Какой процент кислорода в атмосфере земли. Основные слои атмосферы земли в порядке возрастания

Слои атмосферы по порядку от поверхности Земли

Роль атмосферы в жизни Земли

Атмосфера является источником кислорода, которым дышат люди. Однако при подъеме на высоту общее атмосферное давление падает, что приводит к снижению парциального кислородного давления.

Лёгкие человека содержат приблизительно три литра альвеолярного воздуха. Если атмосферное давление в норме, то парциальное кислородное давление в альвеолярном воздухе будет составлять 11 мм рт. ст., давление углекислых газов - 40 мм рт. ст., а водяных паров - 47 мм рт. ст. При увеличении высоты кислородное давление понижается, а давление паров воды и углекислоты в лёгких в сумме будет оставаться постоянным - приблизительно 87 мм рт. ст. Когда давление воздуха сравняется с этой величиной, кислород прекратит поступать в лёгкие.

В связи со снижением атмосферного давления на высоте 20 км, здесь будет кипеть вода и межтканевая жидкость организма в человеческом теле. Если не использовать герметическую кабину, на такой высоте человек погибнет практически мгновенно. Поэтому с точки зрения физиологических особенностей человеческого организма, «космос» берёт начало с высоты 20 км над уровнем моря.

Роль атмосферы в жизни Земли очень велика. Так, например, благодаря плотным воздушным слоям - тропосфере и стратосфере, люди защищены от радиационного воздействия. В космосе, в разреженном воздухе, на высоте свыше 36 км, действует ионизирующая радиация. На высоте свыше 40 км - ультрафиолетовая.

При подъёме над поверхностью Земли на высоту свыше 90-100 км будет наблюдаться постепенное ослабление, а затем и полное исчезновение привычных для человека явлений, наблюдаемых в нижнем атмосферном слое:

Не распространяется звук.

Отсутствует аэродинамическая сила и сопротивление.

Тепло не передаётся конвекцией и т. д.

Атмосферный слой защищает Землю и все живые организмы от космической радиации, от метеоритов, отвечает за регулирование сезонных температурных колебаний, уравновешивание и выравнивание суточных. При отсутствии атмосферы на Земле суточная температура колебалась бы в пределах +/-200С˚. Атмосферный слой - это животворный «буфер» между земной поверхностью и космосом, носитель влаги и тепла, в атмосфере происходят процессы фотосинтеза и обмена энергии - важнейших биосферных процессов.

Слои атмосферы по порядку от поверхности Земли

Атмосфера - это слоистая структура, представляющая собой следующие слои атмосферы по порядку от поверхности Земли:

Тропосфера.

Стратосфера.

Мезосфера.

Термосфера.

Экзосфера

Каждый слой не имеет между собой резких границ, а на их высоту влияет широта и времена года. Такая слоистая структура образовалась в результате температурных изменений на различных высотах. Именно благодаря атмосфере мы видим мерцающие звезды.

Строение атмосферы Земли по слоям:

Из чего состоит атмосфера Земли?

Каждый атмосферный слой отличается температурой, плотностью и составом. Общая толщина атмосферы составляет 1,5-2,0 тыс. км. Из чего состоит атмосфера Земли? В настоящее время - это смесь газов с различными примесями.

Тропосфера

Строение атмосферы Земли начинается с тропосферы, которая представляет собой нижнюю часть атмосферы высотой примерно 10-15 км. Здесь сосредоточена основная часть атмосферного воздуха. Характерная черта тропосферы - падение температуры на 0,6 ˚C по мере поднятия вверх на каждые 100 метров. Тропосфера сосредоточила в себе практически все атмосферные водяные пары, и здесь же происходит формирование облаков.

Высота тропосферы ежедневно изменяется. Кроме того, её средняя величина меняется в зависимости от широты и сезона года. Средняя высота тропосферы над полюсами - 9 км, над экватором - около 17 км. Показатели средней годовой температуры воздуха над экватором приближены к +26 ˚C, а над Северным полюсом -23 ˚C. Верхняя линия границы тропосферы над экватором составляет среднегодовую температуру около -70 ˚C, а над северным полюсом в летнее время -45 ˚Cи в зимнее -65 ˚C. Таким образом, чем больше высота, тем ниже температура. Лучи солнца беспрепятственно проходят сквозь тропосферу, нагревая поверхность Земли. Тепло, излучаемое солнцем, удерживаются благодаря углекислому газу, метану и водяным парам.

Стратосфера

Над слоем тропосферы расположена стратосфера, составляющая 50-55 км в высоту. Особенность этого слоя заключается в росте температуры с высотой. Между тропосферой и стратосферой пролегает переходная прослойка, называющаяся тропопаузой.

Приблизительно с высоты 25 километров температура стратосферного слоя начинает возрастать и, при достижении максимальной высоты 50 км приобретает значения от +10 до +30 ˚C.

Паров воды в стратосфере очень мало. Иногда на высоте около 25 км можно обнаружить довольно тонкие облака, которые называют «перламутровыми». В дневное время они не заметны, а в ночное - светятся из-за освещения солнцем, которое находится под горизонтом. Состав перламутровых облаков представляет собой переохлаждённые водяные капельки. Стратосфера состоит в основном из озона.

Мезосфера

Высота слоя мезосферы - приблизительно 80 км. Здесь, с поднятием кверху, температура понижается и на самой верхней границе достигает значений в несколько десятков С˚ ниже нуля. В мезосфере также можно наблюдать облака, которые, предположительно, образуются из кристаллов льда. Эти облака называются «серебристыми». Мезосфера характеризуется самой холодной температурой в атмосфере: от -2 до -138 ˚C.

Термосфера

Своё название этот атмосферный слой приобрёл благодаря высоким температурам. Термосфера состоит из:

Ионосферы.

Экзосферы.

Ионосфера характеризуется разреженным воздухом, каждый сантиметр которого на высоте 300 км состоит из 1 млрд атомов и молекул, а на высоте 600 км - более, чем из 100 млн.

Также ионосфере характерна высокая ионизация воздуха. Эти ионы состоят из заряженных кислородных атомов, заряженных молекул атомов азота и свободных электронов.

Экзосфера

С высоты 800-1000 км начинается экзосферный слой. Частицы газа, особенно лёгкие, движутся здесь с огромной скоростью, преодолевая силу тяжести. Такие частицы, вследствие своего быстрого движения, вылетают из атмосферы в космическое пространство и рассеиваются. Поэтому экзосфера имеет название сферы рассеивания. Вылетают в космос преимущественно водородные атомы, из которых состоят наиболее высокие слои экзосферы. Благодаря частицам в верхних слоях атмосферы и частицам солнечного ветра мы можем наблюдать северное сияние.

Спутники и геофизические ракеты позволили установить наличие в верхних слоях атмосферы радиационного пояса планеты, состоящего из электрических заряженных частиц - электронов и протонов.

Заметное увеличение содержания свободного кислорода в атмосфере Земли 2,4 млрд лет назад, по-видимому, явилось результатом очень быстрого перехода от одного равновесного состояния к другому. Первый уровень соответствовал крайне низкой концентрации О 2 — примерно в 100 000 раз ниже той, что наблюдается сейчас. Второй равновесный уровень мог быть достигнут при более высокой концентрации, составляющей не менее чем 0,005 от современной. Содержание кислорода между двумя этими уровнями характеризуется крайней неустойчивостью. Наличие подобной «бистабильности» позволяет понять, почему в атмосфере Земли было так мало свободного кислорода в течение по крайней мере 300 млн лет после того, как его стали вырабатывать цианобактерии (синезеленые «водоросли»).

В настоящее время атмосфера Земли на 20% состоит из свободного кислорода, который есть не что иное как побочный продукт фотосинтеза цианобактерий, водорослей и высших растений. Очень много кислорода выделяется тропическими лесами, которые в популярных изданиях нередко называют легкими планеты. При этом, правда, умалчивается, что за год тропические леса потребляют практически столько же кислорода, сколько образуют. Расходуется он на дыхание организмов, разлагающих готовое органическое вещество, — в первую очередь бактерий и грибов. Для того, чтобы кислород начал накапливаться в атмосфере, хотя бы часть образованного в ходе фотосинтеза вещества должна быть выведена из круговорота — например, попасть в донные отложения и стать недоступной для бактерий, разлагающих его аэробно, то есть с потреблением кислорода.

Суммарную реакцию оксигенного (то есть «дающего кислород») фотосинтеза можно записать как:
CO 2 + H 2 O + → (CH 2 O) + O 2 ,
где — энергия солнечного света, а (CH 2 O) — обобщенная формула органического вещества. Дыхание же — это обратный процесс, который можно записать как:
(CH 2 O) + O 2 → CO 2 + H 2 O.
При этом будет высвобождаться необходимая для организмов энергия. Однако аэробное дыхание возможно только при концентрации O 2 не меньше чем 0,01 от современного уровня (так называемая точка Пастера). В анаэробных условиях органическое вещество разлагается путем брожения, а на завершающих стадиях этого процесса нередко образуется метан. Например, обобщенное уравнение метаногенеза через образование ацетата выглядит как:
2(СH 2 O) → CH 3 COOH → CH 4 + CO 2 .
Если комбинировать процесс фотосинтеза с последующим разложением органического вещества в анаэробных условиях, то суммарное уравнение будет иметь вид:
CO 2 + H 2 O + → 1/2 CH 4 + 1/2 CO 2 + O 2 .
Именно такой путь разложения органического вещества, видимо, был основным в древней биосфере.

Многие важные детали того, как установилось современное равновесие между поступлением кислорода в атмосферу и его изъятием, остаются невыясненными. Ведь заметное увеличение содержания кислорода, так называемое «Великое окисление атмосферы» (Great Oxidation), произошло только 2,4 млрд лет назад, хотя точно известно, что осуществляющие оксигенный фотосинтез цианобактерии были уже достаточно многочисленны и активны 2,7 млрд лет назад, а возникли они еще раньше — возможно, 3 млрд лет назад. Таким образом, в течение по крайней мере 300 миллионов лет деятельность цианобактерий не приводила к увеличению содержания кислорода в атмосфере .

Предположение о том, что в силу каких-то причин вдруг произошло радикальное увеличение чистой первичной продукции (то есть прироста органического вещества, образованного в ходе фотосинтеза цианобактерий), критики не выдержало. Дело в том, что при фотосинтезе преимущественно потребляется легкий изотоп углерода 12 С, а в окружающей среде возрастает относительное содержание более тяжелого изотопа 13 С. Соответственно, донные отложения, содержащие органическое вещество, должны быть обеднены изотопом 13 С, который скапливается в воде и идет на образование карбонатов. Однако соотношение 12 С и 13 С в карбонатах и в органическом веществе отложений остается неизменным несмотря на радикальные изменения в концентрации кислорода в атмосфере. Значит, всё дело не в источнике О 2 , а в его, как выражаются геохимики, «стоке» (изъятии из атмосферы), который вдруг существенным образом сократился, что и привело к существенному увеличению количества кислорода в атмосфере.

Обычно считается, что непосредственно до «Великого окисления атмосферы» весь образующийся тогда кислород расходовался на окисление восстановленных соединений железа (а потом серы), которых на поверхности Земли было довольно много. В частности, тогда образовались так называемые «полосчатые железные руды». Но недавно Колин Гольдблатт , аспирант Школы наук об окружающей среде при Университете Восточной Англии (Норвич, Великобритания), совместно с двумя коллегами из того же университета пришли к выводу о том, что содержание кислорода в земной атмосфере может быть в одном из двух равновесных состояний: его может быть или очень мало — примерно в 100 тысяч раз меньше, чем сейчас, или уже довольно много (хотя с позиции современного наблюдателя мало) — не менее, чем 0,005 от современного уровня.

В предлагаемой модели они учли поступление в атмосферу как кислорода, так и восстановленных соединений, в частности обратив внимание на соотношение свободного кислорода и метана. Они отметили, что если концентрация кислорода превышает 0,0002 от современного уровня, то часть метана уже может окисляться бактериями метанотрофами согласно реакции:
CH 4 + 2O 2 → CO 2 + 2H 2 O.
Но остальной метан (а его довольно много, особенно при низкой концентрации кислорода) поступает в атмосферу.

Вся система находится в неравновесном состоянии с точки зрения термодинамики. Основной же механизм восстановления нарушенного равновесия — окисление метана в верхних слоях атмосферы гидроксильным радикалом (см. Колебания метана в атмосфере: человек или природа — кто кого , «Элементы», 06.10.2006). Гидроксильный радикал, как известно образуется в атмосфере под действием ультрафиолетового излучения. Но если кислорода в атмосфере много (по меньшей мере 0,005 от современного уровня), то в верхних ее слоях образуется озоновый экран, хорошо защищающий Землю от жестких ультрафиолетовых лучей и вместе с тем мешающий физико-химическому окислению метана.

Авторы приходят к несколько парадоксальному выводу о том, что само по себе существование оксигенного фотосинтеза не является достаточным условием ни для того, чтобы сформировалась богатая кислородом атмосфера, ни для того, чтобы возник озоновый экран. Данное обстоятельство следует учитывать в тех случаях, когда мы пытаемся найти признаки существования жизни на других планетах основываясь на результатах обследования их атмосферы.

10,045×10 3 Дж/(кг*К)(в интервале температур от 0-100°С), C v 8,3710*10 3 Дж/(кг*К) (0-1500°С). Растворимость воздуха в воде при 0°С 0,036%, при 25°С - 0,22%.

Состав атмосферы

История образования атмосферы

Ранняя история

В настоящее время наука не может со стопроцентной точностью проследить все этапы образования Земли. Согласно наиболее распространённой теории, атмосфера Земли во времени пребывала в четырёх различных составах. Первоначально она состояла из лёгких газов (водорода и гелия), захваченных из межпланетного пространства. Это так называемая первичная атмосфера . На следующем этапе активная вулканическая деятельность привела к насыщению атмосферы и другими газами, кроме водорода (углеводородами, аммиаком , водяным паром). Так образовалась вторичная атмосфера . Эта атмосфера была восстановительной. Далее процесс образования атмосферы определялся следующими факторами:

  • постоянная утечка водорода в межпланетное пространство ;
  • химические реакции, происходящие в атмосфере под влиянием ультрафиолетового излучения, грозовых разрядов и некоторых других факторов.

Постепенно эти факторы привели к образованию третичной атмосферы , характеризующейся гораздо меньшим содержанием водорода и гораздо большим - азота и углекислого газа (образованы в результате химических реакций из аммиака и углеводородов).

Появление жизни и кислорода

С появлением на Земле живых организмов в результате фотосинтеза , сопровождающегося выделением кислорода и поглощением углекислого газа, состав атмосферы начал меняться. Существуют, однако, данные (анализ изотопного состава кислорода атмосферы и выделяющегося при фотосинтезе), свидетельствующие в пользу геологического происхождения атмосферного кислорода.

Первоначально кислород расходовался на окисление восстановленых соединений - углеводородов , закисной формы железа , содержавшейся в океанах и др. По окончанию данного этапа содержание кислорода в атмосфере стало расти.

В 1990-x годах были проведены эксперименты по созданию замкнутой экологической системы («Биосфера 2»), в ходе которых не удалось создать стабильную систему, обладающую единым составом воздуха. Влияние микроорганизмов привело к снижению уровня кислорода и увеличению количества углекислого газа.

Азот

Образование большого количества N 2 обусловлено окислением первичной аммиачно-водородной атмосферы молекулярным О 2 , который стал поступать с поверхности планеты в результате фотосинтеза, как предполагается, около 3 млрд. лет назад (по другой версии, кислород атмосферы имеет геологическое происхождение). Азот окисляется до NO в верхних слоях атмосферы, используется в промышленности и связывается азотфиксирующими бактериями, в то же время N 2 выделяется в атмосферу в результате денитрификации нитратов и др. азотсодержащих соединений.

Азот N 2 инертный газ и вступает в реакции лишь в специфических условиях (например, при разряде молнии). Окислять его и переводить в биологическую форму могут цианобактерии, некоторые бактерии (например клубеньковые, формирующие ризобиальный симбиоз с бобовыми растениями).

Окисление молекулярного азота электрическиими разрядами используется при промышленном изготовлении азотных удобрений, он же привёл к образованию уникальных месторождений селитры в чилийской пустыне Атакама .

Благородные газы

Сжигание топлива - основной источник загрязняющих газов (CО , NO, SO 2). Диоксид серы окисляется О 2 воздуха до SO 3 в высших слоях атмосферы, который взаимодействует с парами Н 2 О и NH 3 , а образующиеся при этом Н 2 SO 4 и (NН 4) 2 SO 4 возвращаются на поверхность Земли вместе с атмосферными осадками. Использование двигателей внутреннего сгорания приводит к значительному загрязнению атмосферы оксидами азота, углеводородами и соединениями Рb .

Аэрозольное загрязнение атмосферы обусловлено как естественными причинами (извержение вулканов, пыльные бури, унос капел морской воды и частиц пыльцы растений и др.), так и хозяйственной деятельностью человека (добыча руд и строительных материалов, сжигание топлива, изготовление цемента и т. п.). Интенсивный широкомасштабный вынос твёрдых частиц в атмосферу - одна из возможных причин изменений климата планеты.

Строение атмосферы и характеристика отдельных оболочек

Физическое состояние атмосферы определяется погодой и климатом . Основные параметры атмосферы: плотность воздуха, давление, температура и состав. С увеличением высоты плотность воздуха и атмосферное давление уменьшаются. Температура меняется также в зависимости от изменения высоты. Вертикальное строение атмосферы характеризуется различными температурными и электрическими свойствами, разным состоянием воздуха. В зависимости от температуры в атмосфере различают следующие основные слои: тропосферу, стратосферу, мезосферу, термосферу, экзосферу (сферу рассеяния). Переходные области атмосферы между соседними оболочками называют соответственно тропопауза, стратопауза и т. п.

Тропосфера

Стратосфера

В стратосфере задерживается большая часть коротковолновой части ультрафиолетового излучения (180-200 нм) и происходит трансформация энергии коротких волн. Под влиянием этих лучей изменяются магнитные поля, распадаются молекулы, происходит ионизация, новообразование газов и других химических соединений. Эти процессы можно наблюдать в виде северных сияний , зарниц, и др. свечений.

В стратосфере и более высоких слоях под воздействия солнечной радиации молекулы газов диссоциируют - на атомы (выше 80 км диссоциируют СО 2 и Н 2 , выше 150 км - О 2 , выше 300 км - Н 2). На высоте 100-400 км в ионосфере происходит также ионизация газов, на высоте 320 км концентрация заряженных частиц (О + 2 , О − 2 , N + 2) составляет ~ 1/300 от концентрации нейтральных частиц. В верхних слоях атмосферы присутствуют свободные радикалы - ОН , НО 2 и др.

В стратосфере почти нет водяного пара.

Мезосфера

До высоты 100 км атмосфера представляет собой гомогенную хорошо перемешанную смесь газов. В более высоких слоях распределение газов по высоте зависит от их молекулярных масс, концентрация более тяжёлых газов убывает быстрее по мере удаления от поверхности Земли. Вследствие уменьшения плотности газов температура понижается от 0°С в стратосфере до −110°С в мезосфере. Однако кинетическая энергия отдельных частиц на высотах 200-250 км соответствует температуре ~1500°С. Выше 200 км наблюдаются значительные флуктуации температуры и плотности газов во времени и пространстве.

На высоте около 2000-3000 км экзосфера постепенно переходит в так называемый ближнекосмический вакуум, который заполнен сильно разреженными частицами межпланетного газа, главным образом атомами водорода. Но этот газ представляет собой лишь часть межпланетного вещества. Другую часть составляют пылевидные час­тицы кометного и метеорного происхождения. Кроме этих чрезвычайно разреженных частиц, в это пространство проникает электромагнитная и корпускулярная радиация солнечного и галактического происхождения.

На долю тропосферы приходится около 80% массы атмосферы, на долю стратосферы - около 20%; масса мезосферы - не более 0,3%, термосферы - менее 0,05% от общей массы атмосферы. На основании электрических свойств в атмосфере выделяют нейтросферу и ионосферу. В настоящее время считают, что атмосфера простирается до высоты 2000-3000 км.

В зависимости от состава газа в атмосфере выделяют гомосферу и гетеросферу . Гетеросфера - это область, где гравитация оказывает влияние на разделение газов, так как их перемешивание на такой высоте незначительно. Отсюда следует переменный состав гетеросферы. Ниже её лежит хорошо перемешанная, однородная по составу часть атмосферы называемая гомосферой. Граница между этими слоями называется турбопаузой , она лежит на высоте около 120 км.

Свойства атмосферы

Уже на высоте 5 км над уровнем моря у нетренированного человека появляется кислородное голодание и без адаптации работоспособность человека значительно снижается. Здесь кончается физиологическая зона атмосферы. Дыхание человека становится невозможным на высоте 15 км, хотя примерно до 115 км атмосфера содержит кислород.

Атмосфера снабжает нас необходимым для дыхания кислородом. Однако вследствие падения общего давления атмосферы по мере подъёма на высоту соответственно снижается и парциальное давление кислорода.

В лёгких человека постоянно содержится около 3 л альвеолярного воздуха. Парциальное давление кислорода в альвеолярном воздухе при нормальном атмосферном давлении составляет 110 мм рт. ст., давление углекислого газа - 40 мм рт. ст., а паров воды −47 мм рт. ст. С увеличением высоты давление кислорода падает, а суммарное давление паров воды и углекислоты в лёгких остаётся почти постоянным - около 87 мм рт. ст. Поступление кислорода в лёгкие полностью прекратится, когда давление окружающего воздуха станет равным этой величине.

На высоте около 19-20 км давление атмосферы снижается до 47 мм рт. ст. Поэтому на данной высоте начинается кипение воды и межтканевой жидкости в организме человека. Вне герметической кабины на этих высотах смерть наступает почти мгновенно. Таким образом, с точки зрения физиологии человека «космос» начинается уже на высоте 15-19 км.

Плотные слои воздуха - тропосфера и стратосфера - защищают нас от поражающего действия радиации. При достаточном разрежении воздуха, на высотах более 36 км, интенсивное действие на организм оказывает ионизирующая радиация - первичные космические лучи; на высотах более 40 км действует опасная для человека ультрафиолетовая часть солнечного спектра.

Атмосфера (от. др.-греч. ἀτμός - пар и σφαῖρα - шар) - газовая оболочка (геосфера), окружающая планету Земля. Внутренняя её поверхность покрывает гидросферу и частично земную кору, внешняя граничит с околоземной частью космического пространства.

Совокупность разделов физики и химии, изучающих атмосферу, принято называть физикой атмосферы. Атмосфера определяет погоду на поверхности Земли, изучением погоды занимается метеорология, а длительными вариациями климата - климатология.

Физические свойства

Толщина атмосферы - примерно 120 км от поверхности Земли. Суммарная масса воздуха в атмосфере - (5,1-5,3)·1018 кг. Из них масса сухого воздуха составляет (5,1352 ±0,0003)·1018 кг, общая масса водяных паров в среднем равна 1,27·1016 кг.

Молярная масса чистого сухого воздуха составляет 28,966 г/моль, плотность воздуха у поверхности моря приблизительно равна 1,2 кг/м3. Давление при 0 °C на уровне моря составляет 101,325 кПа; критическая температура - −140,7 °C (~132,4 К); критическое давление - 3,7 МПа; Cp при 0 °C - 1,0048·103 Дж/(кг·К), Cv - 0,7159·103 Дж/(кг·К) (при 0 °C). Растворимость воздуха в воде (по массе) при 0 °C - 0,0036 %, при 25 °C - 0,0023 %.

За «нормальные условия» у поверхности Земли приняты: плотность 1,2 кг/м3, барометрическое давление 101,35 кПа, температура плюс 20 °C и относительная влажность 50 %. Эти условные показатели имеют чисто инженерное значение.

Химический состав

Атмосфера Земли возникла в результате выделения газов при вулканических извержениях. С появлением океанов и биосферы она формировалась и за счёт газообмена с водой, растениями, животными и продуктами их разложения в почвах и болотах.

В настоящее время атмосфера Земли состоит в основном из газов и различных примесей (пыль, капли воды, кристаллы льда, морские соли, продукты горения).

Концентрация газов, составляющих атмосферу, практически постоянна, за исключением воды (H2O) и углекислого газа (CO2).

Состав сухого воздуха

Азот
Кислород
Аргон
Вода
Углекислый газ
Неон
Гелий
Метан
Криптон
Водород
Ксенон
Закись азота

Кроме указанных в таблице газов, в атмосфере содержатся SO2, NH3, СО, озон, углеводороды, HCl, HF, пары Hg, I2, а также NO и многие другие газы в незначительных количествах. В тропосфере постоянно находится большое количество взвешенных твёрдых и жидких частиц (аэрозоль).

Строение атмосферы

Тропосфера

Её верхняя граница находится на высоте 8-10 км в полярных, 10-12 км в умеренных и 16-18 км в тропических широтах; зимой ниже, чем летом. Нижний, основной слой атмосферы содержит более 80 % всей массы атмосферного воздуха и около 90 % всего имеющегося в атмосфере водяного пара. В тропосфере сильно развиты турбулентность и конвекция, возникают облака, развиваются циклоны и антициклоны. Температура убывает с ростом высоты со средним вертикальным градиентом 0,65°/100 м

Тропопауза

Переходный слой от тропосферы к стратосфере, слой атмосферы, в котором прекращается снижение температуры с высотой.

Стратосфера

Слой атмосферы, располагающийся на высоте от 11 до 50 км. Характерно незначительное изменение температуры в слое 11-25 км (нижний слой стратосферы) и повышение её в слое 25-40 км от −56,5 до 0,8 °С (верхний слой стратосферы или область инверсии). Достигнув на высоте около 40 км значения около 273 К (почти 0 °C), температура остаётся постоянной до высоты около 55 км. Эта область постоянной температуры называется стратопаузой и является границей между стратосферой и мезосферой.

Стратопауза

Пограничный слой атмосферы между стратосферой и мезосферой. В вертикальном распределении температуры имеет место максимум (около 0 °C).

Мезосфера

Мезосфера начинается на высоте 50 км и простирается до 80-90 км. Температура с высотой понижается со средним вертикальным градиентом (0,25-0,3)°/100 м. Основным энергетическим процессом является лучистый теплообмен. Сложные фотохимические процессы с участием свободных радикалов, колебательно возбуждённых молекул и т. д. обусловливают свечение атмосферы.

Мезопауза

Переходный слой между мезосферой и термосферой. В вертикальном распределении температуры имеет место минимум (около -90 °C).

Линия Кармана

Высота над уровнем моря, которая условно принимается в качестве границы между атмосферой Земли и космосом. В соответствии с определением ФАИ, линия Кармана находится на высоте 100 км над уровнем моря.

Граница атмосферы Земли

Термосфера

Верхний предел - около 800 км. Температура растёт до высот 200-300 км, где достигает значений порядка 1500 К, после чего остаётся почти постоянной до больших высот. Под действием ультрафиолетовой и рентгеновской солнечной радиации и космического излучения происходит ионизация воздуха («полярные сияния») - основные области ионосферы лежат внутри термосферы. На высотах свыше 300 км преобладает атомарный кислород. Верхний предел термосферы в значительной степени определяется текущей активностью Солнца. В периоды низкой активности - например, в 2008-2009 гг - происходит заметное уменьшение размеров этого слоя.

Термопауза

Область атмосферы прилегающая сверху к термосфере. В этой области поглощение солнечного излучения незначительно и температура фактически не меняется с высотой.

Экзосфера (сфера рассеяния)

Экзосфера - зона рассеяния, внешняя часть термосферы, расположенная выше 700 км. Газ в экзосфере сильно разрежён, и отсюда идёт утечка его частиц в межпланетное пространство (диссипация).

До высоты 100 км атмосфера представляет собой гомогенную хорошо перемешанную смесь газов. В более высоких слоях распределение газов по высоте зависит от их молекулярных масс, концентрация более тяжёлых газов убывает быстрее по мере удаления от поверхности Земли. Вследствие уменьшения плотности газов температура понижается от 0 °C в стратосфере до −110 °C в мезосфере. Однако кинетическая энергия отдельных частиц на высотах 200-250 км соответствует температуре ~150 °C. Выше 200 км наблюдаются значительные флуктуации температуры и плотности газов во времени и пространстве.

На высоте около 2000-3500 км экзосфера постепенно переходит в так называемый ближнекосмический вакуум, который заполнен сильно разрежёнными частицами межпланетного газа, главным образом атомами водорода. Но этот газ представляет собой лишь часть межпланетного вещества. Другую часть составляют пылевидные частицы кометного и метеорного происхождения. Кроме чрезвычайно разрежённых пылевидных частиц, в это пространство проникает электромагнитная и корпускулярная радиация солнечного и галактического происхождения.

На долю тропосферы приходится около 80 % массы атмосферы, на долю стратосферы - около 20 %; масса мезосферы - не более 0,3 %, термосферы - менее 0,05 % от общей массы атмосферы. На основании электрических свойств в атмосфере выделяют нейтросферу и ионосферу. В настоящее время считают, что атмосфера простирается до высоты 2000-3000 км.

В зависимости от состава газа в атмосфере выделяют гомосферу и гетеросферу. Гетеросфера - это область, где гравитация оказывает влияние на разделение газов, так как их перемешивание на такой высоте незначительно. Отсюда следует переменный состав гетеросферы. Ниже её лежит хорошо перемешанная, однородная по составу часть атмосферы, называемая гомосфера. Граница между этими слоями называется турбопаузой, она лежит на высоте около 120 км.

Другие свойства атмосферы и воздействие на человеческий организм

Уже на высоте 5 км над уровнем моря у нетренированного человека появляется кислородное голодание и без адаптации работоспособность человека значительно снижается. Здесь кончается физиологическая зона атмосферы. Дыхание человека становится невозможным на высоте 9 км, хотя примерно до 115 км атмосфера содержит кислород.

Атмосфера снабжает нас необходимым для дыхания кислородом. Однако вследствие падения общего давления атмосферы по мере подъёма на высоту соответственно снижается и парциальное давление кислорода.

В лёгких человека постоянно содержится около 3 л альвеолярного воздуха. Парциальное давление кислорода в альвеолярном воздухе при нормальном атмосферном давлении составляет 110 мм рт. ст., давление углекислого газа - 40 мм рт. ст., а паров воды - 47 мм рт. ст. С увеличением высоты давление кислорода падает, а суммарное давление паров воды и углекислоты в лёгких остаётся почти постоянным - около 87 мм рт. ст. Поступление кислорода в лёгкие полностью прекратится, когда давление окружающего воздуха станет равным этой величине.

На высоте около 19-20 км давление атмосферы снижается до 47 мм рт. ст. Поэтому на данной высоте начинается кипение воды и межтканевой жидкости в организме человека. Вне герметической кабины на этих высотах смерть наступает почти мгновенно. Таким образом, с точки зрения физиологии человека, «космос» начинается уже на высоте 15-19 км.

Плотные слои воздуха - тропосфера и стратосфера - защищают нас от поражающего действия радиации. При достаточном разрежении воздуха, на высотах более 36 км, интенсивное действие на организм оказывает ионизирующая радиация - первичные космические лучи; на высотах более 40 км действует опасная для человека ультрафиолетовая часть солнечного спектра.

По мере подъёма на всё большую высоту над поверхностью Земли постепенно ослабляются, а затем и полностью исчезают такие привычные для нас явления, наблюдаемые в нижних слоях атмосферы, как распространение звука, возникновение аэродинамической подъёмной силы и сопротивления, передача тепла конвекцией и др.

В разреженных слоях воздуха распространение звука оказывается невозможным. До высот 60-90 км ещё возможно использование сопротивления и подъёмной силы воздуха для управляемого аэродинамического полёта. Но начиная с высот 100-130 км знакомые каждому лётчику понятия числа М и звукового барьера теряют свой смысл: там проходит условная линия Кармана, за которой начинается область чисто баллистического полёта, управлять которым можно, лишь используя реактивные силы.

На высотах выше 100 км атмосфера лишена и другого замечательного свойства - способности поглощать, проводить и передавать тепловую энергию путём конвекции (т. е. с помощью перемешивания воздуха). Это значит, что различные элементы оборудования, аппаратуры орбитальной космической станции не смогут охлаждаться снаружи так, как это делается обычно на самолёте, - с помощью воздушных струй и воздушных радиаторов. На такой высоте, как и вообще в космосе, единственным способом передачи тепла является тепловое излучение.

История образования атмосферы

Согласно наиболее распространённой теории, атмосфера Земли во времени пребывала в трёх различных составах. Первоначально она состояла из лёгких газов (водорода и гелия), захваченных из межпланетного пространства. Это так называемая первичная атмосфера (около четырех миллиардов лет назад). На следующем этапе активная вулканическая деятельность привела к насыщению атмосферы и другими газами, кроме водорода (углекислым газом, аммиаком, водяным паром). Так образовалась вторичная атмосфера (около трех миллиардов лет до наших дней). Эта атмосфера была восстановительной. Далее процесс образования атмосферы определялся следующими факторами:

  • утечка легких газов (водорода и гелия) в межпланетное пространство;
  • химические реакции, происходящие в атмосфере под влиянием ультрафиолетового излучения, грозовых разрядов и некоторых других факторов.

Постепенно эти факторы привели к образованию третичной атмосферы, характеризующейся гораздо меньшим содержанием водорода и гораздо большим - азота и углекислого газа (образованы в результате химических реакций из аммиака и углеводородов).

Азот

Образование большого количества азота N2 обусловлено окислением аммиачно-водородной атмосферы молекулярным кислородом О2, который стал поступать с поверхности планеты в результате фотосинтеза, начиная с 3 млрд лет назад. Также азот N2 выделяется в атмосферу в результате денитрификации нитратов и других азотсодержащих соединений. Азот окисляется озоном до NO в верхних слоях атмосферы.

Азот N2 вступает в реакции лишь в специфических условиях (например, при разряде молнии). Окисление молекулярного азота озоном при электрических разрядах в малых количествах используется в промышленном изготовлении азотных удобрений. Окислять его с малыми энергозатратами и переводить в биологически активную форму могут цианобактерии (сине-зелёные водоросли) и клубеньковые бактерии, формирующие ризобиальный симбиоз с бобовыми растениями, т. н. сидератами.

Кислород

Состав атмосферы начал радикально меняться с появлением на Земле живых организмов, в результате фотосинтеза, сопровождающегося выделением кислорода и поглощением углекислого газа. Первоначально кислород расходовался на окисление восстановленных соединений - аммиака, углеводородов, закисной формы железа, содержавшейся в океанах и др. По окончании данного этапа содержание кислорода в атмосфере стало расти. Постепенно образовалась современная атмосфера, обладающая окислительными свойствами. Поскольку это вызвало серьёзные и резкие изменения многих процессов, протекающих в атмосфере, литосфере и биосфере, это событие получило название Кислородная катастрофа.

В течение фанерозоя состав атмосферы и содержание кислорода претерпевали изменения. Они коррелировали прежде всего со скоростью отложения органических осадочных пород. Так, в периоды угленакопления содержание кислорода в атмосфере, видимо, заметно превышало современный уровень.

Углекислый газ

Содержание в атмосфере СО2 зависит от вулканической деятельности и химических процессов в земных оболочках, но более всего - от интенсивности биосинтеза и разложения органики в биосфере Земли. Практически вся текущая биомасса планеты (около 2,4·1012 тонн) образуется за счет углекислоты, азота и водяного пара, содержащихся в атмосферном воздухе. Захороненная в океане, в болотах и в лесах органика превращается в уголь, нефть и природный газ.

Благородные газы

Источник инертных газов - аргона, гелия и криптона - вулканические извержения и распад радиоактивных элементов. Земля в целом и атмосфера в частности обеднены инертными газами по сравнению с космосом. Считается, что причина этого заключена в непрерывной утечке газов в межпланетное пространство.

Загрязнение атмосферы

В последнее время на эволюцию атмосферы стал оказывать влияние человек. Результатом его деятельности стал постоянный рост содержания в атмосфере углекислого газа из-за сжигания углеводородного топлива, накопленного в предыдущие геологические эпохи. Громадные количества СО2 потребляются при фотосинтезе и поглощаются мировым океаном. Этот газ поступает в атмосферу благодаря разложению карбонатных горных пород и органических веществ растительного и животного происхождения, а также вследствие вулканизма и производственной деятельности человека. За последние 100 лет содержание СО2 в атмосфере возросло на 10 %, причём основная часть (360 млрд тонн) поступила в результате сжигания топлива. Если темпы роста сжигания топлива сохранятся, то в ближайшие 200-300 лет количество СО2 в атмосфере удвоится и может привести к глобальным изменениям климата.

Сжигание топлива - основной источник и загрязняющих газов (СО, NO, SO2). Диоксид серы окисляется кислородом воздуха до SO3, а оксид азота до NO2 в верхних слоях атмосферы, которые в свою очередь взаимодействуют с парами воды, а образующиеся при этом серная кислота Н2SO4 и азотная кислота НNO3 выпадают на поверхность Земли в виде т. н. кислотных дождей. Использование двигателей внутреннего сгорания приводит к значительному загрязнению атмосферы оксидами азота, углеводородами и соединениями свинца (тетраэтилсвинец) Pb(CH3CH2)4.

Аэрозольное загрязнение атмосферы обусловлено как естественными причинами (извержение вулканов, пыльные бури, унос капель морской воды и пыльцы растений и др.), так и хозяйственной деятельностью человека (добыча руд и строительных материалов, сжигание топлива, изготовление цемента и т. п.). Интенсивный широкомасштабный вынос твёрдых частиц в атмосферу - одна из возможных причин изменений климата планеты.

(Visited 156 times, 1 visits today)

Атмосфера – это воздушная оболочка Земли. Простирающаяся вверх на 3000 км от земной поверхности. Ее следы прослеживаются до высоты до 10 000 км. А. имеет неравномерную плотности 50 5 ее массы сосредоточены до 5 км, 75 % – до 10 км, 90 % до 16 км.

Атмосфера состоит из воздуха – механической смеси нескольких газов.

Азот (78 %) в атмосфере играет роль разбавителя кислорода, регулируя темп окисления, а, следовательно, скорость и напряженность биологических процессов. Азот – главный элемент земной атмосферы, который непрерывно обменивается с живым веществом биосферы, причем составными частями последнего служат соединения азота (аминокислоты, пурины и др.). Извлечение азота из атмосферы происходит неорганическим и биохимическим путями, хотя они тесно взаимосвязаны. Неорганическое извлечение связано с образованием его соединений N 2 O, N 2 O 5 , NO 2 , NH 3 . Они находятся в атмосферных осадках и образуются в атмосфере под действием электрических разрядов во время гроз или фотохимических реакций под влиянием солнечной радиации.

Биологическое связывание азота осуществляется некоторыми бактериями в симбиозе с высшими растениями в почвах. Азот также фиксируется некоторыми микроорганизмами планктона и водорослями в морской среде. В количественном отношении биологическое связывание азота превышает его неорганическую фиксацию. Обмен всего азота атмосферы происходит примерно в течение 10 млн. лет. Азот содержится в газах вулканического происхождения и в изверженных горных породах. При нагревании различных образцов кристаллических пород и метеоритов азот освобождается в виде молекул N 2 и NH 3 . Однако главной формой присутствия азота, как на Земле, так и на планетах земной группы, является молекулярная. Аммиак, попадая в верхние слои атмосферы, быстро окисляется, высвобождая азот. В осадочных горных породах он захороняется совместно с органическим веществом и находится в повышенном количестве в битуминозных отложениях. В процессе регионального метаморфизма этих пород азот в различной форме выделяется в атмосферу Земли.

Геохимический круговорот азота (

Кислород (21 %) используется живыми организмами для дыхания, входит в состав органического вещества (белки, жиры, углеводы). Озон О 3 . задерживает губительную для жизни ультрафиолетовую радиацию Солнца.

Кислород – второй по распространению газ атмосферы, играющий исключительно важную роль во многих процессах биосферы. Господствующей формой его существования является О 2 . В верхних слоях атмосферы под влиянием ультрафиолетовой радиации происходит диссоциация молекул кислорода, а на высоте примерно 200 км отношение атомарного кислорода к молекулярному (О: О 2) становится равным 10. При взаимодействии этих форм кислорода в атмосфере (на высоте 20- 30 км) возникает озоновый пояс (озоновый экран). Озон (О 3) необходим живым организмам, задерживая губительную для них большую часть ультрафиолетовой радиации Солнца.

На ранних этапах развития Земли свободный кислород возникал в очень малых количествах в результате фотодиссоциации молекул углекислого газа и воды в верхних слоях атмосферы. Однако эти малые количества быстро расходовались на окисление других газов. С появлением в океане автотрофных фотосинтезирующих организмов положение существенно изменилось. Количество свободного кислорода в атмосфере стало прогрессивно возрастать, активно окисляя многие компоненты биосферы. Так, первые порции свободного кислорода способствовали прежде всего переходу закисных форм железа в окисные, а сульфидов в сульфаты.

В конце концов количество свободного кислорода в атмосфере Земли достигло определенной массы и оказалось сбалансированным таким образом, что количество производимого стало равно количеству поглощаемого. В атмосфере установилось относительное постоянство содержания свободного кислорода.

Геохимический круговорот кислорода (В.А. Вронский, Г.В. Войткевич)

Углекислый газ , идет на образование живого вещества, а вместе с водяным паром создает так называемый «оранжерейный (парниковый) эффект».

Углерод (углекислота) – его большая часть в атмосфере находится в виде СО 2 и значительно меньшая в форме СН 4 . Значение геохимической истории углерода в биосфере исключительно велико, поскольку он входит в состав всех живых организмов. В пределах живых организмов преобладают восстановленные формы нахождения углерода, а в окружающей среде биосферы – окисленные. Таким образом, устанавливается химический обмен жизненного цикла: СО 2 ↔ живое вещество.

Источником первичной углекислоты в биосфере является вулканическая деятельность, связанная с вековой дегазацией мантии и нижних горизонтов земной коры. Часть этой углекислоты возникает при термическом разложении древних известняков в различных зонах метаморфизма. Миграция СО 2 в биосфере протекает двумя способами.

Первый способ выражается в поглощении СО 2 в процессе фотосинтеза с образованием органических веществ и в последующем захоронении в благоприятных восстановительных условиях в литосфере в виде торфа, угля, нефти, горючих сланцев. По второму способу миграция углерода приводит к созданию карбонатной системы в гидросфере, где СО 2 переходит в Н 2 СО 3 , НСО 3 -1 , СО 3 -2 . Затем с участием кальция (реже магния и железа) происходит осаждение карбонатов биогенным и абиогенным путем. Возникают мощные толщи известняков и доломитов. По оценке А.Б. Ронова, соотношение органического углерода (С орг) к углероду карбонатному (С карб) в истории биосферы составляло 1:4.

Наряду с глобальным круговоротом углерода существует еще ряд его малых круговоротов. Так, на суше зеленые растения поглощают СО 2 для процесса фотосинтеза в дневное время, а в ночное – выделяют его в атмосферу. С гибелью живых организмов на земной поверхности происходит окисление органических веществ (с участием микроорганизмов) с выделением СО 2 в атмосферу. В последние десятилетия особое место в круговороте углерода занимает массовое сжигание ископаемого топлива и возрастание его содержания в современной атмосфере.

Круговорот углерода в географической оболочке (по Ф. Рамаду, 1981)

Аргон – третий по распространению атмосферный газ, что резко отличает его от крайне скудно распространенных других инертных газов. Однако аргон в своей геологической истории разделяет судьбу этих газов, для которых характерны две особенности:

  1. необратимость их накопления в атмосфере;
  2. тесная связь с радиоактивным распадом определенных неустойчивых изотопов.

Инертные газы находятся вне круговорота большинства циклических элементов в биосфере Земли.

Все инертные газы можно подразделить на первичные и радиогенные. К первичным относятся те, которые были захвачены Землей в период ее образования. Они распространены крайне редко. Первичная часть аргона представлена преимущественно изотопами 36 Аr и 38 Аr, в то время как атмосферный аргон состоит полностью из изотопа 40 Аr (99,6%), который, несомненно, является радиогенным. В калийсодержащих породах происходило и происходит накопление радиогенного аргона за счет распада калия-40 путем электронного захвата: 40 К + е → 40 Аr.

Поэтому содержание аргона в горных породах определяется их возрастом и количеством калия. В такой мере концентрация гелия в породах служит функцией их возраста и содержания тория и урана. Аргон и гелий выделяются в атмосферу из земных недр во время вулканических извержений, по трещинам в земной коре в виде газовых струй, а также при выветривании горных пород. Согласно расчетам, выполненным П. Даймоном и Дж. Калпом, гелий и аргон в современную эпоху накапливаются в земной коре и в сравнительно малых количествах поступают в атмосферу. Скорость поступления этих радиогенных газов настолько мала, что не могла в течение геологической истории Земли обеспечить наблюдаемое содержание их в современной атмосфере. Поэтому остается предположить, что большая часть аргона атмосферы поступила из недр Земли на самых ранних этапах ее развития и значительно меньшая добавилась впоследствии в процессе вулканизма и при выветривании калийсодержащих горных пород.

Таким образом, в течение геологического времени у гелия и аргона были разные процессы миграции. Гелия в атмосфере весьма мало (около 5*10 -4 %), причем «гелиевое дыхание» Земли было более облегченным, так как он, как самый легкий газ, улетучивался в космическое пространство. А «аргоновое дыхание» – тяжелым и аргон оставался в пределах нашей планеты. Большая часть первичных инертных газов, как неон и ксенон, была связана с первичным неоном, захваченным Землей в период ее образования, а также с выделением при дегазации мантии в атмосферу. Вся совокупность данных по геохимии благородных газов свидетельствует о том, что первичная атмосфера Земли возникла на самых ранних стадиях своего развития.

В атмосфере содержится и водяной пар и вода в жидком и твердом состоянии. Вода в атмосфере является важным аккумулятором тепла.

В нижних слоях атмосферы содержится большое количество минеральной и техногенной пыли и аэрозолей, продуктов горения, солей, спор и пыльцы растений и т.д.

До высоты 100- 120 км, вследствие полного перемешивания воздуха состав атмосферы однороден. Соотношение между азотом и кислородом постоянно. Выше преобладают инертные газы, водород и др. В нижних слоях атмосферы находится водяной пар. С удалением от земли содержание его падает. Выше соотношение газов изменяется, например на высоте 200- 800 км, кислород преобладает над азотом в 10-100 раз.

Читайте также: