Формула полной вероятности. Формулы Бейеса. Примеры решения задач

Формула полной вероятности.

Следствием обеих основных теорем- теоремы сложения вероятностей и теоремы умножения вероятностей- является так называемая формула полной вероятности.

Пусть требуется определить вероятность некоторого события A которое может произойти с одним из событий
, образующих полную группу несовместимых событий.Будем эти события называть гипотезами.

Докажем что в этом случае

Вероятность события A вычисляется как сумма произведений вероятности каждой гипотезы на условную вероятность события при реализации этой гипотезы.

Эта формула носит название формулы полной вероятности.

Доказательство

Так как гипотезыH1,H2…, Hn,образуетполную группу то событие A может появиться в комбинации с какой либо из этих гиплтез

A=AH1+AH2+…+Ahn.


Т.к.гипотезы Н1, Н2,…,Hn несовместны, то и комбинации Н1А,H2A,…,HnA также несовместны; применяя к нему теорему сложения,получим:

Применяя к событию HiA теорему умножения, получим

Что и требовалось доказать.

Имеется три одинаковых на вид урны: в первой урне два белых и один черный шар; во второй-три белых и один черный шар; в третьей-два белых и два черных шара.

Некто выбирает наугад одну из урн и вынимает из нее шар.Найти вероятность того,что этот шар белый.

Рассмотрим три гипотезы:

Н1-выбор первой урны,

Н2-выбор второй урны,

Н3-выбор третьей урны

И событие А-появление белого шара.

Т.к.гипотезы по условию задачи равновозможны,то


Условные вероятности события А при этих гипотезах соответственно равны

Задача 3.5.

Завод изготовляет изделия, каждое из которых с вероятностью p имеет дефект.

В цехе имеется три контролера; рассматривается только одним контролером, с одинаковой вероятностью первым, вторым или третьим.Вероятность обнаружения дефекта(если оно имеется) для i-го контролера равна Pi (i=1,2,3). Если изделие не было забраковано в цехе, то оно попадает в ОТК завода, где дефект, если он имеется, обнаруживается с вероятностью P0.

Определить вероятность того,что изделие будет забраковано.

А- изделие будет забраковано

В- изделие будет забраковано в цехе

С- изделие будет забраковано в ОТК завода.

Так как события В и С несовместимы и

Р(А)=Р(В)+Р(С)

Находим Р(В).Для того, чтобы изделие было забраковано в цехе, нужно,чтобы оно, во-первых,имело дефект, и во-вторых, чтоб дефект был обнаружен.

Вероятность того,что будет обнаружен дефект в цехе равна


Действительно,

Формулируем гипотезы

Н1-дефект обнаружен 1-ым контролером

Н2-дефект обнаружен 2-ым контролером

Н3-дефект обнаружен 3-им контролером

Отсюда

Аналогично

Теорема гипотез (формула Бейеса)

Следствием теоремы умножения и формулы полной вероятности является так называемая теорема гипотез или формула Бейеса.

Поставим следующую задачу.

Имеется полная группа несовместных гипотез Н1,Н2,…Hn.Вероятность этих гипотез до опыта известны и равны соответственно Р(Н1),Р(Н2),…,P(Hn).Произведен опыт,в результате которого наблюдено появление некоторого события А. Спрашивается,как следует изменить вероятности гипотез в связи с появлением этого события?

Здесь по существу, речь идет о том, чтобы найти условную вероятность Р (Hi/A) для каждой гипотезы.

Из теоремы умножения имеем:

P(AHi)=P(A)*P(Hi/A)=P(Hi)*H(A/Hi),

Или отбрасываем левую часть

P(A)*P(Hi/A)=P(Hi)*P(A/Hi), i=1,2,…,n откуда

Или выражая Р(А) с помощью формулы полной вероятности,имеем

Эта формула и носит название формулы Бейеса или теоремы гипотез

Прибор может собираться из высококачественных деталей и из деталей обычного качества;вообще около 40% приборов собирается из высококачественных деталей. Если прибор собран из высококачественных деталей, его надежность (вероятность безотказной работы) за время tравна 0,05; если из деталей обычного качества- его надежность равна 0,7. Прибор испытывается в течении времени t и работал безотказно.Найти вероятность того,что он собран из высококачественных деталей.

Возможны две гипотезы:

Н1-прибор собран из высококачественных деталей,

Н2-прибор собран из деталей обычного качества.

Вероятность этих гипотез до опыта

Р(Н1)=0,4; P(H2)=0,6.

В результате опыта наблюдено событие А- прибор безотказно

Работал время t. Условные вероятности этого события при

Гипотезах Н1 и Н2 равны:

P(A/H1) = 0,95 ; P(A/H2) = 0,7 .

По формуле Вейсса находим вероятность гипотезы Н1 после


Задачи комбинаторики.

Во многих статистических исследованиях встречаются комбинаторные задачи, своеобразие которых целесообразно показать на примерах:

Сколькими способами можно расставить на полке 10 различных книг?

В турнире принимают участие 8 команд. Сколько различных представлений относительно трех первых мест (по результатам соревнований) можно сделать?

Сколько различных трехбуквенных слов можно составить из 32 букв алфавита, не обращая внимания на то, имеет ли смысл составленные из букв слова или нет?

Сколькими способами можно из множества k (различных) элементов выбрать r элементов?

Как велико число различных результатов бросаний двух игровых костей.

Приведенные примеры показывают, что в задачах комбинаторики интересуется вообще числом различных выборок определенных объектов, причем, в зависимости от вида дополнительных требований, следует различать, какие выборки считаются одинаковыми и какие различными.

В теории вероятности и математической статистике используют в основном три понятия комбинаторики:

Размещения

Перестановки

Сочетания

Размещениями из n элементов по m называются такие их соединения, которые различаются друг от друга самими элементами или их порядком. Например: размещения из 3 элементов a , b , c по 2: ab, ac, bc, ba, ca, cb.Число всех размещений из n различных элементов по m A

Например: размещения из 3 элементов a , b , c по 2: ab,ac ,bc , ba , ca ,cb.Число всех размещений из n различных элементов по m A

Всего m множителей


Перестановками из n элементов называются такие их соединения,отличающиеся друг от друга только порядком входящих в них элементов.Например: перестановка из трех элементов a,b и c: abc, bca, cab , cba, bac, acb. Число всех перестановок из n различных элементов Pn

Pn= 1*2*3* …*n=n!=An

Сколькими способами можно расставить на полке 10 книг.

P10=10!=3628800.

Сочетаниями из n элементов по m называются их соединения, различающиеся друг от друга только самими элементами. Например: сочетания из трех элементов a, b и c по два: ab , ac , bc . Число всех сочетаний из n различных элементов по m обозначается Cn

Мы можем записать

Повторение опытов

При практическом применении теории вероятностей часто приходится встречаться с задачами, в которых один и тот же опыт или аналогичные опыты повторяются неоднократно. В результате каждого опыта может появиться или не появиться некоторое событие А в результате серии опытов.

Такие задачи весьма просто решаются в случае, когда опыты являются независимыми.

Несколько опытов называются независимыми, если вероятность того или иного исхода каждого из опытов не зависит от того, какие исходы имели другие опыты. Несколько последовательных выниманий карты из колоды представляет собой независимые опыты при условии, что вынутая карта каждый раз возвращается в колоду и карты перемешиваются; в противном случае – зависимые опыты.

Независимые опыты могут производиться в одинаковых или различных условиях.

Общая теорема о повторении опытов.

Частная теорема о повторении опытов касается того случая, когда вероятность события А во всех опытах одна и та же. На практике часто приходится встречаться с более сложным случаем, когда опыты производятся в неодинаковых условиях, и вероятность события от опыта к опыту меняется. Способ вычисления вероятности заданного числа появлений событий в таких условиях дает общая теорема о повторении опытов.

Пусть число опытов u=2, тогда полная группа событий:

P1P2+P1q2+q1P2+q1q2

Пусть число опытов u=3, тогда полная группа событий:

P1P2P3+P1P2q3+P1q2P3+q1P2P3+P1q2q3+q1P2q3+q1q2P+q1q2q3

Аналогично для числа опытов n полная группа событий:

P1P2*…*Pn+P1P2*…*qn+…+q1P2*…*Pn+…+q1*q2*…qn,причем в каждое из произведений событие А входит m раз, а событие А входит n-m раз.Число таких сочетаний по прежнему


или короче

где z-произвольный параметр.

Функция jn(z),разложение которой по степеням параметра z дает в качестве коэффициентов вероятности pm,n, называется производящей функцией вероятностей pm,n или просто производящей функцией.

Пользуясь понятием производящий функции, можно сформулировать общую теорему о повторении опытов в следующем виде:

Вероятность того, что событие А в n независимых опытах появится ровно m раз, равна коэффициенту при zm в выражении производящей функции

jn(z)=(qi+piz) где pi-вероятность появления события А в i-ом опыте

Вышеприведенная формулировка общей теоремы о повторении опытов в отличии от частной теоремы не дает явного выражения для вероятности pm,n.

Такое выражение в принципе написать можно, но оно является слишком сложным, и мы не будем его приводить.

Однако не прибегая к такому явному выражению, все же можно записать общую теорему о повторении опытов в виде одной формулы

случайная величина.

Одним из важнейших основных понятий теории вероятности является понятие о случайной величине.

Случайной величиной называется величина, которая в результате опыта может принять то или иное значение, причем неизвестно заранее, какое имено.

Примеры случайных величин:

Число вызовов, поступавших на телефонную станцию за сутки;

Количество мальчиков, родившихся в роддоме за месяц;

Количество девочек, родившихся в роддоме за месяц;

Во всех трех примерах случайные величины могут принимать отдельные изолированные значения, которые можно заранее перечислить.

В примере 1;

Такие случайные величины, принимающие только отдельные, отделенные друг от друга значения называются дискретными величинами.

Существуют случайные величины другого типа.

Например, температура воздуха, влажность воздуха, напряжение в сети электрического тока.

Функция распределения.

Ряд распределения, многоугольник распределения не

являются универсальными характеристиками случайной величины:они существуют только для дискретных случайных величин.Нетрудно убедиться,что для непрерывной случайной величины такой характеристики построить нельзя. Действительно, непрерывная случайная величина имеет бесчисленное множество возможных значений, ???? занимающих некоторый промежуток (так называемое “несчетное множество”). Составить таблицу, в которой были бы перечислены все возможные значения такой случайной величины, невозможно. Следовательно, для непрерывной случайной величины не существует ряда распределения в том смысле, в каком он существует для прерывной величины. Однако различные области возможных значений случайной величины все же не являются одинаково вероятными, и для непрерывной величины существует распределение вероятностей, хотя и не в том смысле, как для прерывной (или дискретной).

Для количественной характеристики этого распределения вероятностей удобно воспользоваться не вероятностью события x=x, а вероятностью события x


Функцию распределения F(x) иногда называют также интегральной функцией распределения или интегральным законом распределения.

Функция распределения-универсальная характеристика случайной величины.Она существует для всех случайных величин: как дискретных, так и непрерывных.Функция распределения

Полностью характеризует случайную величину с вероятной точки зрения,т.е. является одной из форм распределения.

Сформулируем некоторые общие свойства функции распределения:

Функция распределения F(x) есть неубывающая функция своего аргумента т.е. при x2>x1 F(x2)>F(x1).

На минус бесконечности функция распределения равна нулю

3.На плюс бесконечности функция распределения равна 1.

Типичная функция распределения непрерывной случайной величины имеет вид

Вероятность показания случайной величины на заданный участок.

При решении практических задач, связанных со случайными величинами часто оказывается необходимым вычислять вероятность того, что случайная величина примет значение, заключенное в некоторых пределах, например от a до b.

Условимся для определенности левый конец a включать в участок(a,b), а правый-не включать.Тогда попадание случайной величины x на участок(a,b) равносильно выполнено неравенство:

выразим вероятность того события через функцию распределения величины x. Для того рассмотрим три события:

событие А, состоящее в том, что C

событие B, состоящее в том, что C

событие С, состоящее в том, что a

Учитывая, что А=В+С, по теореме сложения вероятностей имеем

R(C

F(b)=F(a)+R(a£C

P(a£C

Т.е. вероятность показания случайной величины на заданный предел равна приращению функции распределения на этом участке.

Плотность распределения.

Пусть имеется непрерывная случайная величина x с функцией распределения F(x),которую мы предложим непрерывной и дифференцируемой.

Вычислим вероятность попадания этой величины на участок от x до x+DC:

R(C£C

т.е.приращению функции на этом участке. Рассмотрим отношение этой вероятности к длине участка, т.е. среднюю вероятность,приходящуюся на единицу длины на этом участке, и будем приближать DC к 0. В приделе получим производную от функции распределения.

Введем обозначение:

Функция f (x)- производная функции распределения - характеризует как бы плотность,с которой распределяются значения случайной величины в данной точке. Эта функция называется плотностью распределения

(иначе”плотностью вероятности”) непрерывной случайной величины X. Иногда функцию f (x) называют “дифференциальной функцией распределения” или “дифференциальным законом распределения “ величины Х.

Кривая, изображающая плотность распределения случайной величины, называется кривой распределения.

Плотность распределения, так же как и функция распределения, есть одна из форм закона распределения.В противоположность от функции распределения эта форма является универсальной: она существует только для непрерывных случайных величин.

Рассмотрим непрерывную величину Х с плотностью распределения f (x) и элементарный участок DX,

примыкающий к точке Х.


Вероятность нахождения случайной величины Х на этот элементарный участок (с точностью до бесконечно малых высшего порядка) равна f (x)dx. Величина f (x)dx называется элементом вероятности. Геометрически это есть площадь элементарного прямоугольника, опирающегося на отрезок dx.

Выразим вероятность попадания величины Х на отрезок от a до b через плотность распределения:

Очевидно, она равна сумме элементов вероятности на всем этом участке, то есть интегралу:

Геометрически вероятность попадания величины Х на участке (a,b) равна площади кривой распределения, опирающийся на этот участок.

выражает плотность распределения через функцию распределения. Зададимся обратрой задачей:выразить функцию распределения через плотность.По определению

F(x)=P(X

Откуда по формуле(3) имеем:


F(x)=

Геометрически F(x) есть не что иное,как площадь кривой распределения,лежащая левее точки:X

Укажем основные свойства плотности распределения:

1.Плотность распределения есть неотрицательная функция

Это свойство непосредственно вытекает из того,что функция распределения F(x) есть неубывающая функция.

2.Интеграл в бесконечных пределах от плотности распределения равен 1

Это следует из того,что F(+¥)=1

Геометрически основные свойства плотности распределения означают:

1.Вся кривая распределения лежит не ниже оси абсцисс.

2.Полная площадь,ограниченная кривой распределения и осью абсцисс, равна 1.

ЧИСЛОВЫЕ ХАРАКТЕРИСТИКИ СЛУЧАЙНЫХ ВЕЛИЧИН. ИХ РОЛЬ И НАЗНАЧЕНИЯ.

Мы познакомились с рядом полных характеристик случайных величин- так называемых законов распределения.Такими характеристиками были:

Для дискретной случайной величины

а) функция распределения;

б) ряд распределения (графически – кривая распределения).

Каждый закон распределения представляет собой некоторую функцию,и указание этой функции полностью

Описывает случайную величину с вероятностной точки зрения.

Однако во многих вопросах практики нет необходимости характеризовать случайную величину плотностью,исчерпывающим образом.

Зачастую достаточно бывает указать только отдельные числовые параметры, до некоторой степени характеризующие существенные черты распределения

чайной величины: например какое то среднее значение, около группируются возможные значения случайной величины; какое то число, характеризующее степень разбросанности этих значений относительно среднего, и т. д.

Пользуясь такими характеристиками, мы можем все существенные сведения относительно случайной величины, которыми мы располагаем, выразить наиболее компактно с помощью числовых параметров.Вот эти параметры, которые выражают в сжатой числовой форме наиболее существенные особенности распределения, называются числовыми характеристиками случайной величины.

В теории вероятности и математической статистики применяются большое количество различных числовых характеристик, имеющих различное назначение и различные области применения,но все они делятся на два класса:

1.Характеристики положения.

2. Характеристики рассеяния.

Характеристики положения.

Математическое ожидание. Медиана. Мода. Начальный момент.

Среди числовых характеристик случайных величин нужно прежде всего отметить те,которые характеризуют положения случайной величины на числовой оси,т. е. Указывают некоторое среднее, ориентировочное значение, около которого группируются все возможные значения случайной величины.

Из характеристик положения в теории вероятности важнейшую роль играет математическое ожидание случайной величины,которое иногда называют средним значением случайной величины.

Рассмотрим случайную дискретную величину X , имеющую возможные значения X1,X2 ,…Xn c вероятностями P1, P2 ,… Pn.

Нам требуется характеризовать каким то числом положение значений случайной величины на оси абсцисс. Для этой цели естественно воспользоваться так называемым « «средним взвешенным » из значений Xi, причем каждое значение Xi при?????????? должно учитываться с «весом» , пропорциональным вероятности этого значения. Т. о. Мы вычислим среднее значение случайной величины x , которое мы обозначим М[x]



Или учитывая, что

Это среднее взвешенное значение и называется математическим ожиданием случайной величины.

Математическим ожиданием случайной величины называется сумма произведений всех возможных значений с. в. на вероятности этих значений.

Заметим, что в выше приведенной формулировке определение математического ожидания справедлива только для дискретных случайных величин.


Для непрерывной величины x математическое ожидание, естественно выражается уже не суммой, а интегралом:

Где f(x)-плотность распределения случайной величины Х.

F(x)dx-элемент вероятности.

Кроме важнейшей из характеристик положение – математического ожидания, - на практике иногда применяются и другие характеристики положения, в частности мода и медиана

Модой случайной величины называется ее наиболее вероятное значение, строго говоря, применяем только x дискретным величинам

Для непрерывной случайной величины модой является то значение в котором плотность вероятности максимальна

Медианой с. в. X называется такое ее значение Ме, т. е. Одинаково вероятно, окажется ли случайная величина меньше или больше Ме

Геометрически медиана – это абсцисса точки, в которой площадь, ограниченная кривой распределения, делится попалам.

‘ PГрафик функции распределения имеет вид

Задача 5,50

На перекрестке стоит автоматический светофор, в котором

1минуту горит зеленый свет и 0,5 минуты-красный, затем 1 минуту горит зеленый свет,0,5 минут красный и,т,д

некто подъезжает к перекрестку на машине в случайный момент, не связанный с работой

светофора

а) найти вероятность того, что он проедет перекресток не останавливаясь

б)найти среднее время ожидания у перекрестка

Момент проезда автомашины через перекресток распределен равномерно в интервале, равном

Периоду смены цветов в светофоре

Этот период равен 1+0,5=1,5минут

Для того, чтобы машина проехала через перекресток, не останавливаясь, достаточно, чтобы

Момент проезда перекрестка пришелся на интервал времени (0,1)

Для случайной величены, подчиненный закону постоянной плотности в интервале (0,1,5)

Вероятность того,что она попадает на интервал (0,1) равна Время ожидания есть смешанная случайная величина,с вероятностью она равна 0,а с Вероятностью она принимает с одинаковой плотностью вероятности любое значение между 0 и 0,5 минут

Среднее время ожидания у перекрестка

Закон распределения Пуасона

Во многих задачах практики приходится иметь дело со случайными величинами распределенными по своеобразному закону который называется законом пуасона. Рассмотрим

Дискретную величину, которая может принимать только целые неотрицательные значения

0,1,2,..., m,...,

причем последовательность этих значений практически неограничена.

Говорят что случайная величина Х распределена по закону пуасона, если вероятность того, что

Она примет определенные значения m выражается формулой

где a- некоторая положительная величина называемая параметром Пуасона.Ряд распределения случайной величины Х, распределенный по закону Пуасона имеет вид;

Xm ... m ...
Pm

Дисперсия величины Х равна

Вероятность попадания случайной величины, подчиненной нормальному закону на заданный участок.

Во многих задачах, связанных с нормально распределенными случайными величинами, приходится определять вероятность попадания случайной величины Х, подчиненной нормальному закону с параметрами

m, s,на участок от a до b .

Для вычисления этой вероятности воспользуемся общей формулой.

R (a < C< b) = F(b) – F(a) (1)

где F(b) - функция распределения величины Х в точке b

F(a)-функция распределения величины Х в точке a

Найдем функцию распределения F(x) случайной величины, распределенной по нормальному закону с параметрами m, s. Плотность

распределения величины Х равна:

Отсюда находим функцию распределения:

Сделаем в интеграле замену переменной:

И приведем его к виду:

Этот интеграл не выражается через элементарные функции, но для него

составлены таблицы.

Табличная функция распределения (так называемая таблица интеграла вероятностей) обозначается:

Нетрудно видеть, что эта функция представляет собой не что иное, как функцию распределения для нормально распределенной случайной

величины с параметрами m=0; s=1

Функция распределения Ф*(х) называется также нормальной функцией распределения.

Выразим функцию распределения величины Х с параметрами m,s через нормальную функцию распределения:

Теперь найдем вероятность попадания случайной величины Х на участок от a до b .

Согласно формуле (1):

Таким образом, мы выразим вероятность попадания на участок от a до

B случайной величины, распределенной по нормальному закону распределения с любыми параметрами, через стандартную функцию распределения Ф*(х) , соответствующую нормальному закону с параметрами m=0 и s=1. Заметим, что аргументы функции Ф* в последней формуле имеет простой смысл:

Есть расстояние от правого конца участка b до центра рассеяния, выраженное в средних квадратических отклонениях;

Есть такое же расстояние для левого конца участка, причем что расстояние считается положительным, если конец расположен справа от центра рассеяния, и отрицательным, если слева.

Как и всякая функция распределения, функция Ф*(х) обладает свойствами:

3.Ф*(х)- неубывающая функция.

Кроме того, из симметричности нормального распределения с параметрами m=0 и s=1 относительно начала координат следует, что

4.Ф*(-х)=1-Ф*(х).

Рассмотрим следующий пример.

Случайная величина Х, распределенная по нормальному закону, представляет собой ошибку измерения некоторого расстояния.

При измерении допускается систематическая ошибка в сторону завышения на 1,2(м); среднее квадратическое отклонение ошибки измерения равно 0,8(м).

Найти вероятность того, что отклонение измеренного значения от истинного не превзойдет по абсолютной величине 1,6(м).

Ошибка измерения есть случайная величина Х, подчиненная нормальному закону с параметрами m=12 , s=0,8.

Нужно найти вероятность попадания этой величины на участок от

a=--1,б до b= +1,6.

По формуле имеем:

Пользуясь таблицами функции Ф*(0,5)=0,6915 и Ф*(-3,5)=0,0002

Р(-1,6<х<1,6)=0,6915-0,0002=0,6913

Задача 5.48.

Браковка шариков для подшибников производится следующим образом:

если шарик не проходит через отверстие диаметром d2>d1, то его размер считается приемлемым. Если какое- нибудь из этих условий не выполняется, то шарик бракуется. Известно, что диаметр шарика Д есть нормально распределенная случайная величина с характеристиками

Определить вероятность q того, что шарик будет забракован.

q= 1- p(d1< d < d2);

Известно, что размер D шарика для подшипника является случайной величиной, распределенной по нормальному закону. Браковка шарика производится так же, как указанно в предыдущей задаче. При этом известно, что средний размер шарика равен

А брак составляет 10% от всего выпуска.Определить среднее квадратическое отклонение диаметра шарика sd.

Аналогично предыдущей задаче вероятность брака

Откуда

Задача 5-54

Случайная величина х подчинена нормальному закону с математическим мх=0.Вероятность показания этой случайной величины на участках от -1 до 1 равна 0.5.


Найти среднее квадратичное отклонение и написать выражение нормального закона

Откуда четность распределения

Построим график функции четность распределения

x -5 -4 -3 -2 -1
-5,68 -3,64 -2,05 -0,91 -0,22 -0,22 -0,91 -2,05 -3,64 -5,68
0,003 0,026 0,129 0,403 0,803 0,803 0,403 0,129 0,026 0,003
0,001 0,01 0,03 0,11 0,22 0,3 0,22 0,11 0,03 0,01 0,001

Здесь должен быть график

Задача 5-58.

Имеется случайная величина х, подчиненная нормальному закону е математическим ожиданием мх, а средним квадратичным отклонением сигма от х. Требуется приближенно

Заменить нормальный закон законом постоянной плотности в интервале альфа, бета; границы альфа, бета подобрать так, чтобы сохранить неизменными основные характеристики случайной величины х: математическое ожидание и дисперсию.

-2 -1 -5,68 -3,64 -2,05 -0,91 -0,22 -0,22 -0,91 -2,05 -3,64 -5,68 0,0033 0,0262 0,1287 0,4025 0,8025 0,8025 0,4025 0,1287 0,0262 0,033 0,001 0,01 0,03 0,11 0,22 0,270 0,22 0,11 0,03 0,01 0,001

Вариант 2


Случайная величина Х подчинена нормальному закону с математиче-ским ожиданием Мх=6. Вероятность попадания этой случайной величины на участок от 4 до8 равна 0,6. Найти среднее квадратичное отклонение и написать выражение нормального закона. Построить график плотности распределения.

Откуда плотность распределения

Построим график плотности распределения.

х -1
-4,36 -3,04 -2,20 -1,35 -0,76 -0,34 -0,08 -0,08 -0,34 -0,76 -1,35 -2,20 -3,04 -4,36

ПРАВИЛО ТРЕХ s

Пусть нормальная величина Х распределена по нормальному закону с параметрами М и s. Ппокажем что с точностью до 03% случается величина подчиненная закону принимает возможные значения не отклоняющиеся от центра рассеяния на ± 3s.

Мы хотим найти что

Не превысит 0003

Правило 3s в статистике имеет большое значение.

Одно из самых распространенных правил 3s - это отсеивающий экспери-мент. При отсеивающем эксперименте производят отсеивание выбросов.

Основные задачи математической статистики

Следствием двух основных теорем теории вероятностей – теоремы сложения и умножения – являются формулы полной вероятности и формулы Бейеса.

На языке алгебры событий набор , , ¼, называется полной группой событий , если:

1. События попарно несовместны, т.е. , , ;.

2. В сумме составляют все вероятностное пространство .

Теорема 5 (Формула полной вероятности). Если событие А может произойти только при условии появления одного из событий (гипотез) , ,¼,, образующих полную группу, то вероятность события А равна

Доказательство. Так как гипотезы , ,¼,– единственно возможные, а событие A по условию теоремы может произойти только вместе с одной из гипотез, то . Из несовместности гипотез следует несовместность .

Применяем теорему сложения вероятностей в виде (6):

По теореме умножения . Подставляя данное представление в формулу (13), окончательно имеем: , что и требовалось доказать.

Пример 8. Экспортно-импортная фирма собирается заключить контракт на поставку сельскохозяйственного оборудования в одну из развивающихся стран. Если основной конкурент фирмы не станет одновременно претендовать на заключение контракта, то вероятность получения контракта оценивается в 0,45; в противном случае – в 0,25. По оценкам экспертов компании вероятность того, что конкурент выдвинет свои предложения по заключению контракта, равна 0,40. Чему равна вероятность заключения контракта?

Решение. А - «фирма заключит контракт», - «конкурент выдвинет свои предложения», - «конкурент не выдвинет свои предложения». По условию задачи , . Условные вероятности по заключению контракта для фирмы , . По формуле полной вероятности

Следствием теоремы умножения и формулы полной вероятности является формула Бейеса.

Формула Байеса позволяет пересчитать вероятность каждой из гипотез, при условии, что событие произошло. (Она применяется, когда событие А , которое может появиться только с одной из гипотез, образующих полную группу событий, произошло и необходимо провести количественную переоценку априорных вероятностей этих гипотез известных до испытания, т.е. надо найти апостериорные (получаемые после проведения испытания) условные вероятности гипотез) , ,…, .

Теорема 6 (Формула Бейеса). Если событие А произошло, то условные вероятности гипотез вычисляются по формуле, которая носит название формулы Бейеса:

Доказательство. Для получения искомой формулы запишем теорему умножения вероятностей событий А и в двух формах:

откуда что и требовалось доказать.

Значение формулы Бейеса состоит в том, что при наступлении события А, т.е. по мере получения новой информации, мы можем проверять и корректировать выдвинутые до испытания гипотезы. Такой подход, называемый бейесовским, дает возможность корректировать управленческие решения в экономике, оценки неизвестных параметров распределения изучаемых признаков в статистическом анализе и т.п.



Задача 9. Группа состоит из 6 отличников, 12 хорошо успевающих студентов и 22 студентов, успевающих посредственно. Отличник отвечает на 5 и 4 с равной вероятностью, хорошист отвечает на 5, 4 и 3 с равной вероятностью, и посредственно успевающий студент отвечает на 4, 3 и 2 с равной вероятностью. Случайно выбранный студент ответил на 4. Какова вероятность того, что был вызван посредственно успевающий студент?

Решение. Рассмотрим три гипотезы:

Рассматриваемое событие . Из условия задачи известно, что

, , .

Найдем вероятности гипотез. Поскольку в группе всего 40 студентов, а отличников 6, то . Аналогично, , . Применяя формулу полной вероятности, находим

Теперь применим к гипотезе формулу Байеса:

Пример 10. Экономист-аналитик условно подразделяет экономическую ситуацию в стране на «хорошую», «посредственную» и «плохую» и оценивает их вероятности для данного момента времени в 0,15; 0,70 и 0,15 соответственно. Некоторый индекс экономического состояния возрастает с вероятностью 0,60, когда ситуация «хорошая»; с вероятностью 0,30, когда ситуация посредственная, и с вероятностью 0,10, когда ситуация «плохая». Пусть в настоящий момент индекс экономического состояния возрос. Чему равна вероятность того, что экономика страны на подъеме?

Решение. А = «индекс экономического состояния страны возрастет», Н 1 = «экономическая ситуация в стране «хорошая»», Н 2 = «экономическая ситуация в стране «посредственная»», Н 3 = «экономическая ситуация в стране «плохая»». По условию: , , . Условные вероятности: ,, . Требуется найти вероятность . Находим ее по формуле Бейеса:

Пример 11. В торговую фирму поступили телевизоры от трех поставщиков в соотношении 1:4:5. Практика показала, что телевизоры, поступающие от 1-го, 2-го и 3-го поставщиков, не потребуют ремонта в течение гарантийного срока соответственно в 98%, 88% и 92% случаев.

События образуют полную группу , если хотя бы одно из них обязательно произойдет в результате эксперимента и попарно несовместны.

Предположим, что событие A может наступить только вместе с одним из нескольких попарно несовместных событий , образующих полную группу. Будем называть события (i = 1, 2,…, n ) гипотезами доопыта (априори). Вероятность появления события А определяется по формуле полной вероятности :

Пример 16. Имеются три урны. В первой урне находятся 5 белых и 3 черных шара, во второй – 4 белых и 4 черных шара, а в третьей – 8 белых шаров. Наугад выбирается одна из урн (это может означать, например, что осуществляется выбор из вспомогательной урны, где находятся три шара с номерами 1, 2 и 3). Из этой урны наудачу извлекается шар. Какова вероятность того, что он окажется черным?

Решение. Событие A – извлечен черный шар. Если было бы известно, из какой урны извлекается шар, то искомую вероятность можно было бы вычислить по классическому определению вероятности. Введем предположения (гипотезы) относительно того, какая урна выбрана для извлечения шара.

Шар может быть извлечен или из первой урны (гипотеза ), или из второй (гипотеза ), или из третьей (гипотеза ). Так как имеются одинаковые шансы выбрать любую из урн, то .

Отсюда следует, что

Пример 17. Электролампы изготавливаются на трех заводах. Первый завод производит 30 % общего количества электроламп, второй – 25 %,
а третий – остальную часть. Продукция первого завода содержит 1% бракованных электроламп, второго – 1,5 %, третьего – 2 %. В магазин поступает продукция всех трех заводов. Какова вероятность того, что купленная в магазине лампа оказалась бракованной?

Решение. Предположения необходимо ввести относительно того, на каком заводе была изготовлена электролампа. Зная это, мы сможем найти вероятность того, что она бракованная. Введем обозначения для событий: A – купленная электролампа оказалась бракованной, – лампа изготовлена первым заводом, – лампа изготовлена вторым заводом,
– лампа изготовлена третьим заводом.

Искомую вероятность находим по формуле полной вероятности:

Формула Байеса. Пусть – полная группа попарно несовместных событий (гипотезы). А – случайное событие. Тогда,

Последнюю формулу, позволяющей переоценить вероятности гипотез после того, как становится известным результат испытания, в итоге которого появилось событие А, называют формулой Байеса .

Пример 18. В специализированную больницу поступают в среднем 50 % больных с заболеванием К , 30 % – c заболеванием L , 20 % –
с заболеванием M . Вероятность полного излечения болезни K равна 0,7 для болезней L и M эти вероятности соответственно равны 0,8 и 0,9. Больной, поступивший в больницу, был выписан здоровым. Найдите вероятность того, что этот больной страдал заболеванием K .


Решение. Введем гипотезы: – больной страдал заболеванием К L , – больной страдал заболеванием M .

Тогда по условию задачи имеем . Введем событие А – больной, поступивший в больницу, был выписан здоровым. По условию

По формуле полной вероятности получаем:

По формуле Байеса .

Пример 19. Пусть в урне пять шаров и все предположения о количестве белых шаров равновозможные. Из урны наудачу взят шар, он оказался белым. Какое предположение о начальном составе урны наиболее вероятно?

Решение. Пусть – гипотеза, состоящая в том, что в урне белых шаров , т. е. возможно сделать шесть предположений. Тогда по условию задачи имеем .

Введем событие А – наудачу взятый шар белый. Вычислим . Так как , то по формуле Байеса имеем:

Таким образом, наиболее вероятной является гипотеза , т. к. .

Пример 20. Два из трех независимо работающих элемента вычислительного устройства отказали. Найдите вероятность того, что отказали первый и второй элементы, если вероятности отказа первого, второго и третьего элементов соответственно равны 0,2; 0,4 и 0,3.

Решение. Обозначим через А событие – отказали два элемента. Можно сделать следующие гипотезы:

– отказали первый и второй элементы, а третий элемент исправен. Поскольку элементы работают независимо, применима теорема умножения:

Следствием обеих основных теорем – теоремы сложения вероятностей и теоремы умножения вероятностей – является так называемая формула полной вероятности.

Пусть требуется определить вероятность некоторого события , которое может произойти вместе с одним из событий:

образующих полную группу несовместных событий. Будем эти события называть гипотезами.

Докажем, что в этом случае

, (3.4.1)

т.е. вероятность события вычисляется как сумма произведений вероятности каждой гипотезы на вероятность события при этой гипотезе.

Формула (3.4.1) носит название формулы полной вероятности.

Доказательство. Так как гипотезы образуют полную группу, то событие может появиться только в комбинации с какой-либо из этих гипотез:

Так как гипотезы несовместны, то и комбинации также несовместны; применяя к ним теорему сложения, получим:

Применяя к событию теорему умножения, получим:

,

что и требовалось доказать.

Пример 1. Имеются три одинаковые на вид урны; в первой урне два белых и один черный шар; во второй – три белых и один черный; в третьей – два белых и два черных шара. Некто выбирает наугад одну из урн и вынимает из нее шар. Найти вероятность того, что этот шар белый.

Решение. Рассмотрим три гипотезы:

Выбор первой урны,

Выбор второй урны,

Выбор третьей урны

и событие – появление белого шара.

Так как гипотезы, по условию задачи, равновозможные, то

.

Условные вероятности события при этих гипотезах соответственно равны:

По формуле полной вероятности

.

Пример 2. По самолету производится три одиночных выстрела. Вероятность попадания при первом выстреле равна 0,4, при втором – 0,5, при третьем 0,7. Для вывода самолета из строя заведомо достаточно трех попаданий; при одном попадании самолет выходит из строя с вероятностью 0,2, при двух попаданиях – с вероятностью 0,6. Найти вероятность того, что в результате трех выстрелов самолет будет выведен из строя.

Решение. Рассмотрим четыре гипотезы:

В самолет не попало ни одного снаряда,

В самолет попал один снаряд,

В самолет попало два снаряда,

В самолет попало три снаряда.

Пользуясь теоремами сложения и умножения, найдем вероятности этих гипотез:

Условные вероятности события (выход самолета из строя) при этих гипотезах равны:

Применяя формулу полной вероятности, получим:

Заметим, что первую гипотезу можно было бы и не вводить в рассмотрение, так как соответствующий член в формуле полной вероятности обращается в нуль. Так обычно и поступают при применении формулы полной вероятности, рассматривая не полную группу несовместных гипотез, а только те из них, при которых данное событие возможно.

Пример 3. Работа двигателя контролируется двумя регуляторами. Рассматривается определенный период времени , в течение которого желательно обеспечить безотказную работу двигателя. При наличии обоих регуляторов двигатель отказывается с вероятностью , при работе только первого из них – с вероятностью , при работе только второго - , при отказе обоих регуляторов – с вероятностью . Первый из регуляторов имеет надежность , второй - . Все элементы выходят из строя независимо друг от друга. Найти полную надежность (вероятность безотказной работы) двигателя.

1. Формула полной вероятности.

Пусть событие А может наступить при условии появления одного из несовместных событий B 1 , B 2 , B 3 , ..., B n , которые образуют полную группу. Пусть известны вероятности этих событий и условные вероятности P(A/B 1), P(A/B 2), ..., P(A/B n) события А. Требуется найти вероятность события А.

Теорема: Вероятность события А, которое может наступить лишь при условии появления одного из несовместных событий B 1 , B 2 , B 3 , ..., B n , образующих полную группу, равна сумме произведений вероятностей каждого из этих событий на соответствующую условную вероятность события А:

– Формула полной вероятности.


Доказательство:

По условию, событие А может наступить, если наступит одно из несовместных событий B 1 , B 2 , B 3 , ..., B n . Другими словами, появление события А означает осуществление одного (безразлично какого) из несовместных событий: B 1 *A, B 2 *A , B 3 *A , ..., B n *A . Пользуясь теоремой сложения, получим:

По теореме умножения вероятностей зависимых событий имеем:

ч.т.д.

Пример: Имеется 2 набора деталей. Вероятность того, что деталь из первого набора стандартна, равна 0,8, а для второго набора- 0,9. Найдите вероятность того, что взятая наудачу деталь (из наудачу взятого набора) стандартна.

Решение: Событие А- «Извлеченная деталь стандартна». Событие -«Извлекли деталь, изготовленную 1 заводом». Событие - «Извлекли деталь, изготовленную вторым заводом». Р(B 1 )=Р(B 2)= 1/2.Р(А / B 1 )=0,8- вероятность, что деталь, изготовленная на первом заводе, стандартна. Р(А / B 2 )=0,9- вероятность, что деталь, изготовленная на втором заводе, стандартна.

Тогда, по формуле полной вероятности, имеем:

Пример: Сборщик получил 3 коробки деталей, изготовленных заводами №1 и 2 коробки деталей, изготовленных заводом №2. Вероятность того, что деталь, изготовленная заводом №1, стандартна равна 0,8. Для завода №2 эта вероятность равна 0,9. Сборщик наудачу извлек деталь из наудачу выбранной коробки. Найдите вероятность того, что извлечена стандартная деталь.

Решение: Событие А- «Извлечена стандартная деталь». Событие B 1 - «Извлечена деталь из коробки завода №1». Событие B 2 - «Извлечена деталь из коробки завода № 2». Р(B 1)= 3/5. Р(B 2 )= 2/5.

Р(А / B 1)=0,8- вероятность, что деталь, изготовленная на первом заводе, стандартна. Р(А / B 2)=0,9- вероятность, что деталь, изготовленная на втором заводе, стандартна.

Пример: В первой коробке лежит 20 радиоламп, из них- 18 стандартных. Во второй коробке лежит 10 радиоламп, из них- 9 стандартных. Из второй коробки в первую наудачу переложена одна радиолампа. Найдите вероятность того, что лампа, наудачу извлеченная из первой коробки, будет стандартной.

Решение: Событие А-« Из 1 коробки извлекли стандартную лампу». Событие B 1 -«Из второй в первую коробку переложили стандартную лампу». Событие B 2 -«Из второй в первую коробку переложили нестандартную лампу». Р(B 1 )= 9/10. Р(B 2)= 1/10.Р(А / B 1)= 19/21 - вероятность вытащить из первой коробки стандартную деталь, при условии, что была переложена в нее так же стандартная.

Р(А / B 2 )= 18/21 - вероятность вытащить из первой коробки стандартную деталь, при условии, что была переложена в нее нестандартная.

2. Формул гипотез Томаса Байеса.

Пусть событие А может наступить при условии появления одного из несовместных событий B 1 , B 2 , B 3 , ..., B n , образующих полную группу. Поскольку заранее неизвестно, какое из этих событий наступит, их называют гипотезами. Вероятность появления события А определяется по формуле полной вероятности, рассмотренной ранее.

Допустим, что произведено испытание, в результате которого произошло событие А. Поставим своей задачей определить, как изменились (в связи с тем, что событие А уже наступило) вероятности гипотез. Другими словами, будем искать условные вероятности P(B 1 /A), P(B 2 /A), ..., P(B n /A)

Найдем условную вероятность P(B 1 /A) . По теореме умножения имеем:

Отсюда следует:


Аналогично выводятся формулы, определяющие условные вероятности остальных гипотез, т.е. условная вероятность любой гипотезу B k (i =1, 2, …, n ) может быть вычислена по формуле:

Формулы гипотез Томаса Байеса.

Томас Байес (английский математик) опубликовал формулу в 1764 году.

Данные формулы позволяют переоценить вероятности гипотез после того, как становится известным результат испытания, в итоге которого появилось событие А.

Пример: Детали, изготовленные цехом завода, попадают для проверки их на стандартность к одному из двух контролеров. Вероятность того, что деталь попадет к первому контролеру, равна 0,6, ко второму- 0,4. Вероятность того, что годная деталь будет признана стандартной первым контролером, равна 0,94, для второго контролера эта вероятность равна 0,98.Годная деталь при проверке была признана стандартной. Найдите вероятность того, что эту деталь проверил первый контролер.

Решение: Событие А- «Годная деталь признана стандартной». Событие B 1 - «Деталь проверял первый контролер». Событие B 2 - «Деталь проверил второй контролер». Р(B 1 )=0,6. Р(B 2 )=0,4.

Р(А / B 1)=0,94- вероятность, что деталь, проверенная первым контролером, признана стандартной.

Р(А / B 2)=0,98 - вероятность, что деталь, проверенная вторым контролером, признана стандартной.

Тогда:

Пример: Для участия в студенческих отборочных спортивных соревнованиях выделено из первой группы курса-4 человека, из второй- 6 человек, из третьей- 5 человек. Вероятность того, что студент первой группы попадет в сборную, равна 0,9, для студентов второй и третьей групп эти вероятности соответственно равны 0,7 и 0,8. Наудачу выбранный студент в итоге соревнования попал в сборную К какой из групп, вероятнее всего, он принадлежит?

Решение: Событие А- «Наудачу выбранный студент, попал в сборную института». Событие B 1 - «Наудачу выбран студент из первой группы». Событие B 2 - «Наудачу выбран студент из второй группы». Событие B 3 - «Наудачу выбран студент из третьей группы». Р(B 1)= 4/15 . Р(B 2)= 6/15. Р(B 3)= 5/15 .

Р(А / B 1)=0,9- вероятность, что студент из первой группы попадет в сборную.

Р(А / B 2)=0,7- вероятность, что студент из второй группы попадет в сборную.

Р(А / B 3 )=0,8- вероятность, что студент из третьей группы попадет в сборную.

Тогда:

Вероятность, что в сборную попал студент из первой группы.


Вероятность, что в сборную попал студент из второй группы.


Вероятность, что в сборную попал студент из третьей группы.


Вероятнее всего в сборную попадет студент из второй группы.

Пример: При отклонении от нормального режима работы автомата сработает сигнализатор С 1 с вероятностью 0,8, а сигнализатор С 2 сработает с вероятностью 1. Вероятность того, что автомат снабжен сигнализатором С 1 или С 2 соответственно равны 0,6 и 0,4. Получен сигнал о разделке автомата. Что вероятнее: автомат снабжен сигнализатором С 1 или С 2 ?

Решение: Событие А-«Получен сигнал о разделке автомата». Событие B 1 -« Автомат снабжен сигнализатором С1. Событие B 2 - «Автомат снабжен сигнализатором С2. Р(B 1 )= 0,6. Р(B 2)= 0,8.

Р(А / B 1)=0,8- вероятность, что будет получен сигнал, при условии, что автомат снабжен сигнализатором С1.

Р(А / B 2 )=1- вероятность, что будет получен сигнал, при условии, что автомат снабжен сигнализатором С2.

Тогда:

Вероятность, что при получении сигнала о разделке автомата, сработал сигнализатор С1.

Вероятность, что при получении сигнала о разделке автомата, сработал сигнализатор С2.


Т.е. вероятнее, что при разделке автомата будет получен сигнал от сигнализатора С1.

Читайте также: