Иммунные механизмы. Иммунология

Как известно, в ходе иммунной ответной реакции между чужеродным антигеном и реагирующим только с ним (специфическим) антителом возникает физико-химическая связь, которая способствует нейтрализации, расщеплению антигенов. Возникает вопрос: каким путем может организм образовывать специфическое антитело на каждый из сотен тысяч антигенов, происходящих из внешней среды. Недавно еще пытались объяснить иммунную ответную реакцию двумя противоречащими друг другу теориями: инструктивной и избирательной теорией.

I. Инструктивная теория : антиген, дав образец, вызывает образование специфического, реагирующего только с ним антитела (эта теория в такой форме может считаться опровергнутой.)

II. Избирательная теория : в результате проведенных генетических исследований и выяснения химической структуры иммуноглобулина избирательная теория может считаться доказанной. На поверхности антигенов имеются детерминантные группы (боковые цепи); организм обладает унаследованной способностью, заложенной в ДНК клеточного ядра, образовывать реагирующие с антигенами специфические антитела. Если организм встречается с определенным антигеном, в результате стимуляции обладающие реактивным белком лимфоциты селективно размножаются; лимфоцитарная популяция, способная к образованию такого специфического антитела, называется клоном.

Образовавшееся антитело, по имеющемуся опыту, только отчасти специфично, ибо близкие виды или белки с подобной функцией дают перекрестную реакцию, ив отдельных случаях даже системно далекие антигены могут давать реакцию (например, антиген Форсмана). Это обусловлено тем, что в ходе иммунизации в организм почти всегда вводится одна или несколько комплексных белковых молекул, обладающих многочисленными характерными группами (детерминантами). При исследовании кристаллических и синтетических белков было, однако, установлено, что одна молекула иммуноглобулина может реагировать не более чем с двумя детерминантами.

В отношении антигенового детерминанта, согласно исследованиям Левина, в результате генетического регулирования к иммунной ответной реакции относится закон: "все или ничего". Согласно нашим исследованиям, это же правило относится и к аллергенам: чувствительный к синтетическому лизину-вазопрессину ребенок не дает никакой аллергической реакции на окситоцин, хотя последний только одной циклической аминокислотой отличается от вазопрессина, помимо лизина, представляющего биологическую эффективность.

Иммунотолерантность . Это состояние противоположно иммунитету: организм на введение чужеродного антигена не дает иммунного ответа, что, как вытекает из вышесказанного, может возникать в результате генетической особенности: у данного лица отсутствует способный к образованию соответствующего антитела лимфоцитарный клон. Под влиянием очень большого количества (насыщающего) антигена или часто повторяемой малой дозы антигена уже существующая иммунная ответная реакция может прекратиться и может возникнуть толерантность по отношению к определенному антигену, т. е. организм временно или окончательно потеряет способность синтезировать или отдавать иммунные вещества по отношению к данному антигену. Толерантность является такой же специфической, как и иммунная ответная реакция: она относится только к определенному антигену.

Механизм приобретенной толерантности:

1. Перевес антигенов блокирует антитела, находящиеся на поверхности лимфоцитов В, и препятствует размножению соответствующих клеточных клонов. Торможение клеточных функций с помощью цитотоксических средств способствует возникновению толерантности.

2. Антитело при введении его в большой концентрации также может привести к возникновению толерантности, связывая антиген еще до того, как он попадает к специфическим реактивным лимфоцитам.

3. Согласно большинству новых исследований, в деле возникновения толерантности весьма важной является стимуляция ингибирующих (супрес-сорных) клеток Т.

Гибридизация . По данным новейших исследований, совместным выращиванием двух видов лимфоцитов, способных к различным иммунным ответам, в тканевой культуре можно получить моноклональные (образующие один вид антител) клетки. Это открывает новую возможность пассивной защиты, и в будущем можно будет получать человеческие антитела в больших количествах.

Химическая структура молекулы иммуноглобулина известна по исследованиям Эдельмана. Уже раньше было выяснено, что молекула иммуноглобулина путем расщепления дисульфидных мостов может быть расщеплена на две цепи Н (heavy - тяжелая) и две цепи L (light - легкая). Папаиновым перевариванием молекула может быть фрагментирована и иначе: тогда отщепляются две части, называемые Fab, и одна часть, называемая Fc.

Фрагмент Fab . Он образует место связывания специфического антигена. Фрагмент содержит полную цепь L и часть цепи Н. Наружной (аминотерминальной) частью или отрезком N двух цепей является вариабельная - V - область. Она содержит 111 аминокислот, специфическое связывание которых обуславливается меняющейся по отдельным антителам очередностью, стерео конфигурацией. Очередность аминокислот (секвентность) другой части независима от способности к реакции со специфическим антигеном: это отрезок С (константный). Последний индивидуально различен, и, таким образом, по качеству ИгГ описано много вариантов.

Молекулярный вес цепей L:20000 . С точки зрения антигенности имеется два вида легких цепей: каппа и ламбда (но в одной молекуле имеется только один вид).

Фрагмент Fc . Он представляет часть цепи Н. Сам по себе не связывается к антигену, а в случае физико-химической реакции между Fab и антигеном индуцирует цепь биологических реакций.

Классификация иммуноглобулинов возможна на основании различной антигенности цепей Н; в настоящее время различаются пять видов иммуноглобулинов. Цепь L в каждом случае может быть двоякой: каппа и ламбда.

6. Регуляция иммунного ответа

Иммунный ответ

Клеточный иммунный ответ

Гуморальный иммунный ответ

Т-хелперы 1го типа

Т-хелперы 2го типа

Т-хелперы 3готипа

Механизм иммунного ответа

3. Активация лимфоцитов;

6. Деструкция антигена.

Механизмы цитолиза антигена:



Цитолиз антигена с участием системы комплемента

1. Комплементзависимый лизис антигена. При появлении во внутренней среде микробных продуктов запускается процесс, который называют активацией комплемента . Активация протекает по типу каскадной реакции, когда каждый предшествующий компонент системы активирует последующий:

При встрече антигена и антитела образуется комплекс белков С1. К ним присоединяются белки С2 и С4К ним присоеденяется белок С3 конвертаза. С3 является центральным компонентом этого каскада. Его активация путем расщепления представляет собой главную реакцию всей цепи активации комплемента. При гидролизе С3 образуются фрагменты белков С3б и С3а. К ним присоединяется белки С5.

Белки С5 и С6 системы комплемента связываются с мембраной клетки антигена, к ним присоединяются белки С7, С8, С9. Эти белки образуют мембраноатакующий комплекс , который образует в мембране антигена пору. Через эту пору мембраноатакующий комплекс проходит в тело антигена и лизирует (разрушает) антиген.

Регуляция иммунного ответа

1. Нейро-эндокринный механизм. Регуляция функций и всех защитных реакций организма, в т.ч. и иммуногенеза, осуществляется под контролем центральной нервной и эндокринной систем. При воздействии микроба-стрессора на периферические ткани и органы чувств сигналы об этом по нервным путям поступают в гипоталамус. Гипоталамус, получив информацию, начинает выделять гормоны, воздействующие на гипофиз – рабочую железу, являющуюся общим регулятором эндокринной системы. Гипофиз выделяет аденокортикотропный гормон (АКТГ). Он поступает в кровь и лимфу и действует на периферические эндокринные железы, в частности на кору надпочечника. Там он стимулирует образование противовоспалительного гормона – кортизона, являющегося иммунодепресантом (угнетает деятельность системы мононуклеарных фагоцитов и иммунокомпетентных клеток, образующих антитела).



Помимо АКТГ, гипофиз выделяет гормон роста (соматотрофный гормон), который наоборот повышает реактивность тканей, стимулирует воспалительную реакцию, деятельность макрофагов, иммуноцитов, плазмоцитов, синтез антител. Гормоны, вырабатываемые в центральных органах СИ (тимозин в тимусе, стимулятор антителопродуцентов (САП) в костном мозге), также влияют на состояние Т- и В-системы иммунитета, обеспечивает нормальное созревание и функционирование.

2. Ауторегуляторный механизм. Пусковая роль в иммунном ответе принадлежит антигенному воздействию на иммунокомпетентные клетки. Важным условием для полноценного иммунного ответа является взаимное кооперирование макрофагов, Т- и В-лимфоцитов. В основе управления деятельности ИС находится ауторегуляторный механизм. Иммунитету, как всякой саморегулирующейся системе, необходимо самоограничение или обратная отрицательная связь. Когда иммунный ответ достигнет пика, включаются тормозные механизмы, снижающие активность образования плазматических и Т-киллеров. Это происходит за счет образования клона Т- и В-супрессоров, клетками-мишенями для которых служат Т-хелперы, плазматические клетки и макрофаги. Кроме того, антитела, вырабатываемые в ходе иммунного ответа, сами на себя или в комплексе с антигеном способны индуцировать синтез антиидиотипических антител.

3. Генетический контроль иммунного ответа осуществляется МНС. Ir – гены контролируют высоту иммунного ответа, Ia – гены играют роль в кооперативном взаимодействии В- и Т-лимфоцитов и макрофагов при иммунном ответе, а также играют роль в функции клеток-супрессоров, подавляющих иммунный ответ.

Интерпретация иммунограммы

1. Характеристика системы врожденного иммунитета:

1. Количество нейтрофилов и моноцитов крови

2. Величина показателей оценки фагоцитоза

3. Уровень естественных киллеров и больших гранулярных лимфоцитов

4. Сывороточный титр комплемента

5. Концентрация отдельных компонентов комплемента в сыворотке крови

6. Концентрация лизоцима в секретах

2. Характеристика клеточного звена иммунитета:

Клеточное звено является превалирующим при вирусных, грибковых патогенах, атипичных возбудителях (микоплазмы, хламидии), бактериальных инфекциях с внутриклеточным пребыванием возбудителя (микобактерии), а также при иммунном ответе на опухоли и тканевые формы гельминтов (например, личинки аскариды или трихинеллы).

3. Характеристика гуморального звена иммунитета:

1. Уровни CD3-CD19+, CD3-CD20+, CD3-CD21+ и CD3-CD22+-клеток (В-лимфоцитов в разные фазы созревания),

2. Уровни иммуноглобулинов разных классов (IgМ, IgG, IgE, сывороточного и секреторного IgA).

3. Уровень Т-хелперов (CD3+СD4+ Т-лимфоцитов)

Гуморальное звено является преобладающим при бактериальных инфекциях с внеклеточным пребыванием патогена (стрептококки, стафилококки, эшерихии, синегнойная палочка, протей и др.), а также при полостных протозойных и гельминтных инвазиях.

ЛЕКЦИЯ №7. МЕХАНИЗМЫ ИММУННОГО ОТВЕТА

1. Стадии иммунного ответа по клеточному типу

2. Стадии иммунного ответа по гуморальному типу

3. Цитолиз антигена с участием системы комплемента

4. Цитолиз антигена путем фагоцитоза

5. Цитолиз антигена с участием цитотоксических Т-лимфоцитов (Т-киллеров)

6. Регуляция иммунного ответа

Иммунный ответ – это процесс вз/д клеток иммунной системы, который индуцируется антигеном и приводит к образованию АТ или иммунных лимфоцитов. При этом специфические реакции всегда сопровождается неспецифическими: такими как фагоцитоз, активация комплемента, НК-клеток и т.д.

По механизму формирования различают 2 типа иммунного ответа: клеточный и гуморальный.

Клеточный иммунный ответ формируется в основном на АГ вирусов, опухолевых клеток и пересаженных чужеродных клеток. Его основные эффекторные клетки – Т-лимфоциты: Т-хелперы, Т-киллеры а также Т-клетки памяти.

Гуморальный иммунный ответ – это основа антитоксического, антибактериального и антигрибкового иммунитета. В его развитии участвуют В-ЛФ: они дифференцируются в плазматические клетки, синтезирующие антитела; и В-клетки памяти.

Развитие того или иного типа иммунного ответа направляется цитокинами Т-хелперов. В зависимости от секретируемых цитокинов Т-хелперы подразделяются на Т-хелперы 1-го, 2-го и 3-го типа.

Т-хелперы 1го типа выделяют ИЛ -2, 7, 9, 12, 15, γ-ИФН и TNF-α. Эти цитокины – основные индукторы клеточного иммунного ответа и соответствующего воспаления.

Т-хелперы 2го типа выделяют ИЛ – 2, 4, 5, 6, 10, 13, 14 и др., которые активируют гуморальный иммунный ответ.

Т-хелперы 3готипа выделяют трансформирующий фактор роста -β (TGF- β) – это основной супрессор иммунного ответа - их название – Т-супрессоры (не все авторы признают существование отдельной популяции Тх-3).

Механизм иммунного ответа

Для реализации иммунного ответа необходимы три типа клеток – макрофаг (или дендритная клетка), Т-лимфоцит и В-лимфоцит.

Основными стадиями иммунного ответа являются:

1. Эндоцитоз антигена, его обработка и презентация лимфоцитам;

2. Распознавание антигена лимфоцитами;

3. Активация лимфоцитов;

4. Клональная экспансия или пролиферация лимфоцитов;

5. Созревание эффекторных клеток и клеток памяти.

6. Деструкция антигена.

Механизмы цитолиза антигена:

1. Цитолиз антигена с участием системы комплемента

2. Цитолиз антигена путем фагоцитоза

3. Цитолиз антигена с участием цитотоксических Т-лимфоцитов (Т-киллеров)

Основные условия реализа-ции иммунного распознавания, которое является ключевым процессом в им-мунном ответе :

  • АПК должна «сделать» оптимальное количество пептидов из чужерод-ного или собственного антигенного материала, а пептидсвязывающие бороздки ее HLA II — быть в состоянии связать эти пептиды. Этот этап назван селекцией антигенных детерминант.
  • Иммунная система конкретного человека должна иметь достаточный репертуар Т-лимфоцит ов, где содержался бы АГ-распознающий рецеп-тор, способный распознать данный чужеродный пептид. Если же такие Т-лимфоциты отсутствуют (есть «дыры» в репертуаре Т-лимфоцитов), создаются условия, при которых иммунная система неспособна распо-знавать некоторые антигены.
  • Предполагают, что с помощью пептидов и соответствующего цитокинового фона включаются механизмы запуска иммунного ответа с вклю-чением преимущественно Th 1 и Th 2.
  • Сила иммунного ответа зависит от характера пептида и молекул HLA, а также от степени соответствия между антигеном и максимально ком-плементарным антигенраспознающим рецептором, имеющимся в ре-цепторном репертуаре иммунной системы данного организма.

Следует обратить внимание на несколько важных условий, являющихся принципиальными при реализации механизма иммунного ответа (рис. 31). Иммунной системой антиген распознается в двух формах — в натуральном виде иммуноглобулиновыми рецепторами В-лимфоцитов и в виде иммуно-генного пептида антигенраспознающим рецептором Т-хелпер ов. Это необ-ходимо для осуществления корректного иммунного ответа. Известно, что именно факторы врожденной резистентности могут установить чужеродность патогена. Иммунокомпетентные клетки лишены этого свойства, что связано с особенностями формирования их рецепторов антигенного распознавания. Поэтому некоторые В-лимфоциты способны распознавать антигены, кото-рые отнюдь не являются чужеродными. Но самостоятельно они не могут развивать иммунный ответ, поскольку требуют стимулирующих влияний со стороны активированных Т-хелперов, распознавших соответствующий имму-ногенный пептид. Образование же пептида происходит за счет деятельности факторов врожденной резистентности (макрофагов, дендритных клеток), по-этому активация Т-хелперов происходит только при попадании чужеродного патогена.

Иммунная толерант-ность - это уникальное свойство иммунной системы распознавать собственные антигены, но не реагировать на них развитием эффекторных механизмов.

Механизмы, с помощью которых происходит непосредственное поврежде-ние патогена, называют эффекторными.

В результате иммунного ответа зачастую не формируются ка-кие-либо новые эффекторные механизмы. Факторы врожденной резистентности обладают мощным цитотоксическим потенциалом, который не реализуется в полном объеме на стадии первичной реакции из-за шаблонности распознавания патогена. Поэтому сложные и длительные (5-6 дней) процессы взаимодействия, пролиферации и дифференцировки иммунокомпетентных клеток, именуемые собственно иммунными реакциями, предназначены для наработки специфичес-кого механизма распознавания патогена для факторов врожденной резистентнос-ти и запоминания этого механизма на будущее. Вместе с тем именно иммунные механизмы берут на себя функцию руководства всеми факторами, задейство-ванными в борьбе с патогеном. Единственный компонент иммунной реакции, способный самостоятельно оказать повреждающий эффект, — цитотоксический Т-лимфоцит , но его эффекторный механизм мало отличается от таковою у естест-венных киллеров, относящихся к факторам врожденной резистентности.

Гуморальный иммунный ответ

Клеточный иммунный ответ

В случае внутри-клеточных патогенов и при возникновении опухолевых клеток реализуются так называемые клеточный иммунный ответ. Т-клетки, задействованные в этих реакциях, получили название Т-хелперов 1-го типа. Они продуцируют преимуще-ственно ИЛ-2, ФНО β, γ-ИФН.

Т-хелперы 1-го типа способствуют не синтезу антител , а формированию цитотоксических T-лимфоцитов (Т-киллеров). Поэтому иммунные реакции, инициируемые данными хелперами, и получили название клеточных. Сегодня склоняются к мысли, что активированные цитокинами Т-хелперов 1-го типа наивные CD8 + Т-клетки (будущие Т-киллеры) могут самостоятельно взаимо-действовать с АПК. При этом их антигенраспознающий рецептор взаимодей-ствует с комплексами пептид — HLA I, появляющимися на поверхности АПК (например, дендритных клеток), а молекула CD8 стабилизирует указанное вза-имодействие, выполняя роль корецептора. В данном случае необходимой яв-ляется экспрессия костимулирующих молекул. Их синтез АПК повышает под влиянием γ-ИФН Th I-го типа. В таком случае CD8 + Т-клетка активируется и начинает синтез ИЛ-2, который по аутокринному механизму приводит к уси-ленной пролиферации клетки — продуцента. В случае недостаточного синтеза собственного ИЛ-2 вступает в действие соответствующий цитокин Т-хелперов 1 -го типа. По окончании пролиферации происходит дифференцировка обра-зованного клона иммунных клеток. Так, из наивной CD8 + Т-клетки формиру-ется антигенспецифический компетентный Т-киллер, точнее, цитотоксический Т-лимфоцит. Он распознает соответствующие комплексы пептид — HLA I на поверхности скомпрометированных клеток (например, опухолевых), выполняя цитотоксические функции по отношению к ним. При этом взаимодействии уже не нужна экспрессия костимулирующих молекул. Материал с сайта

Сворачивание иммунного ответа происходит за счет деятельности макро-фагов благодаря их уникальному свойству совершать антигенную презентацию без отрыва от очага пребывания патогена. Поскольку макрофаги продолжают выполнять функцию фагоцитоза и цитотоксичности, именно эти клетки рас-полагают достоверной информацией о текущем состоянии патогена. В случае его элиминации прекращается антигенная презентация и экспрессия костимулирующих молекул, продукции макрофагальных провоспалительных цитоки-нов и стимуляция выработки адгезионных молекул. Перечисленные факторы удерживают активированные лимфоциты от спонтанного апоптоза. Поэтому в случае выключения макрофага из работы, что бывает при полной элими-нации патогена, происходит массовая гибель лимфоцитов, задействованных в осуществлении иммунной реакции. Выживают лишь клетки памяти — по-пуляция антигенспецифических лимфоцитов, отличающихся резистентнос-тью к спонтанному апоптозу. Именно эти клетки и обеспечат более быстрый и эффективный иммунный ответ при повторном поступлении антигена. При сворачивании иммунных реакций макрофаги синтезируют преимуществен-но трансформирующий фактор роста β. Этот цитокин подавляет экспрессию ФНО-α и стимулирует хемотаксис фибробластов в очаг воспаления На этой странице материал по темам:

1.1. ФОРМЫ ИММУНИТЕТА

Специфический иммунный ответ развивается в организме параллельно с развитием инфекции или после вакцинации и приводит к формированию ряда специфических эффекторных механизмов противоинфекционной защиты:

  1. Гуморальный иммунный ответ (В–лимфоцит);
  2. Клеточный иммунный ответ (Т–лимфоцит);
  3. Иммунологическая память (Т– и В–лимфоциты);
  4. Иммунологическая толерантность.

К этим механизмам относятся эффекторные молекулы (антитела) и эффекторные клетки (Т–лимфоциты и макрофаги) иммунной системы.

Гуморальные иммунные реакции

В гуморальных иммунных реакциях участвуют три клеточных типа: макрофаги (Аг–представляющие клетки), Т–хелперы и В–лимфоциты.

Аг–представляющие клетки фагоцитируют микроорганизм и перерабатывают его, расщепляя на фрагменты (процессинг Аг). Фрагменты Аг выставляются на поверхности Аг–представляющей клетки вместе с молекулой МНС. Комплекс «Аг–молекула МНС класса II» предъявляется Т–хелперу. Распознавание комплекса Т–хелпером стимулирует секрецию ИЛ–1 макрофагами.

Т–хелпер под действием ИЛ–1 синтезирует ИЛ–2 и рецепторы к ИЛ–2; последний стимулирует пролиферацию Т–хелперов, а также ЦТЛ. Таким образом, после взаимодействия с Аг–представляющей клеткой Т–хелпер приобретает способность отвечать на действие ИЛ–2 бурным размножением. Биологический смысл этого явления состоит в накоплении Т–хелперов, обеспечивающих образование в лимфоидных органах необходимого пула плазматических клеток, вырабатывающих АТ к данному Аг.

В–лимфоцит. Активация В–лимфоцита предполагает прямое взаимодействие Аг с молекулой Ig на поверхности В–клетки. В этом случае сам В–лимфоцит перерабатывает Аг и представляет его фрагмент в связи с молекулой МНС II на своей поверхности. Этот комплекс распознает Т–хелпер, отобранный при помощи того же Аг. Узнавание рецептором Т–хелпера комплекса Аг–молекула МНС класса II на поверхности В–лимфоцита приводит к секреции Т–хелпером ИЛ–2, ИЛ–4, ИЛ–5, ИЛ–6, под действием которых В–клетка размножается, образуя клон плазматических клеток (плазмоцитов). Плазмоциты синтезируют антитела. Часть зрелых В–лимфоцитов после антигензависимой дифференцировки циркулируют в организме в виде клеток памяти.

Антитела, специфически взаимодействуя с антигенными детерминантами (эпитопами) на поверхности микроорганизмов, образуют с ними иммунные комплексы, что ведет к активации мембраноатакующего комплекса системы комплемента и лизису микробных клеток. Кроме того, иммунные комплексы, включающие микроорганизмы и специфические антитела, быстрее и легче захватываются фагоцитирующими клетками организма при участии Fc–рецепторов. При этом ускоряется и облегчается внутриклеточная гибель и переваривание. Защитная роль антител в антитоксическом иммунитете определяется также их способностью нейтрализовать токсины. Секреторные иммуноглобулины класса А обеспечивают местный специфический иммунитет слизистых оболочек, препятствуя прикреплению и проникновению патогенных микроорганизмов.

Рис. 1. Гуморальный иммунный ответ.
В результате кооперации макрофагов, Т–хелперов и В–лимфоцитов и дальнейшей дифференцировки
В–лимфоцитов в плазматические клетки, последние продуцируют антитела, которые нейтрализуют антиген.

Клеточные иммунные реакции

В очаге иммунного воспаления Т–эффекторы ГЗТ, активированные при контакте с микробными антигенами, продуцируют лимфокины, индуцирующие микробоцидные механизмы фагоцитов. В результате усиливается внутриклеточная гибель захваченных фагоцитами возбудителей.

Другой механизм гибели зараженных клеток носит название антителозависимой цитотоксичности (АЗЦТ). Он заключается в распознавании микробных антигенов на мембране зараженной клетки–»мишени» антителами, адсорбированными на Fc–рецепторах NK–клеток или макрофагов. При этом цитотоксичность является результатом действия лизосомных ферментов и других продуктов секреции данных клеток.


Рис. 2. Клеточный иммунный ответ опосредован активированными
Т–хелперами макрофагами и другими фагоцитирующими клетками, а также цитотоксическими Т–лимфацитами.

Иммунологическая память

Иммунологическая память – способность организма отвечать на повторное введение антигена иммунной реакцией, характеризующейся большей силой и более быстрым развитием.

Клетки иммунологической памяти – долгоживущие Т– и В–лимфоциты, сохраняющие многие годы способность реагировать на повторное введение антигена, так как вырабатываются рецепторы к этому антигену. Иммунологическая память проявляется как ускоренный специфический ответ на повторное введение антигена.

Иммунологическая память к антигенным компонентам окружающей среды лежит в основе аллергических заболеваний, а к резус–антигену (возникает при резус–несовместимости беременности) – в основе гемолитической болезни новорожденных. Феномен иммунологической памяти используется в практике вакцинации людей.

Иммунологическая толерантность

Иммунологическая толерантность – явление, противоположное иммунному ответу и иммунологической памяти, проявляющееся в том, что на введение антигена вместо выработки иммунитета в организме развивается ареактивность, инертность, отсутствие ответа на антиген.

Иммунный ответ против собственных тканей организма в нормальных условиях не развивается, т.е. иммунная система толерантна к подавляющему большинству Аг тканей организма (аутоантигены). Искусственная толерантность к чужеродным Аг может быть вызвана иммунизацией по определенной схеме (например, толерантность «низкой дозы» – дробное введение Аг в возрастающих количествах или толерантность «высокой дозы» – однократное введение Аг в высокой дозе).

1.2. ВИДЫ ИММУНИТЕТА

Многообразие систем защиты организма позволяют человеку оставаться невосприимчивым к действию инфекционных агентов.

Видовой иммунитет (врожденный) – генетически закрепленная невосприимчивость присущая каждому виду. Например, человек никогда не заболевает чумой крупного рогатого скота. Крысы резистентны к дифтерийному токсину.

Приобретенный иммунитет формируется в течение жизни индивидуума и не передается по наследству; может быть естественным и искусственным, активным и пассивным.

Естественно приобретенный иммунитет (активный) развивается после перенесенного инфекционного заболевания, протекавшего в клинически выраженной форме, либо после скрытых контактов с микробными Аг (так называемая бытовая иммунизация). В зависимости от свойств возбудителя и состояния иммунной системы организма невосприимчивость может быть пожизненной (например, после кори), длительной (после брюшного тифа) или сравнительно кратковременной (после гриппа).

Инфекционный (нестерильный) иммунитет – особая форма приобретенной невосприимчивости; не является следствием перенесенной инфекции, обусловлен наличием инфекционного агента в организме. Невосприимчивость исчезает сразу после элиминации возбудителя из организма (например, туберкулез; вероятно, малярия).

Естественный пассивный иммунитет связан с переносом IgG от матери к плоду через плаценту (передача по вертикали) или с грудным молоком (SIgA) новорожденному. Это обеспечивает устойчивость новорожденного ко многим возбудителям в течение некоторого, обычно индивидуально варьирующего срока.

Искусственно приобретенный иммунитет. Состояние невосприимчивости развивается в результате вакцинации, серопрофилактики (введение сыворотки) и других манипуляций.

Активно приобретенный иммунитет развивается после иммунизации ослабленными или убитыми микроорганизмами либо их антигенами. В обоих случаях организм активно участвует в создании невосприимчивости, отвечая развитием иммунного ответа и формированием пула клеток памяти.

Пассивно приобретенный иммунитет достигается введением готовых АТ или, реже, сенсибилизированных лимфоцитов. В таких ситуациях иммунная система реагирует пассивно, не участвуя в своевременном развитии соответствующих иммунных реакций.

Иммунитет может формироваться против микроорганизмов, их токсинов, вирусов, антигенов опухолей. В этих случаях иммунитет называют антимикробным, антитоксическим, антивирусным, противоопухолевым соответственно. При трансплантации несовместимых тканей возникает трансплантационный иммунитет (реакция отторжения трансплантата).

Поступление в организм антигена через дыхательные пути, пищеварительный тракт и другие участки слизистых поверхностей и кожи нередко обуславливает развитие выраженной локальной иммунной реакции. В таких случаях речь идет о местном иммунитете.

1.3. РЕГУЛЯЦИЯ ИММУННОГО ОТВЕТА

Интенсивность и продолжительность иммунного ответа контролируется и регулируется при участии ряда механизмов обратной связи на генетическом, клеточном и организменном уровнях.

Генетический контроль иммунного ответа связан с наличием конкретных генов, контролирующих синтез и выход специфических рецепторов на поверхность иммунокомпетентных клеток, что непосредственно влияет на уровень представления и распознавания антигена.

Иммунная система представляет собой комплекс взаимодействующих клеток, связанных между собой внутренними регуляторными связями посредством цитокинов.

На уровне организма осуществляется взаимодействие нервной, эндокринной и иммунной систем, иммунный ответ контролируется и регулируется нейрогуморальными механизмами, среди которых ведущую роль играют кортикостероидные гормоны, подавляющие процессы пролиферации, дифференцировки и миграции лимфоидных клеток и ингибирующие биосинтез интерлейкинов.

Воспаление – сумма защитно–адаптивных реакций, развивающихся в тканях при их повреждении; впоследствии они могут полностью восстанавливать свою структуру и функции либо в них формируются стойкие дефекты. Хорошо известны классические признаки, характеризующие острое воспаление: покраснение, отек, боль, локальное повышение температуры и нарушение функций органа или ткани. Если интенсивность острой реакции оказывается недостаточной для элиминации возбудителя, то она меняет свои характеристики и принимает хроническое течение.

С позиции защиты от патогенов большинство системных реакций острого воспаления резко изменяет лимфо– и кровообращение в очаге. Вазодилатация и повышение проницаемости капилляров облегчает выход из просвета капилляров больших молекул (например, компонентов комплемента) и полиморфонуклеаров. Весьма важным фактором является снижение рН в воспаленных тканях, обусловленное преимущественно секрецией молочной кислоты фагоцитами. Снижение рН оказывает губительное действие на бактерии, повышает микробицидную активность низкомолекулярных органических кислот и снижает резистентность к действию антимикробных химиопрепаратов.

Любое инфекционное воспаление начинается с запуска комплементарного каскада и активации свертывающей системы, многие компоненты которых известны как медиаторы воспалительных реакций.

Типы иммунного ответа. Иммунный ответ — это реакция организма на внедрение чуждых ему макромолекул. Вещество, способное вызвать специфический иммунный ответ, называется антигеном.

Иммуногенность антигена, т. е. способность вызывать иммунный ответ, зависит не только от его чужеродности, но и от молекулярной массы (молекулы массой менее 5000 обычно не иммуногенны), структурной гетерогенности, устойчивости к разрушению ферментами, вида животных.

В природе существует громадное множество антигенов животного, растительного и микробного происхождения. Они могут быть классифицированы по разным признакам, в том числе и по характеру специфичности (видовые, групповые, гетерогенные, стадиоспецифические в онтогенезе и др.). Примерами антигенов могут служить, в частности, антигены гистосовместимости, участвующие в распознании и устранении аномальных клеток организма или трасплантированных тканей; аллергены животного и растительного происхождения (пыльца, чешуйки кожи, волосы, перья и др.), вызывающие повышенную чувствительность организма; групповые антигены крови — глюкопротеиды, которые хотя и не вызывают образования антител в организме, но реагируют с ними in vitro.

Известны два основных типа иммунных ответов организма на антиген — гуморальный и клеточный. Ответ гуморального типа состоит в выработке антител, которые циркулируют в крови и специфически связываются с чужеродными организму молекулами. Иммунный ответ клеточного типа включает образование специализированных клеток, реагирующих с антигеном посредством его связывания и последующего разрушения. Клеточный иммунитет обращен в основном против клеточных антигенов — бактерий, патогенных грибов, чужеродных клеток и тканей (пересаженных или опухолевых).

Два основных типа иммунных реакций опосредуются разными классами лимфоцитов: за гуморальный иммунитет ответственны В-лимфоциты, за клеточный — Т-лимфоциты. У животных с удаленным в раннем возрасте тимусом нарушаются, однако, не только клеточные иммунные реакции, но и понижается способность к выработке антител. Это связано с тем, что некоторые Т-клетки «кооперируются» с В-клетками в процессе формирования гуморального иммунитета.

Механизм иммунного ответа. До стимуляции антигеном («в покое») Т- и В-лимфоциты морфологически мало различимы. Отдифференцировать их можно либо путем выявления иммуноглобулинов — рецепторов на поверхности В-лимфоцитов, либо путем определения рецепторов к бараньим эритроцитам на поверхности Т-лимфоцитов (реакция образования «эритроцитарных розеток»).

Рис. Схема участия Т- и В-лимфоцитов в клеточном и гуморальном иммунитете.

Под влиянием антигена происходят пролиферация и дифференцировка и тех и других клеток. Активированные Т-клетки трансформируются в лимфобласты, которые дают начало нескольким субпопуляциям клеток (рис. 159). Среди них активные Т-лимфощпы-«киллеры» («убийцы»), Т-лимфоцнты-супрессоры, подавляющие иммунный ответ, Т-лимфоциты-хелперы, интегрирующие иммунный ответ путем кооперации с В-лимфоцитами при выработке антител или путем стимуляции Т-клеток-киллеров. Все эти Т-клетки-партнеры обладают одинаковыми антигенными рецепторами и одинаковыми антигенами главного комплекса гистосовместимости (ГКГ). Последние представляют собой мембранные гликопротеиды клеток, обеспечивающие их иммунологическую совместимость.

Активированные Т-лимфоциты всех популяций выделяют также растворимые факторы (лимфокины), которые регулируют проявление клеточного иммунитета (супрессию, кооперацию, приобретение специфических свойств Т-лимфоцитами) и активируют фагоцитарную активность макрофагов. Примерами лимфокинов могут служить глюкопротеид интерлейкин, стимулирующий рост и пролиферацию Т-лимфоцитов, и белок интерферон, подавляющий размножение вирусов и одновременно усиливающий фагоцитоз.

Все проявления функциональных особенностей отдельных субпопуляций Т-лимфоцитов можно наблюдать in vitro, воздействуя на них особыми белковыми веществами — лекгинами, обладающими митогенной активностью.

Активированные антигеном В-лимфоциты становятся затем продуцентами антител. При первом контакте с антигеном происходит их начальная активация, или сенсибилизация. Некоторые из дочерних клеток превращаются в клетки иммунологической памяти, другие оседают в периферических лимфатических органах. Здесь они превращаются в плазматические клетки, обладающие хорошо развитым гранулярным эндоплазматическим ретикулумом. Плазматические клетки при участии Т-лимфоцитов-хелперов начинают вырабатывать антитела, которые выделяются в плазму крови.

Клетки иммунологической памяти не дают первичного иммунологического ответа, но при повторном контакте с тем же антигеном легко превращаются в клетки, секретирующие антитела. Схема опыта, подтверждающего ответственность именно лимфоцитов за узнавание чужеродных антигенов, приведена на рисунке. Облучение животных гамма-лучами приводит к гибели лимфоцитов; иммунный ответ на введение антигена у таких животных отсутствует. У облученного животного, получившего лимфоциты от нормального донора той же инбредной линии, реакция на антиген восстанавливается. У облученного животного, получившего другие (нелимфоцитарные) клетки от нормального донора, иммунный ответ не восстанавливается.

Читайте также: