитовидной железы. Снижение выработки тиреоидных гормонов в фатальном или раннем постнатальном пе­риодах приводит к кретинизму в связи с уменьшением числа и размеров нейронов и их отростков, нарушением метаболизма в мозге белка и нуклеиновых кислот, а также передачи возбуж­дения в синапсах.

В сравнении со взрослыми дети имеют более высокую воз­будимость нервных клеток, меньшую специализацию нервных центров. В раннем детстве многие нервные волокна еще не имеют миелиновой оболочки, обеспечивающей изолированное проведение нервных импульсов. Вследствие этого процесс воз­буждения легко переходит с одного волокна на другие, сосед­ние. Миелинизация большинства нервных волокон у большин­ства детей заканчивается к трехлетнему возрасту, но у некото­рых продолжается до 5-7 лет. С плохой «изоляцией» нервных волокон во многом связана высокая иррадиация нервных про­цессов, а это влечет за собой несовершенство координации реф­лекторных реакций, обилие ненужных движений и неэконо­мичное вегетативное обеспечение. Процессы миелинизации нор­мально протекают под влиянием тиреоидных и стероидных гормонов. По мере развития, «созревания» нейронов и меж­нейронных связей, координация нервных процессов улучшает­ся и достигает совершенства к 18-20 годам.

Возрастные изменения функций ЦНС обусловлены и дру­гими морфологическими особенностями развития. Несмотря на то, что спинной мозг новорожденного является наиболее зрелой частью ЦНС, его окончательное развитие завершается одновременно с прекращением роста. За это время его масса увеличивается в 8 раз.

Основные части головного мозга выделяются уже к треть­ему месяцу эмбрионального периода, а к пятому месяцу эмбрио­генеза успевают сформироваться основные борозды больших полушарий. Наиболее интенсивно головной мозг человека раз­вивается в первые 2 года после рождения. Затем темпы его раз­вития немного снижаются, но продолжают оставаться высоки­ми до 6-7 лет, когда масса мозга ребенка достигает 80% массы мозга взрослого.

Головной мозг развивается гетерохронно. Быстрее всего идет созревание стволовых, подкорковых и корковых структур, регулирующих вегетативные функции организма. Эти отделы по своему развитию уже в 2-4 года похожи на мозг взрослого человека . Окончательное формирование стволовой части и промежуточного мозга завершается только в 13-16 лет. Пар­ная деятельность полушарий головного мозга в онтогенезе ме­няется от неустойчивой симметрии к неустойчивой асиммет­рии и, наконец, к устойчивой функциональной асимметрии. Клеточное строение, форма и размещение борозд и извилин проекционных зон коры приобретают сходство со взрослым мозгом к 7 годам. В лобных отделах это достигается только к 12 годам. Созревание больших полушарий полностью заверша­ется только к 20-22 годам.

В возрасте 40 лет начинаются процессы дегенерации в ЦНС. Возможна демиелинизация в задних корешках и прово­дящих путях спинного мозга. С возрастом падает скорость рас­пространения возбуждения по нервам, замедляется синаптическое проведение, снижается лабильность нервных клеток. Ослабляются тормозные процессы на разных уровнях нервной системы. Неравномерные, разнонаправленные изменения в от­дельных ядрах гипоталамуса приводят к нарушению координа­ции его функций, изменениям в характере вегетативных реф­лексов и в связи с этим к снижению надежности гомеостатического регулирования. У пожилых людей снижается реактив­ность нервной системы, ограничиваются возможности адапта­ции организма к нагрузкам, хотя у отдельных лиц и в 80 лет функциональное состояние ЦНС и уровень адаптационных процессов могут сохраняться такими же, как и в среднем зре­лом возрасте. На фоне общих изменений в вегетативной не­рвной системе наиболее заметно ослабление парасимпатиче­ских влияний.

РАЗВИТИЕ НЕРВНОЙ СИСТЕМЫ ЧЕЛОВЕКА

ФОРМИРОВАНИЕ МОЗГА ОТ МОМЕНТА ОПЛОДОТВОРЕНИЯ ДО РОЖДЕНИЯ

После слияния яйцеклетки со сперматозоидом (оплодотворения) новая клетка начинает делиться. Через некоторое время из этих новых клеток образуется пузырек. Одна стенка пузырька впячивается внутрь, и в результате образуется зародыш, состоящий из трех слоев клеток: самый внешний слой – эктодерма, внутренний – эндодерма и между ними – мезодерма. Нервная система развивается из наружного зародышевого листка – эктодермы. У человека в конце 2-й недели после оплодотворения обособляется участок первичного эпителия и образуется нервная пластинка. Ее клетки начинают делиться и дифференцироваться, вследствие чего они резко отличаются от соседних клеток покровного эпителия (рис. 1.1). В результате деления клеток края нервной пластинки приподнимаются и появляются нервные валики.

В конце 3-й недели беременности края валиков смыкаются, образуя нервную трубку, которая постепенно погружается в мезодерму зародыша. На концах трубки сохраняются два нейропора (отверстия) – передний и задний. К концу 4-й недели нейропоры зарастают. Головной конец нервной трубки расширяется, и из него начинает развиваться головной мозг, а из оставшейся части – спинной мозг. На этой стадии головной мозг представлен тремя пузырями. Уже на 3–4-й неделе выделяются две области нервной трубки: дорсальная (крыловидная пластинка) и вентральная (базальная пластинка). Из крыловидной пластинки развиваются чувствительные и ассоциативные элементы нервной системы, из базальной – моторные. Структуры переднего мозга у человека целиком развиваются из крыловидной пластинки.

В течение первых 2 мес. беременности образуется основной (среднемозговой) изгиб головного мозга: передний мозг и промежуточный мозг загибаются вперед и вниз под прямым углом к продольной оси нервной трубки. Позже формируются еще два изгиба: шейный и мостовой. В этот же период первый и третий мозговые пузыри разделяются дополнительными бороздами на вторичные пузыри, при этом появляется 5 мозговых пузырей. Из первого пузыря образуются большие полушария головного мозга, из второго – промежуточный мозг, который в процессе развития дифференцируется на таламус и гипоталамус. Из оставшихся пузырей формируются мозговой ствол и мозжечок. В течение 5–10-й недели развития начинается рост и дифференцировка конечного мозга: образуются кора и подкорковые структуры. На этой стадии развития появляются мозговые оболочки, формируются ганглии нервной периферической вегетативной системы, вещество коры надпочечников. Спинной мозг приобретает окончательное строение.

В следующие 10–20 нед. беременности завершается формирование всех отделов головного мозга, идет процесс дифференцировки мозговых структур, который заканчивается только с наступлением половозрелости (рис. 1.2). Полушария становятся самой большой частью головного мозга. Выделяются основные доли (лобная, теменная, височная и затылочная), образуются извилины и борозды больших полушарий. В спинном мозге в шейном и поясничном отделах формируются утолщения, связанные с иннервацией соответствующих поясов конечностей. Окончательный вид приобретает мозжечок. В последние месяцы беременности начинается миелинизация (покрытие нервных волокон специальными чехлами) нервных волокон, которая заканчивается уже после рождения.

Головной и спинной мозг покрыты тремя оболочками: твердой, паутинной и мягкой. Головной мозг заключен в черепную коробку, а спинной мозг – в позвоночный канал. Соответствующие нервы (спинномозговые и черепные) покидают ЦНС через специальные отверстия в костях.

В процессе эмбрионального развития головного мозга полости мозговых пузырей видоизменяются и превращаются в систему мозговых желудочков, которые сохраняют связь с полостью спинномозгового канала. Центральные полости больших полушарий головного мозга образуют боковые желудочки довольно сложной формы. Их парные части имеют в своем составе передние рога, которые находятся в лобных долях, задние рога, находящиеся в затылочных долях, и нижние рога, расположенные в височных долях. Боковые желудочки соединяются с полостью промежуточного мозга, которая является III желудочком. Через специальный проток (сильвиев водопровод) III желудочек соединяется с IV желудочком; IV желудочек образует полость заднего мозга и переходит в спинномозговой канал. На боковых стенках IV желудочка находятся отверстия Люшки, а на верхней стенке – отверстие Мажанди. Благодаря этим отверстиям полость желудочков сообщается с подпаутинным пространством. Жидкость, заполняющая желудочки головного мозга, называется эндолимфой и образуется из крови. Процесс образования эндолимфы протекает в специальных сплетениях кровеносных сосудов, (они называются хороидальными сплетениями). Такие сплетения находятся в полостях III и IV мозговых желудочков.

Сосуды головного мозга. Головной мозг человека очень интенсивно снабжается кровью. Это связано, прежде всего, с тем, что нервная ткань одна из наиболее работоспособных в нашем организме. Даже ночью, когда мы отдыхаем от дневной работы, наш мозг продолжает интенсивно работать (подробнее см. раздел «Активирующие системы мозга»). Кровоснабжение головного мозга происходит по следующей схеме. Головной мозг снабжается кровью по двум парам основных кровеносных сосудов: общим сонным артериям, которые проходят в области шеи и их пульсация легко прощупывается, и паре позвоночных артерий, заключенных в латеральных частях позвоночного столба (см. приложение 2). После того как позвоночные артерии покидают шейный последний позвонок, они сливаются в одну базальную артерию, которая проходит в специальной ложбине на основании моста. На основании мозга в результате слияния перечисленных артерий образуется кольцевой кровеносный сосуд. От него кровеносные сосуды (артерии) веерообразно охватывают весь мозг, включая большие полушария.

Венозная кровь собирается в специальные лакуны и покидает пределы головного мозга по яремным венам. Кровеносные сосуды головного мозга вмонтированы в мягкую мозговую оболочку. Сосуды многократно ветвятся и в виде тонких капилляров проникают в мозговую ткань.

Головной мозг человека надежно защищен от проникновения инфекций так называемым гематоэнцефалическим барьером. Этот барьер формируется уже в первую треть срока беременности и включает в себя три мозговые оболочки (самая внешняя – твердая, затем паутинная и мягкая, которая прилежит к поверхности мозга, в ней находятся кровеносные сосуды) и стенки кровеносных капилляров мозга. Другой составляющей частью этого барьера являются глобальные оболочки вокруг кровеносных сосудов, образованные отростками клеток глии. Отдельные мембраны клеток глии тесно прилегают друг к другу, создавая щелевые контакты между собой.

В головном мозге есть участки, где гематоэнцефалический барьер отсутствует. Это район гипоталамуса, полость III желудочка (субфорникальный орган) и полость IV желудочка (area postrema). Здесь стенки кровеносных сосудов имеют специальные места (так называемый фенестрированный, т.е. продырявленный, эпителий сосудов), в которых из нейронов головного мозга в кровеносное русло выбрасываются гормоны и их предшественники. Подробнее эти процессы будут рассмотрены в гл. 5.

Таким образом, с момента зачатия (слияние яйцеклетки со сперматозоидом) начинается развитие ребенка. За это время, которое занимает почти два десятка лет, развитие человека проходит несколько этапов (табл. 1.1).

Вопросы

1. Этапы развития центральной нервной системы человека.

2. Периоды развития нервной системы ребенка.

3. Что составляет гематоэнцефалический барьер?

4. Из какой части нервной трубки развиваются сенсорные и моторные элементы центральной нервной системы?

5. Схема кровоснабжения головного мозга.

Литература

Коновалов А. Н., Блинков С. М., Пуцило М. В. Атлас нейрохирургической анатомии. М., 1990.

Моренков Э. Д. Морфология мозга человека. М.: Изд-во Моск. ун-та, 1978.

Оленев С. Н. Развивающийся мозг. Л., 1979.

Савельев С. Д. Стереоскопический атлас мозга человека. М.: Area XVII, 1996.

Шаде Дж., Форд П. Основы неврологии. М., 1976.

Из книги Здоровье Вашей собаки автора Баранов Анатолий

Заболевания нервной системы Судороги. Судорожные проявления могут отмечаться у щенка в первые недели его жизни. Щенок в течение 30-60 секунд подергивает передними и задними конечностями, иногда отмечается подергивание головы. Пена, моча, кал не выделяются, как при

Из книги Лечение собак: Справочник ветеринара автора Аркадьева-Берлин Ника Германовна

Исследование нервной системы Диагностика заболеваний нервной системы базируется на исследовании головного мозга и поведения собак. Ветеринар должен фиксироваться на следующих вопросах:– наличие у животного чувства страха, резких перемен в поведении;– наличие

Из книги Основы нейрофизиологии автора Шульговский Валерий Викторович

8 Болезни нервной системы Нервная система собак работает по принципу обратной связи: из внешней среды через органы чувств и кожу в мозг поступают импульсы. Мозг воспринимает эти сигналы, перерабатывает их и посылает указания органу-исполнителю. Это так называемая

Из книги Реакции и поведение собак в экстремальных условиях автора Герд Мария Александровна

Нейробиологический подход к исследованию нервной системы человека В теоретических исследованиях физиологии головного мозга человека огромную роль играет изучение центральной нервной системы животных. Эта область знаний получила название нейробиологии. Дело в том,

Из книги Болезни собак (незаразные) автора Панышева Лидия Васильевна

МЕДИАТОРЫ НЕРВНОЙ СИСТЕМЫ Из вышеизложенного понятно, какое значение в функциях нервной системы играют медиаторы. В ответ на приход нервного импульса к синапсу происходит выброс медиатора; молекулы медиатора соединяются (комплементарно – как «ключ к замку») с

Из книги Основы психофизиологии автора Александров Юрий

Глава 7 ВЫСШИЕ ФУНКЦИИ НЕРВНОЙ СИСТЕМЫ Общепризнано, что нервная высшая деятельность человека и животных обеспечивается целым комплексом совместно работающих мозговых структур, каждая из которых вносит в этот процесс свой специфический вклад. Это означает, что нервная

Из книги Происхождение мозга автора Савельев Сергей Вячеславович

Глава шестая РЕАКЦИИ НЕРВНОЙ СИСТЕМЫ СОБАК В УСЛОВИЯХ ЭКСТРЕМАЛЬНЫХ ФАКТОРОВ Известно, что центральная нервная система играет ведущую роль как высший интегрирующий орган и ее функциональное состояние имеет решающее значение для общего состояния живых организмов.

Из книги Антропология и концепции биологии автора

Исследования нервной системы Состояние и деятельность нервной системы имеют большое значение при патологии всех органов и систем организма. Мы опишем кратко только те исследования, которые можно и необходимо проводить при клиническом обследовании собак в условиях

Из книги Поведение: эволюционный подход автора Курчанов Николай Анатольевич

Типы нервной системы Большое значение в патологии нервных заболеваний и лечении нервнобольных имеют типы нервной деятельности, разработанные академиком И. П. Павловым. В обычных условиях разные собаки по-разному реагируют на внешние раздражения, по-разному относятся к

Из книги автора

1. КОНЦЕПЦИЯ СВОЙСТВ НЕРВНОЙ СИСТЕМЫ Проблема индивидуально-психологических различий между людьми всегда рассматривалась в отечественной психологии как одна из фундаментальных. Наибольший вклад в разработку этой проблемы внесли Б.М. Теплев и В.Д. Небылицын, а также их

Из книги автора

§ 3. Функциональная организация нервной системы Нервная система необходима для быстрой интеграции активности различных органов многоклеточного животного. Иначе говоря, объединение нейронов представляет собой систему для эффективного использования сиюминутного

Из книги автора

§ 5. Энергетические расходы нервной системы Сопоставив размеры мозга и размеры тела животных, легко установить закономерность, по которой увеличение размеров тела чётко коррелирует с увеличением размеров мозга (см. табл. 1; табл. 3). Однако мозг является только частью

Из книги автора

§ 24. Эволюция ганглиозной нервной системы На заре эволюции многоклеточных сформировалась группа кишечнополостных с диффузной нервной системой (см. рис. II-4, а; рис. II-11, а). Возможный вариант возникновения такой организации описан в начале этой главы. В случае

Из книги автора

§ 26. Происхождение нервной системы хордовых Наиболее часто обсуждаемые гипотезы происхождения не могут объяснить появление одного из основных признаков хордовых - трубчатой нервной системы, которая располагается на спинной стороне тела. Мне хотелось бы использовать

Из книги автора

Направления эволюции нервной системы Мозг – структура нервной системы. Появление нервной системы у животных давало им возможность быстро адаптироваться к меняющимся условиям среды, что, безусловно, можно рассматривать как эволюционное преимущество. Общей

Из книги автора

8.2. Эволюция нервной системы Совершенствование нервной системы – одно из главных направлений эволюции животного мира. Это направление содержит огромное количество загадок для науки. Не совсем ясен даже вопрос происхождения нервных клеток, хотя принцип их

Нервная система начинает развиваться на 3-ей неделе внутриутробного развития из эктодермы (наружного зародышевого листка).

На дорсальной (спинной) стороне зародыша происходит утолщение эктодермы. Это формируется нервная пластинка. Затем нервная пластинка изгибается вглубь зародыша и образуется нервная бороздка. Края нервной бороздки смыкаются, формируя нервную трубку. Длинная полая нервная трубка, лежащая сначала на поверхности эктодермы, отделяется от нее и погружается внутрь, под эктодерму. Нервная трубка расширяется на переднем конце, из которого позднее формируется головной мозг. Остальная часть нервной трубки преобразуется в головной мозг (рис. 45).

Рис. 45. Стадии эмбриогенеза нервной системы в поперечном схематическом разрезе, а - медуллярная пластинка; b и с - медуллярная бороздка; d и е- мозговая трубка. 1 - роговой листок (эпидермис); 2 - ганглиозный валик.

Из клеток, мигрирующих из боковых стенок нервной трубки, закладываются два нервных гребня - нервные тяжи. В дальнейшем из нервных тяжей образуются спинальные и автономные ганглии и шванновские клетки, которые формируют миелиновые оболочки нервных волокон. Кроме того, клетки нервного гребня участвуют в образовании мягкой и паутинной оболочек мозга. Во внутреннем слове нервной трубки происходит усиленное деление клеток. Эти клетки дифференцируются на 2 типа: нейробласты (предшественники нейронов) и спонгиобласты (предшественники глиальных клеток). Одновременно с делением клеток головной конец нервной трубки подразделяется на три отдела - первичные мозговые пузыри. Соответственно они называются передний (I пузырь), средний (II пузырь) и задний (III пузырь) мозг. В последующем развитии мозг делится на конечный (большие полушария) и промежуточный мозг. Средний мозг сохраняется как единое целое, а задний мозг делится на два отдела, включающих мозжечок с мостом и продолговатый мозг. Это 5-ти пузырная стадия развития мозга (рис.46,47).


а - пять мозговых путей: 1 - первый пузырь (конечный мозг); 2 - второй пузырь (промежуточный мозг); 3 - третий пузырь (средний мозг); 4- четвертый пузырь (продолговатый мозг); между третьим и четвертым пузырем - перешеек; б - развитие головного мозга (по Р. Синельникову).

Рис. 46. Развитие головного мозга (схема)

А - формирование первичных пузырей (до 4-й недели эмбрионального развития). Б - Е - формирование вторичных пузырей. Б,В - конец 4-й недели; Г - шестая неделя; Д - 8-9-я недели, завершающиеся формированием основных отделов мозга (Е) - к 14 неделе.

3а -- перешек ромбовидного мозга; 7 конечная пластинка.

Стадия А: 1, 2, 3 -- первичные мозговые пузыри

1 - передний мозг,

2 - средний мозг,

3 - задний мозг.

Стадия Б: передний мозг делится на полушария и базальные ядра (5) и промежуточный мозг (6)

Стадия В: ромбовидный мозг (3а) подразделяется на задний мозг, включающий в себя мозжечок (8), мост (9) стадия Е и продолговатый мозг (10) стадия Е

Стадия Е: образуется спинной мозг (4)

Рис. 47. Развивающийся мозг.

Образование нервных пузырей сопровождается появлением изгибов, обусловленных разной скоростью созревания частей нервной трубки. К 4-ой неделе внутриутробного развития формируются теменной и затылочный изгибы, а в течение 5-ой недели - мостовой изгиб. К моменту рождения сохраняется только изгиб мозгового ствола почти под прямым углом в области соединения среднего и промежуточного мозга (рис 48).


Вид сбоку, иллюстрирующий изгибы в среднемозговой (А), шейной (Б) областях мозга, а также в области моста (В).

1 - глазной пузырь, 2 - передний мозг, 3 - средний мозг; 4 - задний мозг; 5 - слуховой пузырек; 6 - спинной мозг; 7 - промежуточный мозг; 8 - конечный мозг; 9 - ромбическая губа. Римскими цифрами обозначены места отхождения черепно-мозговых нервов.

Рис. 48. Развивающийся мозг (с 3-й по 7-ю неделю развития).

В начале поверхность больших полушарий гладкая, Первыми на 11-12 неделе внутриутробного развития закладывается боковая борозда (Сильвиева), затем центральная (Ролландова) борозда. Довольно быстро происходит закладка борозд в пределах долей полушарий, за счет образования борозд и извилин увеличивается площадь коры (рис.49).

Рис. 49. Вид сбоку на развивающиеся полушария головного мозга.

А- 11-я неделя. Б- 16_ 17 недели. В- 24-26 недели. Г- 32-34 недели. Д - новорожденный. Показано образование боковой щели (5), центральной борозды (7) и других борозд и извилин.

I - конечный мозг; 2 - средний мозг; 3 - мозжечок; 4 - продолговатый мозг; 7 - центральная борозда; 8 - мост; 9 - борозды теменной области; 10 - борозды затылочной области;

II - борозды лобной области.

Нейробласты путем миграции образуют скопления - ядра, формирующие серое вещество спинного мозга, а в стволе мозга - некоторые ядра черепно-мозговых нервов.

Сомы нейробластов имеют округлую форму. Развитие нейрона проявляется в появлении, росте и ветвлении отростков (рис. 50). На мембране нейрона образуется небольшое короткое выпячивание на месте будущего аксона - конус роста. Аксон вытягивается и по нему доставляются питательные вещества к конусу роста. В начале развития у нейрона образуется большее число отростков по сравнению с конечным числом отростков зрелого нейрона. Часть отростков втягивается в сому нейрона, а оставшиеся растут в сторону других нейронов, с которыми они образуют синапсы.

Рис. 50. Развитие веретенообразной клетки в онтогенезе человека. Две последние зарисовки показывают разницу в строении этих клеток у ребенка в возрасте двух лет и взрослого человека

В спинном мозге аксоны имеют небольшую длину и формируют межсегментарные связи. Более длинные проекционные волокна формируются позднее. Несколько позже аксона начинается рост дендритов. Все разветвления каждого дендрита образуются из одного ствола. Количество ветвей и длина дендритов не завершается во внутриутробном периоде.

Увеличение массы мозга в пренатальный период происходит в основном за счет увеличения количества нейронов и количества глиальных клеток.

Развитие коры связано с образование клеточных слоев (в коре мозжечка - три слоя, а в коре полушарий большого мозга - шесть слоев).

В формировании корковых слоев большую роль играют так называемые глиальные клетки. Эти клетки принимают радиальное положение и образуют два вертикально ориентированных длинных отростка. По отросткам этих радиальных глиальных клеток происходит миграция нейронов. Вначале образуются более поверхностные слои коры. Глиальные клетки принимают также участи в образовании миелиновой оболочки. Иногда одна глиальная клетка участвует в образовании миелиновых оболочек нескольких аксонов.

В таблице 2 отражены основные этапы развития нервной системы зародыша и плода.

Таблица 2.

Основные этапы развития нервной системы в пренатальный период.

Возраст зародыша (недели)

Развитие нервной системы

Намечается нервная бороздка

Образуется нервная трубка и нервные тяжи

Образуются 3 мозговых пузыря; формируются нервы и ганглии

Формируются 5 мозговых пузырей

Намечаются мозговые оболочки

Полушария мозга достигают большого размера

В коре появляются типичные нейроны

Формируется внутренняя структура спинного мозга

Формируются общие структурные черты головного мозга; начинается дифференцировка клеток нейроглии

Различимы доли головного мозга

Начинается миелинизация спинного мозга (20 неделя), появляются слои коры (25 недель), формируются борозды и извилины (28-30 недель), начинается миелинизация головного мозга (36-40 недель)

Таким образом, развитие головного мозга в пренатальный период происходит непрерывно и параллельно, однако характеризуется гетерохронией: скорость роста и развития филогенетически более древних образований больше, чем филогенетически более молодых образований.

Ведущую роль в росте и развитии нервной системы во внутриутробный период играют генетические факторы. Вес мозга новорожденного в среднем составляет примерно 350 г.

Морфо-функциональное созревание нервной системы продолжается в постнатальный период. Уже к концу первого года жизни вес мозга достигает 1000 г, тогда как у взрослого человека вес мозга составляет в среднем - 1400 г. Следовательно, основное прибавление массы мозга приходится на первый год жизни ребенка.

Увеличение массы мозга в постнатальный период происходит в основном за счет увеличения количества глиальных клеток. Количество нейронов не увеличивается, так как они теряют способность делиться уже в пренатальном периоде. Общая плотность нейронов (количество клеток в единице объема) уменьшается за счет роста сомы и отростков. У дендритов увеличивается количество ветвлений.

В постнатальном периоде продолжается также миелинизация нервных волокон как в центральной нервной системе, так и нервных волокон, входящих в состав периферических нервов (черепно-мозговых и спинномозговых.).

Рост спинномозговых нервов связан с развитием опорно-двигательного аппарата и формированием нервно-мышечных синапсов, а рост черепно-мозговых нервов с созреванием органов чувств.

Таким образом, если в пренатальном периоде развитие нервной системы происходит под контролем генотипа и практически не зависит от влияния внешней окружающей среды, то в постанатальном периоде все большую роль приобретают внешние стимулы. Раздражение рецепторов вызывает афферентные потоки импульсов, которые стимулируют морфо-функциональное созревание мозга.

Под влиянием афферентных импульсов на дендритах корковых нейронов образуются шипики - выросты, представляющие собой особые постсинаптические мембраны. Чем больше шипиков, тем больше синапсов и тем большее участие принимает нейрон в обработке информации.

На протяжении всего постнатального онтогенеза вплоть до пубертатного периоде также как и в пренатальный период развитие мозга происходит гетерохронно. Так, окончательное созревание спинного мозга происходит раньше, чем головного мозга. Развитие стволовых и подкорковых структур, раньше, чем корковых, рост и развитие возбудительных нейронов обгоняет рост и развитие тормозных нейронов. Это общие биологические закономерности роста и развития нервной системы.

Морфологическое созревание нервной системы коррелирует с особенностями ее функционирования на каждом этапе онтогенеза. Так, более раннее дифференцирование возбудительных нейронов по сравнению с тормозными нейронами обеспечивает преобладание мышечного тонуса сгибателей над тонусом разгибателей. Руки и ноги плода находятся в согнутом положении - это обуславливает позу, обеспечивающую минимальный объем, благодаря чему плод занимает меньшее место в матке.

Совершенствование координации движений, связанных с формированием нервных волокон, происходит на протяжении всего дошкольного и школьного периодов, что проявляется в последовательном освоении позы сидения, стояния, ходьбы, письма и т.д.

Увеличение скорости движений обуславливается в основном процессами миелинизации периферических нервных волокон и увеличения скорости проведения возбуждения нервных импульсов.

Более раннее созревание подкорковых структур по сравнению с корковыми, многие из которых входят в состав лимбической структуры, обуславливают особенности эмоционального развития детей (большая интенсивность эмоций, неумение их сдерживать связана с незрелостью коры и ее слабым тормозным влиянием).

В пожилом и старческом возрасте происходят анатомические и гистологические изменения мозга. Часто происходит атрофия коры лобной и верхней теменной долей. Борозды становятся шире, желудочки мозга увеличиваются, объем белого вещества уменьшается. Происходит утолщение мозговых оболочек.

С возрастом нейроны уменьшаются в размерах, при этом количество ядер в клетках может увеличиться. В нейронах уменьшается также содержание РНК, необходимой для синтеза белков и ферментов. Это ухудшает трофические функции нейронов. Высказывается предположение, что такие нейроны быстрее утомляются.

В старческом возрасте нарушается также кровоснабжение мозга, стенки кровеносных сосудов утолщаются и на них откладываются холестериновые бляшки (атеросклероз). Это также ухудшает деятельность нервной системы.

Нервная система координирует и регулирует деятельность всех органов и систем, обеспечивая функционирование организма как единого целого; осуществляет адаптацию организма к изменениям окружающей обстановки, поддерживает постоянство его внутренней среды.

Топографически нервную систему человека подразделяют на центральную и периферическую. К центральной нервной системе относят спинной и головной мозг. Периферическую нервную систему составляют спинномозговые и черепные нервы, их корешки, ветви, нервные окончания, сплетения и узлы, лежащие во всех отделах тела человека. Согласно анатомо-функциональной классификации, нервную систему условно подразделяют на соматическую и вегетативную. Соматическая нервная система обеспечивает иннервацию тела – кожи, скелетных мышц. Вегетативная нервная система регулирует обменные процессы во всех органах и тканях, а также рост и размножение, иннервирует все внутренние органы, железы, гладкую мускулатуру органов, сердце.

Нервная система развивается из эктодермы, через стадии нервной полоски и мозгового желобка с последующим образованием нервной трубки. Из ее каудальной части развивается спинной мозг, из ростральной части формируется сначала 3-х, а затем 5-ти мозговых пузырей, из которых в дальнейшем развиваются конечный, промежуточный, средний, задний и продолговатый мозг. Такая дифференцировка центральной нервной системы происходит на третьей-четвертой неделе эмбрионального развития.

В дальнейшем объем головного мозга увеличивается более интенсивно, чем спинного, и к моменту рождения составляет в среднем 400 г. Причем у девочек масса головного мозга несколько ниже, чем у мальчиков. Количество нейронов к моменту рождения соответствует уровню взрослого человека, но количество ветвлений аксонов, дендритов и синаптических контактов значительно возрастает после рождения.

Наиболее интенсивно масса головного мозга увеличивается первые 2 года после рождения. Затем темпы его развития немного снижаются, но продолжают оставаться высокими до 6-7 лет. Окончательное созревание головного мозга заканчивается к 17-20 годам. К этому возрасту, его масса у мужчин в среднем составляет 1400 г, а у женщин – 1250 г. Развитие головного мозга идет гетерохронно. Прежде всего, созревают те нервные структуры, от которых зависит нормальная жизнедеятельность организма на данном возрастном этапе. Функциональной полноценности достигают, прежде всего, стволовые, подкорковые и корковые структуры, регулирующие вегетативные функции организма. Эти отделы приближаются по своему развитию к мозгу взрослого человека уже в возрасте 2-4 лет.

Спинной мозг. В течение первых трех месяцев внутриутробной жизни спинной мозг занимает позвоночный канал на всю его длину. В дальнейшем позвоночник растет быстрее, чем спинной мозг. Поэтому нижний конец спинного мозга поднимается в позвоночном канале. У новорожденного ребенка нижний конец спинного мозга находится на уровне III поясничного позвонка, у взрослого человека – на уровне II поясничного позвонка.

Спинной мозг новорожденного имеет длину 14 см. К 2 годам длина спинного мозга достигает 20 см, а к 10 годам, по сравнению с периодом новорожденности, удваивается. Быстрее всего растут грудные сегменты спинного мозга. Масса спинного мозга у новорожденного составляет около 5,5 г, у детей 1-го года – около 10 г. К 3 годам масса спинного мозга превышает 13 г, к 7 годам равна примерно 19 г. У новорожденного центральный канал шире, чем у взрослого. Уменьшение его просвета происходит главным образом в течение 1-2 годов, а также в более поздние возрастные периоды, когда наблюдается увеличение массы серого и белого вещества. Объем белого вещества спинного мозга возрастает быстро, особенно за счет собственных пучков сегментарного аппарата, формирование которого происходит в более ранние сроки по сравнению со сроками формирования проводящих путей.

Продолговатый мозг. К моменту рождения он вполне развит как в анатомическом, так и функциональном отношении. Его масса достигает 8 г у новорожденного. Продолговатый мозг занимает более горизонтальное, чем у взрослых, положение и отличается степенью миелинизации ядер и путей, размерами клеток и их расположением. По мере развития плода размеры нервных клеток продолговатого мозга увеличиваются, а размеры ядра с ростом клетки относительно уменьшаются. Нервные клетки новорожденного имеют длинные отростки, в их цитоплазме содержится тигроидное вещество. Ядра продолговатого мозга формируются рано. С их развитием связано становление в онтогенезе регуляторных механизмов дыхания, сердечно-сосудистой, пищеварительной и др. систем.

Мозжечок. В эмбриональном периоде развития сначала формируется древняя часть мозжечка – червь, а затем – его полушария. На 4-5-м месяце внутриутробного развития разрастаются поверхностные отделы мозжечка, образуются борозды и извилины. Наиболее интенсивно мозжечок растет в первый год жизни, особенно с 5-го по 11-й месяц, когда ребенок учится сидеть и ходить. У годовалого ребенка масса мозжечка увеличивается в 4 раза и в среднем составляет 95 г. После этого наступает период медленного роста мозжечка, к 3 годам размеры мозжечка приближаются к его размерам у взрослого. У 15-летнего ребенка масса мозжечка – 150 г. Кроме того, быстрое развитие мозжечка происходит и в период полового созревания.

Серое и белое вещество мозжечка развивается неодинаково. У ребенка рост серого вещества осуществляется относительно медленнее, чем белого. Так, от периода новорожденности до 7 лет количество серого вещества увеличивается приблизительно в 2 раза, а белого – почти в 5 раз. Из ядер мозжечка раньше других формируется зубчатое ядро. Начиная от периода внутриутробного развития и до первых лет жизни детей, ядерные образования выражены лучше, чем нервные волокна.

Клеточное строение коры мозжечка у новорожденного значительно отличается от взрослого. Ее клетки во всех слоях отличаются по форме, размерам и количеству отростков. У новорожденного еще не полностью сформированы клетки Пуркинье, в них не развито тигроидное вещество, ядро почти полностью занимает клетку, ядрышко имеет неправильную форму, дендриты клеток слаборазвиты. Формирование этих клеток идет бурно после рождения и заканчивается к 3-5 неделям жизни. Клеточные слои коры мозжечка у новорожденного значительно тоньше, чем у взрослого. К концу 2-го года жизни их размеры достигают нижней границы величины у взрослого. Полное формирование клеточных структур мозжечка осуществляется к 7-8 годам.

Мост. У новорожденного расположен выше, чем у взрослого, а к 5 годам располагается на том же уровне, что и у зрелого организма. Развитие моста связано с формированием ножек мозжечка и установлением связей мозжечка с другими отделами центральной нервной системы. Внутреннее строение моста у ребенка не имеет отличительных особенностей по сравнению с взрослым человеком. Ядра расположенных в нем нервов к периоду рождения уже сформированы.

Средний мозг. Его форма и строение почти не отличаются от взрослого. Ядро глазодвигательного нерва хорошо развито. Хорошо развито красное ядро, его крупноклеточная часть, обеспечивающая передачу импульсов из мозжечка к мотонейронам спинного мозга, развивается раньше, чем мелкоклеточная, через которую передается возбуждение от мозжечка к подкорковым образованиям мозга и к коре больших полушарий.

У новорожденного черная субстанция представляет собой хорошо выраженное образование, клетки которого дифференцированы. Но значительная часть клеток черной субстанции не имеет характерного пигмента (меланина), который появляется с 6 месяцев жизни и максимального развития достигает к 16 годам. Развитие пигментации находится в прямой связи с совершенствованием функций черной субстанции.

Промежуточный мозг. Отдельные формации промежуточного мозга имеют свои темпы развития. Закладка зрительного бугра осуществляется к 2 месяцам внутриутробного развития. На 3-м месяце разграничивается таламус и гипоталамус. На 4-5-м месяце между ядрами таламуса проявляются светлые прослойки развивающихся нервных волокон. В это время клетки еще слабо дифференцированы. В 6 месяцев становятся хорошо видными клетки ретикулярной формации зрительного бугра. Другие ядра зрительного бугра начинают формироваться с 6 месяцев внутриутробной жизни, к 9 месяцам они хорошо выражены. С возрастом происходит их дальнейшая дифференциация. Усиленный рост зрительного бугра осуществляется в 4-летнем возрасте, а размеров взрослого он достигает к 13 годам жизни.

В эмбриональном периоде развития закладывается подбугорная область, но в первые месяцы внутриутробного развития ядра гипоталамуса не дифференцированы. Только на 4-5-м месяце происходит накопление клеточных элементов будущих ядер, на 8-м месяце они хорошо выражены.

Ядра гипоталамуса созревают в разное время, в основном к 2-3 годам. К моменту рождения структуры серого бугра еще полностью не дифференцированы, что приводит к несовершенству теплорегуляции у новорожденных и детей первого года жизни. Дифференциация клеточных элементов серого бугра заканчивается позднее всего – к 13-17 годам.

Кора больших полушарий. До 4-го месяца развития плода поверхность больших полушарий гладкая и на ней отмечается лишь вдавливание будущей боковой борозды, которая окончательно формируется только ко времени рождения. Наружный корковый слой растет быстрее внутреннего, что приводит к образованию складок и борозд. К 5 месяцам внутриутробного развития образуются основные борозды: боковая, центральная, мозолистая, теменно-затылочная и шпорная. Вторичные борозды появляются после 6 месяцев. К моменту рождения первичные и вторичные борозды хорошо выражены, и кора больших полушарий имеет такой же тип строения, как и у взрослого. Но развитие формы и величины борозд и извилин, формирование мелких новых борозд и извилин продолжается и после рождения.

К моменту рождения кора больших полушарий имеет такое же количество нервных клеток (14-16 млрд.), как и у взрослого. Но нервные клетки новорожденного незрелы по строению, имеют простую веретенообразную форму и очень небольшое количество отростков. Серое вещество коры больших полушарий плохо дифференцировано от белого. Кора больших полушарий относительно тоньше, корковые слои слабо дифференцированы, а корковые центры недостаточно сформированы. После рождения кора больших полушарий развивается быстро. Соотношение серого и белого вещества к 4 месяцам приближается к соотношению у взрослого.

К 9 месяцам становятся более отчетливыми первые три слоя коры, а к году общая структура мозга приближается к зрелому состоянию. Расположение слоев коры, дифференцирование нервных клеток в основном завершается к 3 годам. В младшем школьном возрасте и в период полового созревания продолжающееся развитие головного мозга характеризуется увеличением количества ассоциативных волокон и образованием новых нервных связей. В этот период масса мозга увеличивается незначительно.

В развитии коры больших полушарий сохраняется общий принцип: сначала формируются филогенетически более старые структуры, а затем более молодые. На 5-м месяце, раньше других появляются ядра, регулирующие двигательную активность. На 6-м месяце появляется ядро кожного и зрительного анализатора. Позже других развиваются филогенетически новые области: лобная и нижнетеменная (на 7-м месяце), затем височно-теменная и теменно-затылочная. Причем филогенетически более молодые отделы коры больших полушарий с возрастом относительно увеличиваются, а более старые, наоборот, уменьшаются.

Читайте также: