Новые и сверхновые звезды. Взрыв сверхновой звезды

Их возникновение - это довольно редкое космическое явление. В среднем в доступных наблюдению просторах Вселенной вспыхивает три сверхновых в столетие. Каждая такая вспышка представляет собой гигантскую космическую катастрофу, при которой выделяется невероятно много энергии. По самой грубой оценке такое количество энергии могло бы образоваться при одновременном взрыве многих миллиардов водородных бомб.

Достаточно строгая теория вспышек сверхновых пока отсутствует, но ученые выдвинули любопытную гипотезу. Они предположили, на основании сложнейших расчетов, что в ходе альфа-синтеза элементов ядро продолжает сжиматься. Температура в нем достигает фантастической цифры - 3 миллиарда градусов. При таких условиях в ядре значительно ускоряются различные ; в результате выделяется много энергии. Быстрое сжатие ядра влечет за собой столь же быстрое сжатие оболочки звезды.

Она тоже сильно разогревается, и протекающие в ней ядерные реакции, в свою очередь, сильно ускоряются. Таким образом буквально в считанные секунды выделяется громадное количество энергии. Это приводит к взрыву. Конечно, такие условия достигаются далеко не всегда, и потому сверхновые вспыхивают довольно редко.

Такова гипотеза. Насколько ученые правы в своих предположениях, покажет будущее. Но и настоящее привело исследователей к совершенно поразительным догадкам. Астрофизические методы позволили проследить, как уменьшается светимость сверхновых. И вот что выяснилось: в первые несколько дней после взрыва светимость уменьшается очень быстро, а затем это уменьшение (в течение 600 дней) замедляется. Причем каждые 55 дней светимость ослабевает ровно вдвое. С точки зрения математики, это уменьшение происходит по так называемому экспоненциальному закону. Хорошим примером такого закона является закон радиоактивного распада. Ученые высказали смелое предположение: выделение энергии после взрыва сверхновой обусловлено радиоактивным распадом изотопа какого-то элемента с периодом полураспада 55 дней.

Но какого изотопа и какого элемента? Эти поиски продолжались несколько лет. «Кандидатами» на роль подобных «генераторов» энергии выступили бериллий-7 и стронций-89. Они распадались наполовину как раз за 55 дней. Но выдержать экзамен им не довелось: расчеты показали, что энергия, выделяющаяся при их бета-распаде, слишком мала. А другие известные радиоактивные изотопы подобным периодом полураспада не обладали.

Новый претендент обнаружился среди элементов, которые на Земле не существуют. Он оказался представителем трансурановых элементов, синтезированных учеными искусственно. Имя претендента - калифорний, его порядковый номер - девяносто восемь. Его изотоп калифорний-254 удалось приготовить в количестве всего лишь около 30 миллиардных долей грамма. Но и этого поистине невесомого количества вполне хватило, чтобы измерить период полураспада изотопа. Он оказался равным 55 дням.

А отсюда возникла любопытная гипотеза: именно энергия распада калифорния-254 обеспечивает в течение двух лет необычайно высокую светимость сверхновой звезды. Распад калифорния происходит путем самопроизвольного деления его ядер; при таком виде распада ядро как бы раскалывается на два осколка - ядра элементов середины периодической системы.

Но каким образом синтезируется сам калифорний? Ученые и здесь дают логичное объяснение. В ходе сжатия ядра, предшествующего взрыву сверхновой, необычайно ускоряется ядерная реакция взаимодействия уже знакомого нам неона-21 с альфа-частицами. Следствием этого оказывается появление в течение довольно короткого промежутка времени чрезвычайно мощного потока нейтронов. Снова возникает процесс нейтронного захвата, но на сей раз уже быстрого. Ядра успевают поглотить очередные нейтроны раньше, чем подвернутся бета-распаду. Для этого процесса неустойчивость трансвисмутовых элементов уже не препятствие. Цепь превращений не порвется, и конец периодической таблицы тоже будет заполнен. При этом, видимо, образуются даже такие трансурановые элементы, которые в искусственных условиях еще не получены.

Ученые подсчитали, что при каждом взрыве сверхновой только калифорния-254 образуется фантастическое количество. Из такого количества можно было бы изготовить 20 шаров, каждый из которых весил бы столько, сколько наша Земля. Какова же дальнейшая судьба сверхновой? Она погибает довольно быстро. На месте ее вспышки остается лишь маленькая очень тусклая звездочка. Она отличается, правда, необычайно высокой плотностью вещества: наполненный им спичечный коробок весил бы десятки тонн. Такие звезды называют « ». Что происходит с ними дальше, мы пока не знаем.

Материя, которая выбрасывается в мировое пространство, может сгуститься и образовать новые звезды; они начнут новый долгий путь развития. Ученые сделали пока лишь общие грубые мазки картины происхождения элементов, картины работы звезд - грандиозных фабрик атомов. Быть может, это сравнение в общем передает суть дела: художник набрасывает на холсте лишь первые контуры будущего произведения искусства. Уже ясен основной замысел, но многие, в том числе и существенные, детали еще приходится лишь угадывать.

Окончательное решение проблемы происхождения элементов потребует колоссального труда ученых различных специальностей. Вероятно, многое, что сейчас нам представляется несомненным, на самом деле окажется грубо приблизительным, а то и вовсе неверным. Наверное, ученым придется столкнуться с закономерностями, до сих пор нам неизвестными. Ведь для того чтобы разобраться в сложнейших процессах, протекающих во Вселенной, бесспорно, понадобится новый качественный скачок в развитии наших представлений о ней.

Остаток сверхновой Кеплера

Сверхновая звезда или вспышка сверхновой - феномен, в ходе которого резко меняет свою яркость на 4-8 порядков (на десяток звёздных величин) с последующим сравнительно медленным затуханием вспышки. Является результатом катаклизмического процесса, сопровождающегося выделением огромной энергии и возникающего в конце эволюции некоторых звёзд.

Остаток сверхновой RCW 103 c нейтронной звездой 1E 161348-5055 в центре

Как правило, сверхновые звезды наблюдаются постфактум, то есть когда событие уже произошло и их излучения достигло . Поэтому их природа довольно долго была неясна. Но сейчас предлагается довольно много сценариев, приводящих к подобного рода вспышкам, хотя основные положения уже достаточно понятны.

Взрыв сопровождается выбросом значительной массы вещества звезды в межзвёздное пространство, а из оставшейся части вещества взорвавшейся звезды, как правило, образуется компактный объект - нейтронная звезда или чёрная дыра. Вместе они образуют остаток сверхновой.

Комплексное изучение ранее полученных спектров и кривых блеска в сочетании с исследованием остатков и возможных звёзд-предшественников позволяет строить более подробные модели и изучать уже условия, сложившиеся к моменту вспышки.

Помимо прочего, выбрасываемое в ходе вспышки вещество в значительной части содержит продукты термоядерного синтеза, происходившего на протяжении всей жизни звезды. Именно благодаря сверхновым в целом и каждая в частности, химически эволюционирует.

Название отражает исторический процесс изучения звёзд, блеск которых значительно меняется со временем, так называемых новых звёзд. Аналогично среди сверхновых сейчас выделяется подкласс - гиперновые.

Имя составляется из метки SN, после которой ставят год открытия, с окончанием из одно- или двухбуквенного обозначения. Первые 26 сверхновых текущего года получают однобуквенные обозначения, в окончании имени, из заглавных букв от A до Z. Остальные сверхновые получают двухбуквенные обозначения из строчных букв: aa, ab, и так далее. Неподтверждённые сверхновые обозначают буквами PSN (англ. possible supernova) с небесными координатами в формате: Jhhmmssss+ddmmsss.

Кривые блеска для I типа в высокой степени сходны: 2-3 суток идёт резкий рост, затем его сменяет значительное падение (на 3 звёздные величины) 25-40 суток с последующим медленным ослаблением, практически линейным в шкале звёздных величин.

А вот кривые блеска типа II достаточны разнообразны. Для некоторых кривые напоминали оные для I типа, только с более медленным и продолжительным падением блеска до начала линейной стадии. Другие, достигнув пика, держались на нём до 100 суток, а затем блеск резко падал и выходил на линейный «хвост». Абсолютная звёздная величина максимума варьируется в широком пределе.

Вышеприведенная классификация уже содержит некоторые основные черты спектров сверхновых различных типов, остановимся на том, что не вошло. Первая и очень важная особенность, которая долго мешала расшифровке полученных спектров - основные линии очень широкие.

Для спектров сверхновых типа II и Ib\c характерно:
Наличие узких абсорбционных деталей вблизи максимума блеска и узкие несмещенные эмиссионные компоненты.
Линии , , , наблюдаемые в ультрафиолетовом излучении.

Частота вспышек зависит от числа звёзд в галактике или, что то же самое для обычных галактик, светимости.

При этом сверхновые Ib/c и II тяготеют к спиральным рукавам.

Крабовидная туманность (изображение в рентгеновских лучах), хорошо видна внутренняя ударная волна, свободно распространяющийся ветер, а также джет

Каноническая схема молодого остатка следующая:

Возможный компактный остаток; обычно это пульсар, но возможно и чёрная дыра
Внешняя ударная волна, распространяющаяся в межзвёздном веществе.
Возвратная волна, распространяющаяся в веществе выброса сверхновой.
Вторичная, распространяющаяся в сгустках межзвёздной среды и в плотных выбросах сверхновой.

Вместе они образуют следующую картину: за фронтом внешней ударной волны газ нагрет до температур TS ≥ 107 К и излучает в рентгеновском диапазоне с энергией фотонов в 0,1-20 кэВ, аналогично газ за фронтом возвратной волны образует вторую область рентгеновского излучения. Линии высокоионизированных Fe, Si, S и т. п указывают на тепловую природу излучения из обоих слоев.

Оптическое излучение молодого остатка создает газ в сгустках за фронтом вторичной волны. Так как в них скорость распространении выше, а значит газ остывает быстрее и излучение переходит из рентгеновского диапазона в оптический. Ударное происхождение оптического излучения подтверждает относительная интенсивность линий.

Волокна в Кассиопее A дают понять, что происхождение сгустков вещества может быть двояким. Так называемые быстрые волокна разлетаются со скоростью 5000-9000 км/с и излучают только в линиях O, S, Si - то есть это сгустки, сформированные в момент взрыва сверхновой. Стационарные конденсации же имеют скорость 100-400 км/с, и в них наблюдается нормальная концентрация H, N, O. Вместе это свидетельствуют, что это вещество было выброшено задолго до вспышки сверхновой и позже было нагрето внешней ударной волной.

Синхротронное радиоизлучение релятивистских частиц в сильном магнитном поле является основным наблюдательным признаком для всего остатка. Область его локализации - прифронтовые области внешней и возвратной волн. Наблюдается синхротронное излучение и в рентгеновском диапазоне.

Природа сверхновых Ia отлична от природы остальных вспышек. Об этом ясно свидетельствует отсутствие вспышек Ib\c и II типов в эллиптических галактиках. Из общих сведений о последних известно, что там мало газа и голубых звёзд, а звездообразование закончилось 1010 лет назад. Это значит, что все массивные звёзды уже завершили свою эволюцию, и остались звёзды с массой меньше солнечной, не более. Из теории эволюции звёзд известно, что звёзды подобного типа взорвать невозможно, а следовательно нужен механизм продления жизни для звёзд масс 1-2M⊙.

Отсутствие линий водорода в спектрах Ia\Iax говорит о том, что в атмосфере исходной звезды его крайне мало. Масса выброшенного вещества достаточно велика - 1M⊙, преимущественно содержит углерод, кислород и прочие тяжёлые элементы. А смещённые линии Si II указывает на то, что во время выброса активно идут ядерные реакции. Всё это убеждает, что в качестве звезды-предшественника выступает белый карлик, скорее всего углеродно-кислородный.

Тяготение к спиральным рукавам сверхновых Ib\c и II типов свидетельствует, что звездой прародителем являются короткоживущие O-звезды с массой 8-10M⊙.

Доминирующий сценарий

Один из способов высвободить требуемое количество энергии - резкое увеличение массы вещества, участвующего в термоядерном горении, то есть термоядерный взрыв. Однако физика одиночных звёзд такого не допускает. Процессы в звёздах, находящихся на главной последовательности, равновесны. Поэтому во всех моделях рассматриваются конечный этап звёздной эволюции - белые карлики. Однако сам по себе последний - устойчивая звезда, все может изменится только при приближении к пределу Чандрасекара. Это приводит к однозначному выводу, что термоядерный взрыв возможен только в звёздных системах, скорее всего, в так называемых двойных звёздах.

В данной схеме есть две переменные, влияющие на состояние, химический состав и итоговую массу вовлеченного во взрыв вещества.

Второй компаньон обычная звезда с которого вещество утекает на первый.
Второй компаньон такой же белый карлик. Такой сценарий называет двойным вырождением (англ. Double degeneration).

Взрыв происходит при превышении предела Чандрасекара.
Взрыв происходит до него.

Общим во всех сценариях образования сверхновых сверхновых Ia то, что взрывающийся карлик скорее всего углеродно-кислородный.

Масса вступающего в реакцию вещества определяет энергетику взрыва и соответственно блеск в максимуме. Если предположить, что в реакцию вступает вся масса белого карлика, то энергетика взрыва составит 2,2 1051 эрг.

Дальнейшее поведение кривой блеска в основном определяется цепочкой распада.

Изотоп 56Ni нестабилен и имеет период полураспада 6.1 дней. Далее e-захват приводит к образованию ядра 56Co преимущественно в возбуждённом состоянии с энергией 1.72 МэВ. Этот уровень нестабилен и переход электрона в основное состояние сопровождается испусканием каскада γ-квантов с энергиями от 0.163 МэВ до 1.56 МэВ. Эти кванты испытывают комптоновское рассеяние и их энергия быстро уменьшается до ~ 100 кэВ. Такие кванты уже эффективно поглощаются фотоэффектом, и как следствие нагревают вещество. По мере расширения звезды плотность вещества в звезде падает, число столкновений фотонов уменьшается и вещество поверхности звезды становится прозрачным для излучения. Как показывают теоретические расчеты, такая ситуация наступает примерно через 20-30 суток после достижения звездой максимума светимости.

Через 60 суток после начала вещество становится прозрачным для γ-излучения. На кривой блеска начинается экспоненциальный спад. К этому времени,56Ni уже распался и энерговыделение идет за счет β-распада 56Co до 56Fe(T1/2 = 77 дней) с энергиями возбуждения вплоть до 4.2 МэВ.

Модель механизма гравитационного коллапса

Второй сценарий выделения необходимой энергии - это коллапс ядра звезды. Масса его его должна быть в точности равна массе его остатка - нейтронной звезды.

Необходим переносчик, который должен с одной стороны унести высвободившуюся энергию, а с другой - не провзаимодействовать с веществом. На роль такого переносчика подходит нейтрино.

За их образование отвечают несколько процессов. Первый и самый важный для дестабилизации звезды и начала сжатия - процесс нейтронизации.

Нейтрино от этих реакций уносят 10 %. Главную же роль в охлаждении играет УРКА-процессы (нейтринное охлаждение).

Вместо протонов и нейтронов могут выступать и атомные ядра, с образованием нестабильного изотопа, который испытывает бета-распад.

Интенсивность этих процессов нарастает по мере сжатия, тем самым его ускоряя. Останавливает же это процесс рассеяние нейтрино на вырожденных электронах, в ходе которого термолизуются и запираются внутри вещества.

Заметим, что процессы нейтронизации идут только при плотностях 1011/см3, достижимых только в ядре звезды. Это значит, что гидродинамическое равновесие нарушается только в нём. Внешние же слои находятся в локальном гидродинамическом равновесии, и коллапс начинается только после того, как центральное ядро сожмётся и образует твёрдую поверхность. Отскок от этой поверхности обеспечивает сброс оболочки.

Выделяется три этапа эволюции остатка сверхновой:

Свободный разлет.
Адиабатическое расширение (стадия Седова). Вспышка сверхновой на этой стадии представляется как сильный точечный взрыв в среде с постоянной теплоёмкостью. К этой задаче применимо автомодальное решение Седова, проверенное на ядерных взрывах в земной атмосфере.
Стадия интенсивного высвечивания. Начинается когда температура за фронтом достигает максимума на кривой радиационных потерь.

Расширение оболочки останавливается в тот момент, когда давление газа остатка уравняется с давлением газа в межзвёздной среде. После этого остаток начинает диссипировать, сталкиваясь с хаотично движущимися облаками.

Помимо неопределённостей в теориях сверхновых Ia, описанных выше, много споров вызывает сам механизм взрыва. Чаще всего модели можно разделить по следующим группам:

Мгновенная детонация
Отложенная детонация
Пульсирующая отложенная детонация
Турбулентное быстрое горение

По крайней мере для каждой комбинации начальных условий перечисленные механизмы можно встретить в той или иной вариации. Но этим круг предложенных моделей не ограничивается. В качестве примера можно привести модели, когда детонируют сразу два . Естественно, это возможно только в тех сценариях, когда оба компонента проэволюционировали.

Взрывы сверхновых – основной источник пополнения межзвёздной среды элементами с атомными номерами больше (или как говорят тяжелее) He. Однако процессы их породившие для различных групп элементов и даже изотопов свои.

Практически все элементы тяжелее He и до Fe – результат классического термоядерного синтеза, проистекающего, например в недрах звёзд или при взрыве сверхновых в ходе p-процесса. Тут стоит оговориться, что крайне малая часть все же была получена в ходе первичного нуклеосинтеза.
Все элементы тяжелее 209Bi – это результат r-процесса
Происхождение же прочих является предметом дискуссии, в качестве возможных механизмов предлагаются s-, r-, ν-, и rp-процессы.

Структура и процессы нуклеосинтеза в предсверхновой и в следующее мгновение после вспышки для звезды 25M☉, масштаб не соблюдён.

r-проце́сс – это процесс образования более тяжёлых ядер из более лёгких путём последовательного захвата нейтронов в ходе (n,γ) реакций и продолжается до тех пор, пока темп захвата нейтронов выше, чем темп β−-распада изотопа.

ν-процесс – это процесс нуклеосинтеза, через взаимодействие нейтрино с атомными ядрами. Возможно, он ответственен за появление изотопов 7Li, 11B, 19F, 138La и 180Ta.

Крабовидная туманность как остаток сверхновой SN 1054

Интерес Гиппарха к неподвижным звёздам, возможно, был вдохновлён наблюдением сверхновой звезды (по Плинию). Наиболее ранняя запись, которая идентифицируется как запись наблюдений сверхновой SN 185, была сделана китайскими астрономами в 185 году нашей эры. Самая яркая известная сверхновая SN 1006 была подробно описана китайскими и арабскими астрономами. Хорошо наблюдалась сверхновая SN 1054, породившая Крабовидную туманность. Сверхновые звезды SN 1572 и SN 1604 были видны невооружённым глазом и имели большое значение в развитии астрономии в Европе, так как были использованы в качестве аргумента против аристотелевской идеи, гласившей, что мир за пределами Луны и Солнечной системы неизменен. Иоганн Кеплер начал наблюдение SN 1604 17 октября 1604 года. Это была вторая сверхновая, которая была зарегистрирована на стадии возрастания блеска (после SN 1572, наблюдавшейся Тихо Браге в созвездии Кассиопеи).

С развитием телескопов сверхновые звёзды стало возможно наблюдать и в других галактиках, начиная с наблюдений сверхновой S Андромеды в Туманности Андромеды в 1885 году. В течение двадцатого столетия были разработаны успешные модели для каждого типа сверхновых и понимание их роли в процессе звездообразования возросло. В 1941 году американскими астрономами Рудольфом Минковским и Фрицем Цвикки была разработана современная схема классификации сверхновых звёзд.

В 1960-х астрономы выяснили, что максимальная светимость взрывов сверхновых может быть использована в качестве стандартной свечи, следовательно, показателя астрономических расстояний. Сейчас сверхновые дают важную информацию о космологических расстояниях. Самые далёкие сверхновые оказались слабее, чем ожидалось, что, по современным представлениям, показывает, что расширение Вселенной ускоряется.

Были разработаны способы для реконструкции истории взрывов сверхновых, которые не имеют письменных записей наблюдений. Дата появления сверхновой Кассиопея A определялась по световому эху от туманности, в то время как возраст остатка сверхновой RX J0852.0-4622 оценивается по измерению температуры и γ-выбросов от распада титана-44. В 2009 году в антарктических льдах были обнаружены нитраты, соответствующие времени взрыва сверхновой.

22 января 2014 года в галактике M82, расположенной в созвездии Большая Медведица, вспыхнула сверхновая звезда SN 2014J. Галактика M82 находится на расстоянии 12 млн световых лет от нашей галактики и имеет видимую звёздную величину чуть менее 9. Данная сверхновая является самой близкой к Земле, начиная с 1987 года (SN 1987A).

Звезды живут не вечно. Они тоже рождаются и умирают. Некоторые из них, подобно Солнцу, существуют по несколько миллиардов лет, спокойно дотягивают до старости, а потом медленно угасают. Другие проживают куда более короткую и бурную жизнь и к тому же обречены на катастрофическую гибель. Их существование прерывается гигантским взрывом, и тогда звезда превращается в сверхновую. Свет сверхновой озаряет космос: ее взрыв виден на расстоянии многих миллиардов световых лет. Вдруг на небе появляется звезда там, где раньше, казалось бы, ничего и не было. Отсюда и название. Древние считали, что в таких случаях действительно зажигается новая звезда. Сегодня мы знаем, что на самом деле звезда не рождается, а умирает, но название осталось прежним, сверхновая.

СВЕРХНОВАЯ 1987A

В ночь с 23 на 24 февраля 1987 года в одной, из ближайших к нам галактик,. Большом Магеллановом Облаке, отстоящем от нас всего на 163.000 световых лет, в созвездии Золотая Рыба появилась сверхновая. Она стала заметна даже невооруженному глазу, в мае месяце достигла видимой величины +3, а в последующие месяцы постепенно утрачивала яркость, пока вновь не стала невидима без телескопа или бинокля..

Настоящее и прошлое

Сверхновая 1987A, название которой говорит о том, что это была, первая сверхновая, наблюдавшаяся в 1987 году, стала и первой видимой невооруженным глазом с начала эры телескопов. Дело втом, что последний взрыв сверхновой в нашей Галактике наблюдали в далеком 1604-м, когда телескоп, еще не был изобретен.

Но еще важнее, что звезда* 1987A дала современным агрономам первую возможность наблюдать сверхновую на относительно небольшом расстоянии.

А что там было раньше?

Исследование сверхновой 1987A показало, что она относится к типу II. То есть звезда-прародительница или звезда-предшественник, которую удалось обнаружить на более ранних снимках этого, участка неба, оказалась голубым сверхгигантом, чья масса почти в 20 раз превышала массу Солнца. Таким образом, это была очень горячая звезда, которая быстро исчерпала свое ядерное топливо.

Единственное, осталось после гигантского взрыва, - это быстро расширяющееся газовое облако, внутри которого еще никому не удалось разглядеть нейтронную звезду, чьего возникновения теоретически следовало ожидать. Одни астрономы утверждают, что эта звезда все еще окутана выпущенными газами, тогда как другие выдвинули гипотезу, согласно которой вместо звезды там формируется черная дыра.

ЖИЗНЬ ЗВЕЗДЫ

Звезды рождаются в результате гравитационного сжатия облака межзвездного вещества, которое, нагреваясь, доводит свое центральное ядро до температур, достаточных для начала термоядерных реакций. Последующее развитие уже загоревшейся звезды зависит от двух факторов: начальной массы и химического состава, причем первая, в частности, определяет скорость сгорания. Звезды, обладающие более крупной массой, горячее и светлее, но именно поэтому они сгорают раньше. Таким образом, жизнь массивной звезды короче по сравнению со звездой небольшой массы.

Красные гиганты

О звезде, которая сжигает водород, принято говорить, что она находится в «основной фазе». Большая часть жизни любой звезды совпадает именно с этой фазой. Например, Солнце находится в основной фазе уже 5 млрд лет и останется в ней еще надолго, а когда этот период закончится, наше светило перейдет в короткую фазу нестабильности, вслед за которой оно снова стабилизируется, на этот раз в форме красного гиганта. Красный гигант несравнимо крупнее и ярче звезд в основной фазе, но и гораздо холоднее. Антарес в созвездии Скорпион или Бетельгейзе в созвездии Орион - яркие примеры красных гигантов. Их цвет можно сразу же распознать даже невооруженным глазом.

Когда Солнце превратится в красный гигант, его внешние слои «поглотят» планеты Меркурий и Венеру и дойдут до орбиты Земли. В фазе красного гиганта звезды утрачивают значительную часть внешних слоев своей атмосферы, и эти слои образуют планетарную туманность, подобную М57, туманности Кольцо в созвездии Лира, или М27, туманности Гантель в созвездии Лисичка. И та, и другая прекрасно подходят для наблюдения в ваш телескоп.

Дорога к финалу

С этого момента дальнейшая судьба звезды неотвратимо зависит от ее массы. Если она меньше 1,4 массы Солнца, то после окончания ядерного горения такая звезда освободится от своих внешних слоев и сожмется до белого карлика-финальной стадии эволюции звезды с небольшой массой. Пройдут миллиарды лет, пока белый карлик остынет и станет невидим. Напротив, звезда с большой массой (как минимум в 8 раз массивнее Солнца), как только заканчивается водород, выживает за счет сжигания газов тяжелее водорода, таких как гелий и углерод. Пройдя ряд фаз сжатия и расширения, такая звезда через несколько миллионов лет переживает катастрофический взрыв сверхновой, выбрасывая в космос гигантское количество собственного вещества, и превращается в остаток сверхновой. Примерно в течение недели сверхновая превосходит по яркости все звезды своей галактики, а затем быстро темнеет. В центре остается нейтронная звезда, объект небольшого размера, обладающий при этом гигантской плотностью. Если же масса звезды еще больше, в результате взрыва сверхновой появляются не звезды, а черные дыры.

ТИПЫ СВЕРХНОВЫХ

Изучая свет, идущий от сверхновых, астрономы выяснили, что не все они одинаковы и их можно классифицировать зависимости от химических элементов, представленных в их спектрах. Особую роль здесь играет водород: если в спектре сверхновой присутствуют линии, подтверждающие наличие водорода то ее относят к типу II; если же таких линий нет, она причисляется к типу I. Сверхновые типа I разделяют на подклассы la, lb и lс учетом других, элементов спектра.




Разная природа взрывов

Классификация типов и подтипов отражает разнообразие механизмов, лежавших в основе взрыва, и разные типы звезд-предшественниц. Взрывы сверхновых типа таких как SN 1987A, исходят на последней эволюционной стадии звезды, обладающей большой массой (Более чем в 8 раз превышающей массу Солнца).

Сверхновые типа lb и lc возникают в результате коллапса центральных частей массивных звезд, утративших значительную часть их водородной оболочки из-за сильного звездного, ветра или из-за передачи вещества другой звезде в двойной системе.

Разные предшественники

Все сверхновые типа lb, lc и II, происходят от звезд Населения I, то есть от молодых звезд, сосредоточенных в дисках спиральных галактик. Сверхновые типа la, в свою очередь, происходит из старых звезд Населения II, и их можно наблюдать как в эллиптических галактиках, так и в ядрах спиральных галактик. Этот тип сверхновой родом из белого карлика, входящего в состав двойной системы и оттягивающего вещество у своей соседки. Когда масса белого карлика достигает предела устойчивости (его называют пределом Чандрасекара),начинается быстрый процесс слияния ядер углерода, и происходит взрыв, в результате которого звезда выбрасывает наружу большую часть своей массы.

Разная светимость

Разные классы сверхновых отличаются друг от друга не только спектром, но и максимальной светимостью, достигаемой ими во взрыве, и тем, как именно эта светимость снижается с течением времени. Сверхновые типа I, как правило, гораздо ярче сверхновых типа II, но при этом они гораздо быстрее тускнеют. В сверхновых типа I пиковая яркость сохраняется от нескольких часов до нескольких дней, тогда как сверхновые типа II могут просуществовать до нескольких месяцев. Была высказана гипотеза, согласно которой звезды с очень большой массой (в несколько десятков раз превышающей массу Солнца) взрываются еще более бурно, как «гиперновые», а их ядро превращается в черную дыру.

СВЕРХНОВЫЕ В ИСТОРИИ

Астрономы полагают, что в нашей Галактике в среднем взрывается по одной сверхновой каждые 100 лет. Однако количество сверхновых, исторически задокументированных в последние два тысячелетия, не достигает и 10. Одна из причин этого может быть связана с тем, что сверхновые, особенно типа II, взрываются в спиральных ветвях, где межзвездная пыль гораздо плотнее и, соответственно, способна затемнить сияние сверхновой.

Первая из увиденных

Хотя ученые рассматривают и другие кандидатуры, на сегодняшний день принято считать, что первое в истории наблюдение за взрывом сверхновой относится к 185 году н.э. Оно было задокументировано китайскими астрономами. В Китае же отмечались и взрывы галактических сверхновых в 386 и в 393 годах. Затем прошло более 600 лет, и вот, наконец, на небе появилась еще одна сверхновая: в 1006 году в созвездии Волк засияла новая звезда, на этот раз зафиксированная в том числе арабскими и европейскими астрономами. Это ярчайшее светило (чья видимая величина на пике яркости достигала -7,5) оставалось видимым на небе дольше года.
.
Крабовидная туманность

Исключительно яркой была и сверхновая 1054 года (максимальная величина -6), но и ее снова заметили только китайские астрономы, да еще, может быть, американские индейцы. Наверняка это самая известная сверхновая, поскольку ее остаток - Крабовидная туманность в созвездии Телец, которую Шарль Мессье внес в свой каталог под номером 1.

Китайским астрономам мы обязаны и сведениями о появлении в 1181 году сверхновой в созвездии Кассиопея. Там же взорвалась и еще одна сверхновая, на этот раз в 1572 году. Эту сверхновую заметили и европейские астрономы, в том числе Тихо Браге,который описал и ее появление, и дальнейшее изменение ее яркости в своей книге «О новой звезде», чье название и дало начало термину, которым принято обозначать такие звезды.

Сверхновая Тихо

Спустя 32 года, в 1604-м, на небе появилась еще одна сверхновая. Тихо Браге передал эту информацию своему ученику Иоганну Кеплеру, который стал отслеживать «новую звезду» и посвятил ей книгу «О новой звезде в ноге Змееносца». Эта звезда, наблюдаемая и Галилео Галилеем, на сегодняшний день остается последней из видимых невооруженным глазом сверхновых, взорвавшихся в нашей Галактике.

Однако нет никаких сомнений в том, что еще одна сверхновая взорвалась в Млечном Пути, снова в созвездии Кассиопея (это созвездие-рекордсмен насчитывает три галактические сверхновые). Хотя визуальные свидетельства этого события отсутствуют, астрономы нашли остаток звезды и подсчитали, что он должен соответствовать взрыву, произошедшему в 1667 году.

За пределами Млечного Пути, помимо сверхновой 1987A, астрономы наблюдали и вторую сверхновую, 1885, которая взорвалась в галактике Андромеда.

Наблюдение за сверхновыми

Чтобы охотиться за сверхновыми, необходимы терпение и правильный метод.

Первое нужно, так как никто не гарантирует, что вам удастся открыть сверхновую в первый же вечер. Без второго не обойтись, если вы не хотите терять время и действительно стремитесь повысить свои шансы на открытие сверхновой. Основная проблема состоит в том, что физически невозможно предугадать, когда и где произойдет взрыв сверхновой в одной из далеких галактик. Поэтому охотник за сверхновыми должен каждую ночь сканировать небо, проверяя десятки галактик, тщательно отобранных с этой целью.

Что нужно делать

Одна из наиболее распространенных техник состоит в наведении телескопа на ту или иную галактику и сопоставлении ее облика с более ранним изображением (рисунком, фотографией, цифровым изображением), в идеальном варианте приблизительно с тем же увеличением, что и у телескопа, с помощью которого ведутся наблюдения. Если там появилась сверхновая, это сразу бросится вам в глаза. Сегодня многие астрономы-любители располагают оборудованием, достойным профессиональной обсерватории, таким как телескопы с компьютерным управлением и ПЗС-камерами, позволяющими делать фотографии звездного неба сразу в цифровом формате. Но даже в наши дни множество наблюдателей охотятся за сверхновыми, просто наводя телескоп на ту или иную галактику и глядя в окуляр в надежде увидеть, не появится ли где-то еще одна звезда.

Необходимое оборудование

Для охоты за сверхновыми не требуется слишком сложного оборудование Конечно, нужно учитывать мощность вашего телескопа. Дело в том, что у каждого инструмента есть предельная звездная величина, которая зависит от разных факторов, и важнейший из них -диаметр объектива (однако важна и яркость неба, зависящая от светового загрязнения: чем оно меньше, тем выше предельная величина). С помощью вашего телескопа вы можете рассматривать сотни галактик в поисках сверхновых. Однако,прежде чем приступить к наблюдению, очень важно иметь под рукой небесные карты для определения галактик, а также рисунки и фотографии галактик, которые вы планируете наблюдать (в интернете есть десятки ресурсов для охотников за сверхновыми), и, наконец, журнал наблюдений, куда вы будете заносить данные по каждому из сеансов наблюдений.

Ночные трудности

Чем больше охотников за сверхновыми, тем больше шансов заметить их появление непосредственно в момент взрыва, что дает возможность целиком отследить их кривую блеска. С этой точки зрения астрономы-любители оказывают ценнейшую помощь профессионалам.

Охотники за сверхновыми должны быть готовы терпеть ночной холод и влажность. Кроме того, им придется бороться с сонливостью (термос с горячим кофе всегда входит в базовое снаряжение любителей ночных астрономичеких наблюдений). Но рано или поздно их терпение будет вознаграждено!

5653
Разнообразие природных явлений столь велико, а скрытые в небесах сокровища столь богаты, что благодаря их количеству человеческий разум никогда не будет нуждаться в подпитке.
- Иоганн Кеплер

Так говорил человек, открывший в 1604 году самую свежую на тот момент сверхновую, находящуюся в нашей Галактике и наблюдаемую в видимом спектре. И хотя, скорее всего, после неё было ещё два взрыва, их не было видно невооружённым глазом, а их остатки были открыты уже при помощи мощных телескопов.

В январе 2012 года была открыта первая в том году сверхновая, в галактике, отстоящей от нас на 25 миллионов световых лет, NGC 3239. Изображённая ниже сверхновая получила имя SN 2012a.

С типичной периодичностью в примерно одну сверхновую в одной галактике за одну сотню лет, становится интересно, что бы мы увидели – и как быстро – если бы сверхновая образовалась в нашей Галактике.

Вспомним, что сверхновая может образоваться одним из двух способов, но оба они включают в себя вышедшую из-под контроля реакцию ядерного синтеза, высвобождающую огромное количества света и энергии. Большая часть энергии, что удивительно, выделяется не в виде света! Давайте заглянем внутрь звезды, которая через несколько секунд должна превратиться в сверхновую.

Кроме встрясок и большой температуры, внутренние реакции производят нейтрино, из которых большая часть не взаимодействует с внешними слоями звезды! С ними взаимодействуют лишь некоторые нейтрино, а также все протоны, нейтроны и электроны, появление которых не происходит моментально. И хотя у взрывной волны проход до внешних слоёв звезды отнимает пару часов, нейтрино проделывают этот путь почти мгновенно!

Это значит, что когда звезда превращается в сверхновую, поток нейтрино возникает до потока света! Мы открыли это при наблюдениях в 1987 году.

Когда сверхновая 1987а взорвалась на расстоянии всего в 168 000 световых годах от нас, это было достаточно близко – и у нас было достаточное количество детекторов нейтрино – чтобы засечь 23 (анти)нейтрино за период в 13 секунд. Самый крупный детектор, Камиоканде-II, содержавший 3 000 тонн воды, засёк 11 антинейтрино.

Сегодня находящийся на его месте детектор Супер Камиоканде-III, содержит 50 000 тонн воды и 11 000 фотоэлектронных умножителей. (В мире есть множество других прекрасных детекторов нейтрино, но я остановлюсь на этом для примера).

Его устройство удивительно потому, что он может не только обнаруживать нейтрино, но и определять направление, энергию и точку взаимодействия даже единственного нейтрино, которому повезло провзаимодействовать с любой из частиц в 50 000 тонн воды!

В зависимости от того, в каком месте нашей Галактики появится потенциальная сверхновая, Супер Камиоканде-III должен будет зарегистрировать от нескольких тысяч антинейтрино (в случае взрыва с противоположной стороны Галактики) до более чем десятка миллионов, и всё это за 10 – 15 секунд!

Детекторы нейтрино по всему миру увидят поток нейтрино, одновременно и с одной и той же стороны. В этот момент у нас останется 2-3 часа на определение направления на источник этих нейтрино, и поворот телескопов для попытки визуального наблюдения сверхновой – в первый раз в истории – с самого её начала!

Ближайшая после 1987 года сверхновая была та, что изображена выше, и мы сумели разглядеть её через полдня после взрыва.

В основном благодаря счастливому случаю, мы довольно близко подобрались к интенсивной гиперновой в 2002 году.

И всё равно мы начали наблюдать эту звезду, SN 2002ap, только спустя 3-4 часа после первого взрыва. Если сверхновая, которой предстоит появиться, будет принадлежать к категории Ia – то есть, происходить от белого карлика – у нас нет возможности предсказать, в какой части галактики это произойдёт. Белых карликов слишком много, расположение большинства из них неизвестно и считается, что они разбросаны по всей Галактике.

Если же сверхновая случится у очень массивной звезды с ядром, коллапсирующим под собственной тяжестью, (сверхновая типа II), у нас для этого есть набор неплохих кандидатов и отличных мест для поисков.

Очевидное место – центр Галактики, где взорвалась последняя из известных сверхновых Млечного пути, а также место пребывания самых массивных звёзд, существующих в нашей Галактике. В следующие 100 000 лет там совершенно точно появится множество сверхновых II типа, но у нас нет возможности узнать, когда мы увидим следующую. Разглядывая картинку выше, подумайте о том, что взрывы этих сверхновых уже, скорее всего, произошли, и мы лишь ждём момента, когда нейтрино (а за ними и свет) дойдут до нас!

Но у нас есть кандидаты и поближе галактического центра.

Заглянем в недра огромной туманности, в которой рождаются звёзды, и найдём там самые горячие и молодые звёзды среди всех, что можно встретить во Вселенной. Именно там живут ультрамассивные звёзды – и, в частности, Туманность Орла на фото выше может быть домом для очень недавней сверхновой. Туманность Орла, Туманность Ориона и множество других регионов, заполненных молодыми звёздами, служат прекрасными местами для рождения следующей сверхновой.

А что насчёт отдельных звёзд? Хотя есть множество хороших кандидатов, два из них особенно часто участвуют в наших разговорах.

Эта Киля, находящаяся на самых последних стадиях жизни, может буквально в любой момент стать сверхновой. Или до этого момента могут пройти сотни, тысячи и десятки тысяч лет. Но если мы обнаружим поток антинейтрино, идущих примерно с её позиции в космосе, то именно на неё мы направим свои телескопы в первую очередь!

В отличие от кандидатов, расположенных на расстояниях в тысячи световых лет от нас, есть ещё один, гораздо ближе. Это самый близкий кандидат на сверхновую!

Поздоровайтесь с Бетельгейзе, красным супергигантом в 640 световых годах от нас. Бетельгейзе такой огромный, что его диаметр сравним с орбитой Сатурна! Если Бетельгейзе превратится в сверхновую, наши детекторы нейтрино по всей Земле зарегистрируют порядка сотни миллионов антинейтрино, что в сумме превзойдёт количество всех нейтрино всех типов, когда-либо зарегистрированных за всю историю.

Но если сверхновыми станут не эти известные кандидаты, сможем ли мы сказать, была ли это сверхновая типа Ia или типа II?

Всегда можно подождать. У сверхновых разных типов очень разные световые кривые, и то, как свет затухает после достижения пиковой яркости, покажет нам, какой это был тип сверхновой.

Но в таком удивительном случае я не собираюсь испытывать своё терпение. К счастью, мне это и не будет нужно, поскольку сверхновая в нашей галактике, скорее всего, станет первым регистрируемым наблюдением новейшего типа астрономии: астрономии гравитационных волн!

На гравитационные волны ничего не влияет, и такие волны от взрыва сверхновой должны будут пройти через находящиеся у них на пути звёзды, газ, пыль или материю без нарушений, и прийти одновременно с первой волной (анти)нейтрино! А плюс будет в том, что, согласно нашим лучшим симуляциям ОТО, сверхновые типа II (коллапс ядра) и типа Ia (белый карлик, падающий по спирали) должны будут породить совершенно разные гравитационные волны!

Если это будет сверхновая типа Ia, мы должны будем зарегистрировать три отдельных региона в сигнале:

Фаза спирального падения должна будет произвести периодическую пульсацию, увеличивающую частоту и силу по мере того, как белые карлики достигают финальной стадии разделения. В момент зажигания в сигнале должен произойти всплеск, за которым последует фаза затухания. Очень разные вещи.

Но если у нас будет сверхновая типа II, от сверхмассивной коллапсирующей звезды, мы увидим всего две интересные вещи.

Огромный всплеск – сама сверхновая – через одну десятую секунды после коллапса ядра, за которым следует быстро затухающий (в пределах 0,02 сек) отклик. И если нам нужно будет понять, что мы видели, нам понадобится лишь вот такой говорящий сигнал гравитационных волн.

Вот что мы бы увидели, если бы следующая сверхновая в нашей Галактике взорвалась бы сегодня!

Читайте также: