Идеи байеса для менеджеров

Формула Байеса :

Вероятности P(H i) гипотез H i называют априорными вероятностями - вероятности до проведения опытов.
Вероятности P(A/H i) называют апостериорными вероятностями – вероятности гипотез H i , уточненных в результате опыта.

Пример №1 . Прибор может собираться из высококачественных деталей и из деталей обычного качества. Около 40% приборов собираются из высококачественных деталей. Если прибор собран из высококачественных деталей, его надежность (вероятность безотказной работы) за время t равна 0,95; если из деталей обычного качества - его надежность равна 0,7. Прибор испытывался в течение времени t и работал безотказно. Найдите вероятность того, что он собран из высококачественных деталей.
Решение. Возможны две гипотезы: H 1 - прибор собран из высококачественных деталей; H 2 - прибор собран из деталей обычного качества. Вероятности этих гипотез до опыта: P(H 1) = 0,4, P(H 2) = 0,6. В результате опыта наблюдалось событие A - прибор безотказно работал время t. Условные вероятности этого события при гипотезах H 1 и H 2 равны: P(A|H 1) = 0,95; P(A|H 2) = 0,7. По формуле (12) находим вероятность гипотезы H 1 после опыта:

Пример №2 . Два стрелка независимо один от другого стреляют по одной мишени, делая каждый по одному выстрелу. Вероятность попадания в мишень для первого стрелка 0,8, для второго 0,4. После стрельбы в мишени обнаружена одна пробоина. Предполагая, что два стрелка не могут попасть в одну и ту же точку, найдите вероятность того, что в мишень попал первый стрелок.
Решение. Пусть событие A - после стрельбы в мишени обнаружена одна пробоина. До начала стрельбы возможны гипотезы:
H 1 - ни первый, ни второй стрелок не попадет, вероятность этой гипотезы: P(H 1) = 0,2 · 0,6 = 0,12.
H 2 - оба стрелка попадут, P(H 2) = 0,8 · 0,4 = 0,32.
H 3 - первый стрелок попадет, а второй не попадет, P(H 3) = 0,8 · 0,6 = 0,48.
H 4 - первый стрелок не попадет, а второй попадет, P (H 4) = 0,2 · 0,4 = 0,08.
Условные вероятности события A при этих гипотезах равны:

После опыта гипотезы H 1 и H 2 становятся невозможными, а вероятности гипотез H 3 и H 4
будут равны:


Итак, вероятнее всего, что мишень поражена первым стрелком.

Пример №3 . В монтажном цехе к устройству присоединяется электродвигатель. Электродвигатели поставляются тремя заводами-изготовителями. На складе имеются электродвигатели названных заводов соответственно в количестве 19,6 и 11 шт., которые могут безотказно работать до конца гарантийного срока соответственно с вероятностями 0,85, 0,76 и 0,71. Рабочий берет случайно один двигатель и монтирует его к устройству. Найдите вероятность того, что смонтированный и работающий безотказно до конца гарантийного срока электродвигатель поставлен соответственно первым, вторым или третьим заводом-изготовителем.
Решение. Первым испытанием является выбор электродвигателя, вторым - работа электродвигателя во время гарантийного срока. Рассмотрим следующие события:
A - электродвигатель работает безотказно до конца гарантийного срока;
H 1 - монтер возьмет двигатель из продукции первого завода;
H 2 - монтер возьмет двигатель из продукции второго завода;
H 3 - монтер возьмет двигатель из продукции третьего завода.
Вероятность события A вычисляем по формуле полной вероятности:

Условные вероятности заданы в условии задачи:

Найдем вероятности


По формулам Бейеса (12) вычисляем условные вероятности гипотез H i:

Пример №4 . Вероятности того, что во время работы системы, которая состоит из трех элементов, откажут элементы с номерами 1, 2 и 3, относятся как 3: 2: 5. Вероятности выявления отказов этих элементов равны соответственно 0,95; 0,9 и 0,6.

б) В условиях данной задачи во время работы системы обнаружен отказ. Какой из элементов вероятнее всего отказал?

Решение.
Пусть А - событие отказа. Введем систему гипотез H1 - отказ первого элемента, H2 - отказ второго элемента, H3 - отказ третьего элемента.
Находим вероятности гипотез:
P(H1) = 3/(3+2+5) = 0.3
P(H2) = 2/(3+2+5) = 0.2
P(H3) = 5/(3+2+5) = 0.5

Согласно условию задачи условные вероятности события А равны:
P(A|H1) = 0.95, P(A|H2) = 0.9, P(A|H3) = 0.6

а) Найдите вероятность обнаружения отказа в работе системы.
P(A) = P(H1)*P(A|H1) + P(H2)*P(A|H2) + P(H3)*P(A|H3) = 0.3*0.95 + 0.2*0.9 + 0.5*0.6 = 0.765

б) В условиях данной задачи во время работы системы обнаружен отказ. Какой из элементов вероятнее всего отказал?
P1 = P(H1)*P(A|H1)/ P(A) = 0.3*0.95 / 0.765 = 0.373
P2 = P(H2)*P(A|H2)/ P(A) = 0.2*0.9 / 0.765 = 0.235
P3 = P(H3)*P(A|H3)/ P(A) = 0.5*0.6 / 0.765 = 0.392

Максимальная вероятность у третьего элемента.

Полезная страница? Сохрани или расскажи друзьям

Если событие А может произойти только при выполнении одного из событий , которые образуют полную группу несовместных событий , то вероятность события А вычисляется по формуле

Эта формула называется формулой полной вероятности .

Вновь рассмотрим полную группу несовместных событий , вероятности появления которых . Событие А может произойти только вместе с каким-либо из событий , которые будем называть гипотезами . Тогда по формуле полной вероятности

Если событие А произошло, то это может изменить вероятности гипотез .

По теореме умножения вероятностей

.

Аналогично, для остальных гипотез

Полученная формула называется формулой Байеса (формулой Бейеса ). Вероятности гипотез называются апостериорными вероятностями , тогда как - априорными вероятностями .

Пример. В магазин поступила новая продукция с трех предприятий. Процентный состав этой продукции следующий: 20% - продукция первого предприятия, 30% - продукция второго предприятия, 50% - продукция третьего предприятия; далее, 10% продукции первого предприятия высшего сорта, на втором предприятии - 5% и на третьем - 20% продукции высшего сорта. Найти вероятность того, что случайно купленная новая продукция окажется высшего сорта.

Решение. Обозначим через В событие, заключающееся в том, что будет куплена продукция высшего сорта, через обозначим события, заключающиеся в покупке продукции, принадлежащей соответственно первому, второму и третьему предприятиям.

Можно применить формулу полной вероятности, причем в наших обозначениях:

Подставляя эти значения в формулу полной вероятности, получим искомую вероятность:

Пример. Один из трех стрелков вызывается на линию огня и производит два выстрела. Вероятность попадания в мишень при одном выстреле для первого стрелка равна 0,3, для второго - 0,5; для третьего - 0,8. Мишень не поражена. Найти вероятность того, что выстрелы произведены первым стрелком.

Решение. Возможны три гипотезы:

На линию огня вызван первый стрелок,

На линию огня вызван второй стрелок,

На линию огня вызван третий стрелок.

Так как вызов на линию огня любого стрелка равновозможен, то

В результате опыта наблюдалось событие В - после произведенных выстрелов мишень не поражена. Условные вероятности этого события при сделанных гипотезах равны:

по формуле Байеса находим вероятность гипотезы после опыта:

Пример. На трех станках-автоматах обрабатываются однотипные детали, поступающие после обработки на общий конвейер. Первый станок дает 2% брака, второй – 7%, третий – 10%. Производительность первого станка в 3 раза больше производительности второго, а третьего – в 2 раза меньше, чем второго.

а) Каков процент брака на конвейере?

б) Каковы доли деталей каждого станка среди бракованных деталей на конвейере?

Решение. Возьмем с конвейера наудачу одну деталь и рассмотрим событие А – деталь бракованная. Оно связано с гипотезами относительно того, где была обработана эта деталь: – взятая наудачу деталь обработана на -ом станке, .

Условные вероятности (в условии задачи они даны в форме процентов):

Зависимости между производительностями станков означают следующее:

А так как гипотезы образуют полную группу, то .

Решив полученную систему уравнений, найдем: .

а) Полная вероятность того, что взятая наудачу с конвейера деталь – бракованная.

При выводе формулы полной вероятности предполагалось, что событие А , вероятность которого следовало определить, могло произойти с одним из событий Н 1 , Н 2 , ... , Н n , образующих полную группу попарно несовместных событий. При этом вероятности указанных событий (гипотез) были известны заранее. Предположим, что произведен эксперимент, в результате которого событие А наступило. Эта дополнительная информация позволяет произвести переоценку вероятностей гипотез Н i , вычислив Р(Н i /А).

или, воспользовавшись формулой полной вероятности, получим

Эту формулу называют формулой Байеса или теоремой гипотез. Формула Байеса позволяет «пересмотреть» вероятности гипотез после того, как становится известным результат опыта, в результате которого появилось событие А .

Вероятности Р(Н i) − это априорные вероятности гипотез (они вычислены до опыта). Вероятности же Р(Н i /А) − это апостериорные вероятности гипотез (они вычислены после опыта). Формула Байеса позволяет вычислить апостериорные вероятности по их априорным вероятностям и по условным вероятностям события А .

Пример . Известно, что 5 % всех мужчин и 0.25 % всех женщин дальтоники. Наугад выбранное лицо по номеру медицинской карточки страдает дальтонизмом. Какова вероятность того, что это мужчина?

Решение . Событие А – человек страдает дальтонизмом. Пространство элементарных событий для опыта – выбран человек по номеру медицинской карточки – Ω = {Н 1 , Н 2 } состоит из 2 событий:

Н 1 −выбран мужчина,

Н 2 −выбрана женщина.

Эти события могут быть выбраны в качестве гипотез.

По условию задачи (случайный выбор) вероятности этих событий одинаковые и равны Р(Н 1 ) = 0.5; Р(Н 2 ) = 0.5.

При этом условные вероятности того, что человек страдает дальтонизмом, равны соответственно:

Р(А/Н 1 ) = 0.05 = 1/20; Р(А/Н 2 ) = 0.0025 = 1/400.

Так как известно, что выбранный человек дальтоник, т. е. событие произошло, то используем формулу Байеса для переоценки первой гипотезы:

Пример. Имеются три одинаковых по виду ящика. В первом ящике 20 белых шаров, во втором – 10 белых и 10 черных, в третьем – 20 черных шаров. Из выбранного наугад ящика вынули белый шар. Вычислить вероятность того, что шар вынут из первого ящика.

Решение . Обозначим через А событие – появление белого шара. Можно сделать три предположения (гипотезы) о выборе ящика: Н 1 , Н 2 , Н 3 − выбор соответственно первого, второго и третьего ящика.

Так как выбор любого из ящиков равновозможен, то вероятности гипотез одинаковы:

Р(Н 1 )=Р(Н 2 )=Р(Н 3 )= 1/3.

По условию задачи вероятность извлечения белого шара из первого ящика

Вероятность извлечения белого шара из второго ящика



Вероятность извлечения белого шара из третьего ящика

Искомую вероятность находим по формуле Байеса:

Повторение испытаний. Формула Бернулли .

Проводится n испытаний, в каждом из которых событие А может произойти или не произойти, причем вероятность события А в каждом отдельном испытании постоянна, т.е. не меняется от опыта к опыту. Как найти вероятность события А в одном опыте мы уже знаем.

Представляет особый интерес вероятность появления определенного числа раз (m раз) события А в n опытах. подобные задачи решаются легко, если испытания являются независимыми.

Опр. Несколько испытаний называюся независимыми относительно события А , если вероятность события А в каждом из них не зависит от исходов других опытов.

Вероятность Р n (m) наступления события А ровно m раз (ненаступление n-m раз, событие ) в этих n испытаниях. Событие А появляется в самых разных последовательностях m раз).

- формулу Бернулли.

Очевидны следующие формулы:

Р n (mменее k раз в n испытаниях.

P n (m>k) = P n (k+1) + P n (k+2) +…+ P n (n) - вероятность наступления события А более k раз в n испытаниях.

Краткая теория

Если событие наступает только при условии появления одного из событий образующих полную группу несовместных событий, то равна сумме произведений вероятностей каждого из событий на соответствующую условную вероятность кошелек .

При этом события называются гипотезами, а вероятности – априорными. Эта формула называется формулой полной вероятности.

Формула Байеса применяется при решении практических задач, когда событие , появляющееся совместно с каким-либо из событий образующих полную группу событий произошло и требуется провести количественную переоценку вероятностей гипотез . Априорные (до опыта) вероятности известны. Требуется вычислить апостериорные (после опыта) вероятности, т.е. по существу нужно найти условные вероятности . Формула Байеса выглядит так:

Пример решения задачи

Условие задачи 1

На фабрике станки 1,2 и 3 производят соответственно 20%, 35% и 45% всех деталей. В их продукции брак составляет соответственно 6%, 4%, 2%. Какова вероятность того, что случайно выбранное изделие оказалось дефектным? Какова вероятность того, что оно было произведено: а) станком 1; б) станком 2; в) станком 3?

Решение задачи 1

Обозначим через событие, состоящее в том, что стандартное изделие оказалось дефектным.

Событие может произойти только при условии наступления одного из трех событий:

Изделие произведено на станке 1;

Изделие произведено на станке 2;

Изделие произведено на станке 3;

Запишем условные вероятности:

Формула полной вероятности

Если событие может произойти только при выполнении одного из событий , которые образуютполную группу несовместных событий, то вероятность события вычисляется по формуле

По формуле полной вероятности находим вероятность события :

Формула Байеса

Формула Байеса позволяет «переставить причину и следствие»: по известному факту события вычислить вероятность того, что оно было вызвано данной причиной.

Вероятность того, что дефектное изделие изготовлено на станке 1:

Вероятность того, что дефектное изделие изготовлено на станке 2:

Вероятность того, что дефектное изделие изготовлено на станке 3:

Условие задачи 2

Группа состоит из 1 отличника, 5 хорошо успевающих студентов и 14 студентов, успевающих посредственно. Отличник отвечает на 5 и 4 с равной вероятностью, хорошист отвечает на 5, 4 и 3 с равной вероятностью, и посредственно успевающий студент отвечает на 4,3 и 2 с равной вероятностью. Случайно выбранный студент ответил на 4. Какова вероятность того, что был вызван посредственно успевающий студент?

Решение задачи 2

Гипотезы и условные вероятности

Возможны следующие гипотезы:

Отвечал отличник;

Отвечал хорошист;

–отвечал посредственно занимающийся студент;

Пусть событие -студент получит 4.

Условные вероятности:

Ответ:


Дано определение геометрической вероятности и подробно рассмотрена широко известная задача о встрече.

Сформулируйте и докажите формулу полной вероятности. Приведите пример ее применения.

Если события H 1 , H 2 , …, H n попарно несовместны и при каждом испытании обязательно наступает хотя бы одно из этих событий, то для любого события А справедливо равенство:

P(A)= P H1 (A)P(H 1)+ P H2 (A)P(H 2)+…+ P Hn (A)P(H n) – формула полной вероятности. При этом H 1 , H 2 , …, H n называют гипотезами.

Доказательство: Событие А распадается на варианты: AH 1 , AH 2 , …, AH n . (А наступает вместе с H 1 и т.д.) Иначе говоря, имеем А= AH 1 + AH 2 +…+ AH n . Так как H 1 , H 2 , …, H n попарно несовместны, то несовместны и события AH 1 , AH 2 , …, AH n . Применяя правило сложения, находим: P(А)= P(AH 1)+ P(AH 2)+…+ P(AH n). Заменив каждое слагаемое P(AH i) правой части произведением P Hi (A)P(H i), получаем требуемое равенство.

Пример:

Допустим, у нас есть два набора деталей. Вероятность того, что деталь первого набора стандартна, равна 0,8, а второго – 0,9. Найдем вероятность того, что взятая наудачу деталь – стандартная.

Р(А) = 0,5*0,8 + 0,5*0,9 = 0,85.

Сформулируйте и докажите формулу Байеса. Приведите пример ее применения.

Формула Байеса:

Она позволяет переоценить вероятности гипотез после того, как становится известным результат испытания, в итоге которого появилось событие А.

Доказательство: Пусть событие А может наступить при условии появления одного из несовместных событий H 1 , H 2 , …, H n , образующих полную группу. Поскольку заранее неизвестно, какое из этих событий наступит, их называют гипотезами.

Вероятность появления события А определяется по формуле полной вероятности:

P(A)= P H1 (A)P(H 1)+ P H2 (A)P(H 2)+…+ P Hn (A)P(H n) (1)

Допустим, что произведено испытание, в результате которого появилось событие А. Определим, как изменились, в связи с тем, что событие А уже наступило, вероятности гипотез. Другими словами, будем искать условные вероятности

P A (H 1), P A (H 2), …, P A (H n).

По теореме умножения имеем:

Р(АH i) = Р(А) Р A (H i) = Р(H i)Р Hi (А)

Заменим здесь Р(А) по формуле (1), получаем

Пример:

Имеется три одинаковых по виду ящика. В первом ящике n=12 белых шаров, во втором m=4 белых и n-m=8 черных шаров, в третьем n=12 черных шаров. Из выбранного наугад ящика вынули белый шар. Найдите вероятность Р того, что шар вынут из второго ящика.

Решение.

4) Выведите формулу для вероятности k успехов в серии n испытаний по схеме Бернулли.

Исследуем случай, когда производится n одинаковых и независимых опытов, каждый из которых имеет только 2 исхода {A; }. Т.е. некоторый опыт повторяется n раз, причем в каждом опыте некоторое событие А может появиться с вероятностью P(A)=q или не появиться с вероятностью P()=q-1=p .

Пространство элементарных событий каждой серии испытаний содержит точек или последовательностей из символов А и . Такое вероятностное пространство и носит название схема Бернулли. Задача же заключается в том, чтобы для данного k найти вероятность того, что при n- кратном повторении опыта событие А наступит k раз.

Для большей наглядности условимся каждое наступление события А рассматривать как успех, ненаступление А – как неуспех. Наша цель – найти вероятность того, что из n опытов ровно k окажутся успешными; обозначим это событие временно через B.

Событие В представляется в виде суммы ряда событий – вариантов события В. Чтобы фиксировать определенный вариант, нужно указать номера тех опытов, которые оканчиваются успехом. Например, один из возможных вариантов есть

Число всех вариантов равно, очевидно, , а вероятность каждого варианта ввиду независимости опытов равна . Отсюда вероятность события В равна . Чтобы подчеркнуть зависимость полученного выражения от n и k, обозначим его . Итак, .

5) Используя интегральную приближённую формулу Лапласа, выведите формулу для оценки отклонения относительной частоты события А от вероятности p наступления A в одном опыте.

В условиях схемы Бернулли с заданными значениями n и p для данного e>0 оценим вероятность события , где k – число успехов в n опытах. Это неравенство эквивалентно |k-np|£en, т.е. -en £ k-np £ en или np-en £ k £ np+en. Таким образом, речь идёт о получении оценки для вероятности события k 1 £ k £ k 2 , где k 1 = np-en, k 2 = np+en. Применяя интегральную приближённую формулу Лапласа, получим: P( » . С учётом нечётности функции Лапласа получаем приближённое равенство P( » 2Ф .

Примечание : т.к. по условию n=1, то подставляем вместо n единицу и получаем окончательный ответ.

6) Пусть X – дискретная случайная величина, принимающая только неотрицательные значения и имеющая математическое ожидание m . Докажите, что P (X ≥ 4) ≤ m/ 4 .

m= (т.к. 1-ое слагаемое положительно, то если его убрать, будет меньше) ³ (заменим a на 4, будет только меньше) ³ = =4×P (X ³4). Отсюда P (X ≥ 4) ≤ m/ 4 .

(Вместо 4 может быть любое число).

7) Докажите, что если X и Y – независимые дискретные случайные величины, принимающие конечное множество значений, то M(XY)=M(X)M(Y)

x 1 x 2
p 1 p 2

называется число M(XY) = x 1 p 1 + x 2 p 2 + …

Если случайные величины X и Y независимы, то математическое ожидание их произведения равно произведению их математических ожиданий (теорема умножения математических ожиданий).

Доказательство: Возможные значения X обозначим x 1 , x 2, … , возможные значения Y - y 1 , y 2, … а p ij =P(X=x i , Y=y j). XY M(XY)= Ввиду независимости величин X и Y имеем: P(X= x i , Y=y j)= P(X=x i) P(Y=y j). Обозначив P(X=x i)=r i , P(Y=y j)=s j , перепишем данное равенство в виде p ij =r i s j

Таким образом, M(XY) = = . Преобразуя полученное равенство, выводим: M(XY)=()() = M(X)M(Y), что и требовалось доказать.

8) Докажите, что если X и Y – дискретные случайные величины, принимающие конечное множество значений, то M (X +Y ) = M (X ) +M (Y ).

Математическим ожиданием дискретной случайной величины с законом распределения

x 1 x 2
p 1 p 2

называется число M(XY) = x 1 p 1 + x 2 p 2 + …

Математическое ожидание суммы двух случайных величин равно сумме математических ожиданий слагаемых: M(X+Y)= M(X)+M(Y).

Доказательство: Возможные значения X обозначим x 1 , x 2, … , возможные значения Y - y 1 , y 2, … а p ij =P(X=x i , Y=y j). Закон распределения величины X+Y будет выражаться соответствующей таблицей. M(X+Y)= .Эту формулу можно переписать следующим образом: M(X+Y)= .Первую сумму правой части можно представить в виде . Выражение есть вероятность того, что наступит какое-либо из событий (X=x i , Y=y 1), (X=x i , Y=y 2), … Следовательно, это выражение равно P(X=x i). Отсюда . Аналогично, . В итоге имеем: M(X+Y)= M(X)+M(Y), что и требовалось доказать.

9) Пусть Х – дискретная случайная величина, распределенная по биномиальному закону распределения с параметрами n и р . Докажите, что М(Х)=nр , D(Х)=nр(1-р) .

Пусть производится n независимых испытаний, в каждом из которых может появиться событие А с вероятностью р , так что вероятность противоположного события Ā равна q=1-p . Рассмотрим сл. величину Х – число появления события А в n опытах. Представим Х в виде суммы индикаторов события А для каждого испытания: Х=Х 1 +Х 2 +…+Х n . Теперь докажем, что М(Х i)=р, D(Х i)=np . Для этого рассмотрим закон распределения сл. величины, который имеет вид:

Х
Р р q

Очевидно, что М(Х)=р , случайная величина Х 2 имеет тот же закон распределения, поэтому D(Х)=М(Х 2)-М 2 (Х)=р-р 2 =р(1-р)=рq . Таким образом, М(Х i)=р , D(Х i)=pq . По теореме сложения математических ожиданий М(Х)=М(Х 1)+..+М(Х n)=nр. Поскольку случайные величины Х i независимы, то дисперсии тоже складываются: D(Х)=D(Х 1)+…+D(Х n)=npq=np(1-р).

10) Пусть X – дискретная случайная величина, распределенная по закону Пуассона с параметром λ. Докажите, что M (X ) = λ .

Закон Пуассона задается таблицей:

Отсюда имеем:

Таким образом, параметр λ, характеризующий данное пуассоновское распределение, есть не что иное как математическое ожидание величины X.

11) Пусть Х – дискретная случайная величина, распределенная по геометрическому закону с параметром р. Докажите, что M (X) = .

Геометрический закон распределения связан с последовательностью испытаний Бернулли до 1-го успешного события А. Вероятность появления события А в одном испытании равна р, противоположного события q = 1-p. Закон распределения случайной величины Х – числа испытаний имеет вид:

х n
Р р pq pq n-1

Ряд, записанный в скобках, получается почленным дифференцированием геометрической прогрессии

Следовательно, .

12) Докажите, что коэффициент корреляции случайных величин Х и У удовлетворяет условию .

Определение: Коэффициентом корреляции двух слу­чайных величин называется отношение их ковариации к произведе­нию средних квадратических отклонений этих величин: . .

Доказательство: Рассмотрим случайную величину Z = . Вычислим ее дисперсию . Поскольку левая часть неотрицательна, то правая неотрицательна. Следовательно, , |ρ|≤1.

13) Как вычисляется дисперсия в случае непрерывного распределения с плотностью f (x )? Докажите, что для случайной величины X с плотностью дисперсия D (X ) не существует, а математическое ожидание M (X ) существует.

Дисперсия абсолютно непрерывной случайной величины X с функцией плотности f(x) и математическим ожиданием m = M(X) определяется таким же равенством, как и для дискретной величины

.

В случае когда абсолютно непрерывная случайная величина X сосредоточена на промежутке ,

∞ - интеграл расходится, следовательно, дисперсия не существует.

14) Докажите, что для нормальной случайной величины Х с функцией плотности распределения математическое ожидание М(Х) = μ.

Формула

Докажем, что μ есть математическое ожидание.

Поопределению математического ожидания непрерывной с.в.,

Введем новую переменную . Отсюда . Приняв во внимание, что новые пределы интегрирования равны старым, получим

Первое из слагаемых равно нулю ввиду нечетности подинтегральной функции. Второе из слагаемых равно μ (интеграл Пуассона ).

Итак, M(X)=μ , т.е. математическое ожидание нормального распределения равно параметру μ.

15) Докажите, что для нормальной случайной величины Х с функцией плотности распределения диспресия D(X) = σ 2 .

Формула описывает плотность нормального распределения вероятностей непрерывной с.в..

Докажем, что - среднее квадратическое отклонение нормального распределения. Введем новую переменную z=(х-μ)/ . Отсюда . Приняв во внимание, что новые пределы инте­грирования равны старым, получим Интегрируя по частям, положив u=z , найдем Следовательно, .Итак, среднее квадратическое отклонение нормального распределения равно параметру .

16) Докажите, что для непрерывной случайной величины, распределенной по показательному закону с параметром , математическое ожидание .

Говорят, что случайная величина X, принимающая только неотрицательные значения, распределена по показательному закону, если для некоторого положительного параметра λ>0 функция плотности имеет вид:

Для нахождения математического ожидания воспользуемся формулой

Читайте также: