Под действием стероидных гормонов происходит. Стой, кто ведет? Биология поведения человека и других зверей. Пути экскреции гормонов и их метаболитов

Биосинтез стероидных гормонов идет из холестерина. Холестерин синтезируется из ацетил-КоА.

Большая часть холестерина в эндокринных клетках содержится в составе липидных капель, локализированных в цитоплазме, в форме эфиров с жирными кислотами.

Этапы синтеза стероидных гормонов.

  1. Вначале происходит освобождение холестерина из липидных капель и переход его в митохондрии, где неэстерифицированный холестерин образует комплексы с белками внутренней митохондриальной ммбраны.
  2. Образование ключевого предшественника гормонов – прегненолона, покидающего митохондрии.
  3. Образование прогестерона. Процесс идет в микросомах клетки.

Из прогестерона образуются 2 ветви: кортикостероиды и андрогены. Кортикостероиды дают минералокортикоиды и глюкокортикоиды, а андрогены дают начало эстрогенам.

Транспорт гормонов.

Гормоны циркулируют в крови в нескольких формах:

  1. В свободном виде (в виде водного раствора)
  2. В форме комплексов со специфическими белками плазмы
  3. В форме неспецифических комплексов с плазменными белками
  4. В форме неспецифических комплексов с форменными элементами крови.

Этот механизм связывания гормонов обеспечивает стабильный уровень гормонов и механизм депонирования гормонов, что ограничивает поступление гормонов из крови в ткани.

Специфические транспортные белки плазмы крови.

  1. Транскортин, или кортикостероидсвязывающий глобулин (КСГ).
  2. Секс-стероидсвязывающий глобулин (ССГ).
  3. Тироксинсвязывающий глобулин (ТСГ).
  4. Инсулинсвязывающий белок.

Неспецифические белки.

  1. Орозомукоид – связывает различные стероидные гормоны.
  2. Сывороточный альбумин – различные гормоны.
  3. Трансферин
  4. Трипсин
  5. -глобулины

Физиологическая роль связывания гормонов в крови.

Комплексирование гормонов с белками крови, и прежде всего специфическими, играет буферно-резервирующую роль по отношению к гормонам, регулируя поступление их из крови в ткани.

Особое значение приобретает специфическое связывание гормонов при беременности, когда концентрация гормонов увеличивается в несколько раз. В этих условиях связывание гормонов выполняет защитную функцию, предохраняя организм матери и плода от избытка гормонов и поддерживая оптимальный гормональный баланс в системе мать-плод. Белки, связывающие гормоны, ограничивают движение гормонов через плаценту.

Предполагается, что некоторые формы патологии эндокринной системы могут быть первично обусловлены нарушениями в связывании гормонов специфическими транспортными белками. Некоторые формы гиперкортицизма (избыток свободных глюкокортикоидов вследствие пониженной концентрации транскортина), диабета (повышенное связывание инсулина специфическими белками).

Периферический метаболизм гормонов.

Активация

Тетрайодтиронин

трийодтиронин

Примеры активации: Превращение эстрона в эстрадиол

Тироксина в трийодтиронин,

Ангиотензина I в ангиотензин II .

Примеры реактивации: Переход кортизона в кортизол,

Восстановление структуры тестостерона в эстрадиол.

Виды метаболизма:

  1. Возможен катаболизм гормонов, их инактивация.
  2. Реактивация – Щитовидная железа вырабатывает тетраиодтиронин (тироксин), который теряя йод превращается в трийодтиронин, концентрация которого в кровотоке меньше, но биологическая активность больше.
  3. Возникновение молекул с иной гормональной активностью. Андрогены могут превращаться в эстрогены.
  4. Активация – ангиотензин I в ангиотензин II

Метаболизм стероидных гормонов.

Протекает без расщепления стероидного скелета и сводится к восстановлению двойной связи в кольце А; окисления – восстановления кислородных групп; гидроксилирования углеродных атомов.

Метаболизм андрогенов.

Для метаболизма секретируемых андрогенов характерна серия реакций активации на периферии. В основе активации лежат реакции восстановления, гидроксилирования.

Метаболизм эстрогенов.

Метаболизм сводится к реакциям гидроксилирования, метилирования углеродных атомов, окислению и восстановлению кислородной функции у 17С.

Пути экскреции гормонов и их метаболитов.

Небольшая доля гормонов экскретируется в неизменном виде. Плохо растворимые в воде метаболиты стероидных гормонов экскретируются в форме глюкуронидов, сульфатов и других эфиров, обладающих высокой водорастворимостью.

Метаболиты аминокислотных гормонов хорошо растворимы в воде и экскретируются главным образом в свободном виде и лишь небольшая часть выделяется в составе парных соединений с кислотами.

Метаболиты белково-пептидных гормонов выводятся преимущественно в форме свободных аминокислот, их солей и небольших пептидов.

Гормональные метаболиты экскретируются с мочой и желчью. Некоторая часть метаболитов выводится из организма с потом и слюной.

Большинство гормонов и их метаболитов выводится из организма почти полностью через 48-72 часа, причем 80-90% попавшего в кровь гормоны выводится уже в первые сутки. Исключение составляют тиреоидные гормоны, аккумулируемые в организме в течение ряда суток в форме тироксина.

Стероидные гормоны легко проникают внутрь клетки через поверхностную плазмати­ческую мембрану в силу своей липофильности и взаимодействуют в цитозоле со специфи­ческими рецепторами. В цитозоле образуется комплекс «гормон - рецептор», который

движется в ядро. В ядре комплекс распадается и гормон взаимодействует с ядерным хрома­тином. В результате этого происходит взаимодействие с ДНК, а затем - индукция матрич­ной РНК. В ряде случаев стероиды, например, стимулируют в одной клетке образование 100-150 тыс. молекул мРНК, в которых закодирована структура лишь 1-3 белков. Итак, первый этап действия стероидных гормонов - активация процесса транскрипции. Одно­временно происходит активация РНК-полимеразы, которая осуществляет синтез рибосо-мальной РНК (рРНК). За счет этого образуется дополнительное количество рибосом, кото­рые связываются с мембранами эндоплазматического ретикулюма и образуют полисомы. Вследствие всего комплекса событий (транскрипции и трансляции) спустя 2-3 часа после воздействия стероида наблюдается усиленный синтез индуцированных белков. В одной клет­ке стероид влияет на синтез не более 5-7 белков. Известно также, что в одной и той же клетке стероид может вызвать индукцию синтеза одного белка и репрессию синтеза другого белка. Это объясняется тем, что рецепторы данного стероида неоднородны.

2. Механизм действия тиреоидных гормонов.

Рецепторы находятся в цитоплазме и в ядре. Тиреоидные гормоны (а точнее - трийод-тиронин, так как тироксин должен отдать один атом йода и превратиться в трийодтиронин, прежде чем оказать свой эффект) связываются с ядерным хроматином и индуцируют синтез 10-12 белков - это происходит за счет активации механизма транскрипции. Тиреоидные гормоны активируют синтез многих белков-ферментов, регуляторных белков-рецепторов. Тиреоидные гормоны индуцируют синтез ферментов, участвующих в метаболизме, и акти­вируют процессы энергообразования. Одновременно тиреоидные гормоны повышают транс­порт аминокислот и глюкозы через мембраны клеток, усиливают доставку аминокислот в рибосомы для нужд синтеза белка.

3. Механизм действия белковых гормонов, катехоламниов, серотонина, гистамина.

Эти гормоны взаимодействуют с рецепторами, расположенными на поверхности клет­ки, а конечный эффект действия этих гормонов может быть - сокращение, усиление фер­ментных процессов, например, гликогенолиза, повышение синтеза белка, повышение сек­реции и т. д. Во всех этих случаях лежит процесс фосфорилирования белков-регуляторов, перенос фосфатных групп от АТФ к гидроксильным группам серина, треонина, тирозина, белка. Этот процесс внутри клетки осуществляется с участием ферментов-протеинкиназ. Протеинкиназы - это АТФ-фосфотрансферазы. Их много разновидностей, для каждого белка - своя протеинкиназа. Например, для фосфорилазы, участвующей в расщеплении гликоге­на, протеинкиназа носит название «киназа фосфорилазы».

В клетке Протеинкиназы находятся в неактивном состоянии. Активация протеинкиназ осуществляется за счет гормонов, действующих на поверхностно расположенные рецепто­ры. При этом сигнал от рецептора (после взаимодействия гормона с этим рецептором) к протеинкиназе передается с участием специфического посредника, или вторичного мес-сенджера. В настоящее время выяснено, что таким мессенджером могут быть: а) цАМФ, б) ионы Са, в) диацилглицерин, г) какие-то другие факторы (вторичные посредники неизве­стной природы). Таким образом, Протеинкиназы могут быть цАМФ-зависимые, Са-зависи-мые, диацилглицерин-зависимые.

Известно, что в роли вторичного посредника цАМФ выступает при действии таких гор­монов как АКТГ, ТТГ, ФСГ, ЛГ, хорионический гонадотропин, МСГ, АДГ, катехоламины (бета-адренорецепторный эффект), глюкагон, паратирин (паратгормон), кальцитонин, сек­ретин, гонадотропин,тиролиберин,липотропин.

Группа гормонов, для которых мессенджером является кальций: окситоцин, вазопрессин, гастрин, холецистокинин, ангиотензин, катехоломины (альфа-эффект).

Для некоторых гормонов пока не идентифицированы посредники: например, СТГ, пролактин, хорионический соматомамматропин (плацентарный лактоген), соматостатин, ин­сулин, инсулиноподобные факторы роста и т. п.

Рассмотрим работу цАМФ как мессенджера: цАМФ (циклический аденозинмонофосфат) образуется в клетке под влиянием фермента аденилатциклазы из молекул АТФ,

АТФ цАМФ. Уровень цАМФ в клетке зависит от активности аденилатциклазы и от ак­тивности фермента, разрушающего цАМФ (фосфодиэстеразы). Гормоны, действующие за счет цАМФ, как правило, вызывают изменение активности аденилатциклазы. Этот фер­мент имеет регуляторную и каталитическую субъединицы. Регуляторная субъединица тем или иным образом связана с гормональным рецептором, например, за счет G-белка. При воздействии гормона происходит активация регуляторной субъединицы (в «покое» эта субъ­единица связана с гуанизиндифосфатом, а под влиянием гормона она связывается с гуанизинтрифосфатом и потому активируется). В результате повышается активность каталити­ческой субъединицы, которая расположена на внутренней стороне плазматической мемб­раны, и поэтому повышается содержание цАМФ. Это, в свою очередь, вызывает активацию протеинкиназы (точнее, цАМФ-зависимой протеинкиназы), что в дальнейшем вызывает фосфорилирование, которое приводит к конечному физиологическому эффекту, например, под влиянием АКТГ клетки надпочечников продуцируют в больших количествах глюкорортикоиды, а под влиянием адреналина в ГМК, содержащих бета-адренорецепторы, происходит активация кальциевого насоса и расслабление ГМК.

Итак: гормон + рецептор активация аденилатциклазы активация протеинкиназы фосфорилирование белка (например, АТФ-азы).

Мессенджер - ионы кальция. Под влиянием гормонов (например, окситоцина, АДГ, га-стрина) происходит изменение содержания в клетке ионов кальция. Это может происходит за счет повышения проницаемости мембраны клетки для ионов кальция или за счет освобождения свободных ионов кальция из внутриклеточных депо. В дальнейшем кальций может вызвать ряд процессов, например, повышение проницаемости мембраны для ионов кальция, натрия, может взаимодействовать с микротубулярно-ворсинчатой системой клетки, наконец, может вызвать активацию протеинкиназ, зависимых от ионов кальция. Процесс активации протеинкиназ связан прежде всего со взаимодействием ионов кальция с регуляторным белком клетки - кальмодулином. Это высокочувствительный по отношению к кальцию белок (наподобие тропонина С в мышцах), содержащий 148 аминокислот, имеющий 4 места связывания кальция. Все ядросодержащие клетки имеют в своем составе этот универсальный кальций-связывающий белок. В условиях «покоя» кальмодулин находится в неактивном состоянии и потому не способен оказывать свое регулирующее воздействие на ферменты, в том числе на протеинкиназы. В присутствии кальция происходит активация кальмодулина, в результате чего активируются протеинкиназы, а в дальнейшем происходит фосфорилирование белков. Например, при взаимодействии адреналина с адренорецепторами (бета-АР) в клетках печени происходит активация гликогенолиза (расщепления гликогена до глюкозы). Этот процесс начинается под влиянием фосфорилазы А, которая в клетке находится в неактивном состоянии. Цикл событий здесь таков: адреналин + бета-АР повышение внутриклеточной концентрации кальция -> активация кальмодулина -> активация киназы фосфорилазы (активация протеинкиназы) -> активация фосфорилазы В, пре­вращение ее в активную форму - фосфорилазу А -> начало гликогенолиза.

В случае, когда имеет место другой процесс, последовательность событий такова: гормон + рецептор -> повышение уровня кальция в клетке -> активация кальмодулина -> активация протеинкиназы -> фосфорилирование белка-регулятора -> физиологический акт.

Мессенджер-диацилглицерин. В мембранах клетки имеются фосфолипиды, в частности фосфатидилинозитол - 4,5-бифосфат. При взаимодействии гормона с рецептором этот фосфолипид разрывается на два осколка: диацилглицерин и инозитолтрифосфат. Оба этих рпсолка являются мессенджерами. В частности, диацилглицерин в дальнейшем активирует протеинкиназу, что приводит к фосфорилированию белков клетки и соответствующему аналогическому эффекту.

Другие мессенджеры. В последнее время ряд исследователей полагает, что в роли мессенджеров могут выступать простагландины и их производные. Предполагается, что каскад реакций таков: рецептор + гормон -> активация фосфолипазы А2 -> разрушение фосфолипидов мембраны с образованием арахидоновой кислоты -> образование простагландинов типа ПГЕ, ПГФ, тромбоксанов, простациклинов, лейкотриенов -> физиологический эффект.

РЕГУЛЯЦИЯ СЕКРЕЦИИ ГОРМОНОВ

Существуют различные способы эндогенной регуляции секреции гормонов,

1. Гормональная регуляция. В гипоталамусе вырабатываются 6 либеринов и 3 статина (кортиколиберин, тиролиберин, гонадолиберин, меланолиберин, пролактолиберин, сома-толиберин, соматостатин, меланостатин, пролактостатин), которые через портальную сис­тему гипофиза из гипоталамуса попадают в аденогипофиз и усиливают (либерины) или тор­мозят (статины) продукцию соответствующих гормонов. Гормоны аденогипофиза - АКТГ, ЛГ, СТГ, ТТГ - в свою очередь вызывают изменение продукции гормонов. Например, ТТГ повышает продукцию тиреоидных гормонов. В эпифизе вырабатывается мелатонин, кото­рый модулирует функцию надпочечников, щитовидной железы, половых желез.

2. Регуляция продукции гормона по типу обратной отрицательной связи. Продукция тире­оидных гормонов щитовидной железы регулируется тиролиберином гипоталамуса, воздей­ствующего на аденогипофиз, продуцирующий ТТГ, который повыш ает продукцию тиреоид­ных гормонов. Выйдя в кровь, Т3 и Т4 воздействуют на гипоталамус и аденогипофиз и тор­мозят (если уровень тиреоидных гормонов высокий) продукцию тиролиберина и ТТГ.

Существует и вариант положительной обратной связи: например, повышение продук­ции эстрогенов вызывает рост продукции ЛГ в гипофизе. В целом принцип обратной связи получил название принцип «плюс-минус-взаимодействие» (по М. М. Завадскому).

3. Регуляция с участием структур ЦНС. Симпатическая и парасимпатическая нервные системы вызывают изменение в продукции гормонов. Например, при активации симпатиче­ской нервной системы повышается продукция адреналина в мозговом слое надпочечников. Структуры гипоталамуса (и все, что влияет на них) вызывают изменение в продукции гор­монов. Например, активность супрахиазматического ядра гипоталамуса вместе с активнос­тью эпифиза обеспечивают существование биологических часов, в том числе - для гормо­нальной секреции. Например, известно, что продукция АКТГ максимальна в период с 6 до 8 час. и минимальна в вечерние часы - с 19 до 2-3 час. Эмоциональные, психические воздействия через структуры лимбической системы, через гипоталамические образования способны существенно влиять на деятельность клеток, продуцирующих гормоны.

Строение

Являются производными холестерола – стероиды.

Строение женских половых гормонов

Синтез

Женские гормоны: эстрогены синтезируются в фолликулах яичников, прогестерон – в желтом теле. Частично гормоны могут образовываться в адипоцитах в результате ароматизации андрогенов.

Схема синтеза стероидных гормонов (полная схема)

Регуляция синтеза и секреции

Активируют : синтез эстрогенов – лютеинизирующий и фолликулостимулирующий гормоны, синтез прогестерона – лютеинизирующий гормон.

Уменьшают : половые гормоны по механизму обратной отрицательной связи.

  1. В начале цикла несколько фолликулов начинают увеличиваться в размерах в ответ на ФСГ-стимуляцию. Затем один из фолликулов начинает расти быстрее.
  2. Под влиянием ЛГ гранулезные клетки этого фолликула синтезируют эстрогены, которые подавляют секрецию ФСГ и способствуют регрессии других фолликулов.
  3. Постепенное накопление эстрогенов к середине цикла является стимулом для секреции ФСГ и ЛГ перед овуляцией.
  4. Резкое повышение концентрации ЛГ также может быть обусловлено постепенным накоплением прогестерона (под влиянием того же ЛГ) и срабатыванием механизма обратной положительной связи.
  5. После овуляции образуется желтое тело, продуцирующее прогестерон.
  6. Высокие концентрации стероидов подавляют секрецию гонадотропных гормонов, желтое тело в результате дегенерирует и синтез стероидов снижается. Это вновь активирует синтез ФСГ и цикл повторяется.
  7. При возникновении беременности желтое тело стимулируется хорионическим гонадотропином, который начинает синтезироваться через две недели после овуляции. Концентрации эстрогенов и прогестерона в крови при беременности возрастают в десятки раз.

Гормональные изменения во время менструального цикла

Мишени и эффекты

Эстрогены

1. При половом созревании эстрогены активируют синтез белка и нуклеиновых кислот в органах половой сферы и обеспечивают формирование половых признаков: ускоренный рост и закрытие эпифизов длинных костей, определяют распределение жира на теле, пигментацию кожи, стимулируют развитие влагалища, маточных труб, матки, развитие стромы и протоков грудных желез, рост подмышечных и лобковых волос.

2. В организме взрослой женщины :

Биохимические эффекты

Другие эффекты

  • активирует в печени синтез транспортных белков для тироксина, железа, меди и т.п.,
  • стимулирует синтез факторов свертывания крови – II, VII, IX, X, плазминогена, фибриногена, подавляет синтез антитромбина III и адгезию тромбоцитов,
  • увеличивает синтез ЛПВП, подавляет ЛПНП, повышает концентрацию ТАГ в крови и снижает содержание холестерола,
  • снижает резорбцию кальция из костной ткани.
  • стимулирует рост железистого эпителия эндометрия,
  • определяет структуру кожи и подкожной клетчатки,
  • подавляет перистальтику кишечника, что повышает абсорбцию веществ.

Прогестерон

Прогестерон является основным гормоном второй половины цикла и его задача – обеспечить наступление и сохранение беременности.

Биохимические эффекты

Другие эффекты

  • повышает активность липопротеинлипазы на эндотелии капилляров,
  • увеличивает концентрацию инсулина в крови,
  • подавляет реабсорбцию натрия в почках,
  • является ингибитором ферментов дыхательной цепи , что снижает катаболизм,
  • ускоряет выведение азота из организма женщины.
  • расслабляет мышцы беременной матки,
  • усиливает реакцию дыхательного центра на СО 2 , что снижает в крови парциальное давление СО 2 при беременности и в лютеиновую фазу цикла,
  • обусловливает рост молочной железы при беременности,
  • сразу после овуляции является хематтрактантом для сперматозоидов, движущихся по маточным трубам.

Патология

Гипофункция

Врожденная или приобретенная гипофункция половых желез неизбежно приводит к остеопорозу. Патогенез его не вполне понятен, хотя известно, что эстрогены замедляют резорбцию кости у женщин детородного возраста.

Гиперфункция

Женщины . Повышение прогестерона может проявляться маточными кровотечениями и нарушением менструального цикла. Повышение эстрогенов может проявляться маточными кровотечениями.

Мужчины . Высокие концентрации эстрогенов ведут к недоразвитию половых органов (гипогонадизму), к атрофии простаты и сперматогенного эпителия яичек, ожирению по женскому типу и росту грудных желез.

  • < Назад

Белковые гормоны. Данные исследования синтеза белковых и меньших по размеру полипептидных гормонов (менее 100 аминокислотных остатков в цепи), полученные за последние годы, показали, что этот процесс включает синтез предшественников, превосходящих размерами окончательно секретируемые молекулы и превращающихся в конечные клеточные продукты путем расщепления в ходе транслокации, протекающей в специализированных субклеточных органеллах секреторных клеток.

Стероидные гормоны. Биосинтез стероидных гормонов включает сложную последовательность контролируемых ферментами этапов. Ближайшим химическим предшественником надпочечниковых стероидов является холестерин, который не только поглощается клетками коры надпочечников из крови, но и образуется внутри этих клеток.

Холестерин, будь то поглощенный из крови или синтезированный в коре надпочечников, накапливается в цитоплазматических липидных каплях. Затем в митохондриях холестерин превращается в прегненолон путем образования вначале 20-оксихолестерола, потом 20, 22-диоксихолестерола и, наконец, расщепления цепи между 20-м и 22-м углеродными атомами с образованием прегненолона. Считается, что превращение холестерина в прегненолон является ограничивающим скорость этапом биосинтеза стероидных гормонов и что именно этот этап контролируется стимуляторами надпочечников: АКТГ, калием и ангиотензином II. В отсутствие стимуляторов надпочечники образуют очень мало прегненолона и стероидных гормонов.

Прегненолон трансформируется в глюко-, минералокортикоиды и половые гормоны тремя разными ферментативными реакциями.

Глюкокортикоиды. Основной путь, наблюдаемый в пучковой зоне, включает дегидрирование 3-гидроксильной группы прегненолона с образованием прег-5-ен-3,20-диона, который затем подвергается изомеризации в прогестерон. В результате серии гидроксилирований прогестерон превращается в 17-оксипрогестерон под влиянием системы 17-гидроксилазы, а затем в 17,21-диоксипрогестерон (17а-оксидезоксикортикостерон, 11-дезокси кортизол, соединение 5) и, наконец, в кортизол в ходе 11-гидроксилирования (соединение Р).

У крыс главным кортикостероидом, синтезируемым в коре надпочечников, является кортикостерон; небольшое количество кортикостерона продуцируется и в коре надпочечников человека. Путь синтеза кортикостерона идентичен таковому кортизола, за исключением лишь отсутствия этапа 17-гидроксилирования.

Минералокортикоиды. Альдостерон образуется из прегненолона в клетках клубочковой зоны. Она содержит 17-гидроксилазы и поэтому лишена способности синтезировать кортизол. Вместо него образуется кортикостерон, часть которого под действием 18-гидроксилазы превращается в 18-оксикор-тикостерон и затем под действием 18-оксистероиддегидрогеназы - в альдостерон. Поскольку 18-оксистероиддегидрогеназа обнаружена только в клубочковой зоне, считается, что синтез альдостерона ограничен этой зоной.

Половые гормоны. Хотя главными физиологически значимыми стеро-идными гормонами, продуцируемыми корой надпочечников, являются кортизол и альдостерон, эта железа образует и небольшие количества андроге-нов (мужские половые гормоны) и эстрогенов (женские половые гормоны). 17,20-десмолаза превращает 17-оксипрогненолон в дегидроэпиандростерон и 17-оксипрогестерон в дегидроэпиандростерон и 1)4-андростендиол - это слабые андрогены (мужские половые гормоны). Небольшие количества этих андрогенов превращаются в андросг-4-ен-3,17-дион и тестостерон. По всей вероятности, из тестостерона образуются также небольшие количества эстрогена 17-эстрадиола.

Тиреоидные гормоны. Главными веществами, используемыми в синтезе тиреоидных гормонов, являются йод и тирозин. Щитовидная железа отличается высокоэффективным механизмом захвата йода из крови, а в

В качестве источника тирозина она синтезирует и использует крупный гли-копротеин тиреоглобулин.

Если тирозин в организме содержится в большом количестве и поступает как из пищевых продуктов, так и из распадающихся эндогенных белков, то йод присутствует лишь в ограниченном количестве и поступает только из пищевых продуктов. В кишечнике в процессе переваривания пищи йод отщепляется, всасывается в виде йодида и в этой форме циркулирует в крови в свободном (несвязанном) состоянии.

Йодид, захватываемый из крови тиреоидными (фолликулярными) клетками, и тиреоглобулин, синтезируемый в этих клетках, секретируются (путем эндоцитоза) во внеклеточное пространство внутри железы, называемое просветом фолликула или коллоидным пространством, окруженное фолликулярными клетками. Но йодид не соединяется с аминокислотами. В просвете фолликула или (что более вероятно) на апикальной поверхности клеток, обращенной в просвет, йодид под влиянием пероксидазы, цитохромоксидазы и флавин-фермента окисляется в атомарный йод и другие окисленные продукты и ковалентно связывается фенольными кольцами тирозино-вых остатков, содержащихся в полипептидном каркасе тиреоглобулина. Окисление йода может происходить и неферментативным путем при наличии ионов меди и железа и тирозина, который в дальнейшем акцептирует элементарный йод. Связывание йода с фенольным кольцом происходит только в 3-м положении, либо как в 3-м, так и в 5-м положениях, в результате образуются монойодтирозин (МИТ) и дийодтирозин (ДИТ) соотвественно. Этот процесс йодирования тирозиновых остатков тиреоглобулина известен под названием этапа оргинификации в биосинтезе тиреоидных гормонов. Соотношение в щитовидной железе монойодтирозина и дийодтирозина составляет 1:3 или 2:3. Йодирование тирозина не требует наличия неповрежденной клеточной структуры железы и может происходить в бесклеточных препаратах железы при помощи фермента тирозинйодиназы, содержащей медь. Фермент локализован в митохондриях и микросомах.

Следует заметить, что лишь 1/3 поглощенного йода используется для синтеза тирозина, а 2/3 удаляется с мочой.

Следующим этапом является конденсация йодтирозинов с образованием йодтиронинов. Все еще оставаясь в структуре тиреоглобулина, молекулы МИТ и ДИТ (МИТ+ДИТ) конденсируются, образуя трийодтиронин (Т 3), и подобно этому две молекулы ДИТ (ДИТ+ДИТ) конденсируются, образуя молекулу L-тироксина (Т 4). В таком виде, т.е. связанные с тиреоглобулином, йодтиронины, равно как и неконденсированные йодтирозины, хранятся в тиреоидном фолликуле. Этот комплекс йодированного тиреоглобулина часто называют коллоидом. Таким образом, тиреоглобулин, составляющий 10% от влажной массы щитовидной железы, служит белком носителем, или предшественником накапливающихся гормонов. Соотношение тироксина и трийодтиронина равно 7:1.

Таким образом, в норме тироксин продуцируется в значительно большем количестве, чем трийодтиронин. Но последний обладает более высокой специфической активностью, чем Т 4 (превосходя его в 5-10 раз по влиянию на метаболизм). Выработка Т 3 усиливается в, условиях умеренной недостаточности или ограничений снабжения щитовидной железы йодом. Секреция тиреоидных гормонов - процесс, происходящий в ответ на метаболические потребности и опосредуемый действием тиреотропного гормона (ТТГ) на тиреоидные клетки - предполагает высвобождение гормонов из тиреоглобулина. Этот процесс происходит в апикальной мембране путем поглощения коллоида, содержащею тиреоглобулин (процесс, известный под названием эндоцитоза).

Тиреоглобулин затем гидролизустся в клетке под влиянием протеаз, а высвобождаемые таким образом тиреоидные гормоны выделяются в циркулирующую кровь.

Подводя итог вышесказанному, можно процесс биосинтеза и секреции тиреоидных гормонов подразделить на следующие этапы: 1 - биосинтез тиреоглобулина, 2 - захват йодида, 3 - органификация йодида, 4 - конденсация, 5 - поглощение клетками и протеолиз коллоида, 6 - секреция.

Биосинтез тироксина и трийодтирозина ускоряется под влиянием тиреотропного гормона гипофиза. Этот же гормон активирует протеолиз тиреоглобулина и поступление тиреоидных гормонов в кровь. В этом же направлении влияет возбуждение центральной нервной системы.

В крови 90-95% тироксина и в меньшей степени Т 3 обратимо связываются с сывороточными белками, главным образом, с 1- и -2-глобулинами. Поэтому концентрация белковосвязанного йода в крови (БСЙ) отражает количество йодированных тиреоидных гормонов, поступающих в циркуляцию, и позволяет объективно судить о степени функциональной активности щитовидной железы.

Тироксин и трийодтиронин, связанные с белками, циркулируют в крови в качестве транспортной формы тиреоидных гормонов. Но в клетках эффекторных органов и тканей йодтиронины претерпевают дезаминирование, декарбоксилирование и дейодирование. В результате дезаминирования из Т 4 и Т 3 , получаются тетрайодтиреопропионовая и тетрайодтиреоуксусная (а также, соотвественно, трийодтиреопропионовая и трийодтиреоуксусная) кислоты.

Продукты распада йодтиронинов полностью инактивируются и разрушаются в печени. Отщепившийся йод с желчью поступает в кишечник, оттуда вновь всасывается в кровь и реутилизируегся щитовидной железой для биосинтеза новых количеств тиреоидных гормонов. В связи с реутилизацией потеря йода с калом и мочой ограничивается всего лишь 10%. Значение печени и кишечника в реутилизации йода делает понятным, почему стойкие нарушения деятельности пищеварительного тракта могут повлечь за собой состояние относительной недостаточности йода в организме и оказаться одной из этиологических причин спорадической зобной болезни.

Катехоламины. Катехоламины представляют собой дигидроксилированные фенольные амины и включают дофамин, адреналин и норадреналин. Эти соединения продуцируются только в нервной ткани и в тканях, происходящих из нервной цепочки, таких как мозговой слой надпочечников и органы Цукеркандля. Норадреналин обнаруживается главным образом в симпатических нейронах периферической и центральной нервной системы и действует местно как нейротрансмиттер на эффекторные клетки гладких мышц сосудов, мозга и печени. Адреналин продуцируется в основном мозговым слоем надпочечников, откуда поступает в кровоток и действует как гормон на отдаленные органы-мишени. Дофамин выполняет две функции: он служит биосинтетическим предшественником адреналина и норадреналина и действует как местный нейротрансмиттер в определенных областях головного мозга, имеющих отношение к регуляции моторных функций.

Исходным субстратом для их биосинтеза служит аминокислота тирозин. В отличие от того, что наблюдается при биосинтезе тиреоидных гормонов, когда тирозин, также являющийся биосинтетическим предшественником, ковалентно соединен пептидной связью с крупным белком (тиреоглобулином), в синтезе катехоламинов тирозин используется в виде свободной аминокислоты. Тирозин поступает в организм, главным образом, с пищевыми продуктами, но в некоторой степени образуется и в печени путем гидроксилирования незаменимой аминокислоты фенилаланина.

Этапом, ограничивающим скорость синтеза катехоламинов, является превращение тирозина в ДОФА под действием тирозингидроксилазы. ДОФА подвергается декарбоксилированию (фермент - декарбоксилаза) с образованием дофамина. Дофамин активно транспортируется АТФ-зависимым механизмом в цитоплазматические пузырьки или гранулы, содержащие фермент дофамингидроксилазу. Внутри гранул путем гидроксилирования дофамин превращается в норадреналин, который под влиянием фенилэтаноламин-М-метилтрансферазы мозгового слоя надпочечников превращается в адреналин.

Секреция идет путем экзоцитоза.

Вообще говоря, эндокринные железы секретируют гормоны в такой форме, которая проявляет активность в тканях-мишенях. Однако в некоторых случаях к окончательному образованию активной формы гормона приводят его метаболические превращения в периферической ткани. Например, тестостерон - главный продукт яичек - в периферических тканях превращается в дигидротестостерон. Именно этот стероид определяет многие (но не все) андрогенные эффекты. Основным активным тиреоидным гормоном является трийодтиронин, однако щитовидная железа продуцирует лишь некоторое его количество, но основное количество гормона образуется в результате монодейодирования тироксина в трийодтиронин в периферических тканях.

Во многих случаях определенная часть циркулирующих в крови гормонов связана с белками плазмы. Достаточно хорошо изучены специфические белки, связывающие в плазме крови инсулин, тироксин, гормон роста, прогестерон, гидрокортизон, кортикостерон и другие гормоны. Гормоны и протеины связаны нековалентной связью, обладающей сравнительно низкой энергией, поэтому эти комплексы легко разрушаются, освобождая гормоны. Комплексирование гормонов с белками:

1) дает возможность сохранять часть гормона в неактивной форме,

2) защищает гормоны от химических и энзиматических факторов,

3) представляет собой одну из транспортных форм гормона,

4) позволяет резервировать гормон.

Стероидные гормоны надпочечников образуются из холестерола, который главным образом поступает из крови, но в небольшом количестве синтезируется in situ из ацетил-СоА через промежуточное образование мевалоната и сквалена. Значительная часть холестерола подвергается в надпочечниках этерификации и накапливается в цитоплазме в липидных капельках. При стимуляции надпочечников посредством АКТГ (или сАМР) происходит активация эстеразы и образующийся свободный холестерол транспортируется в митохондрии, где фермент цитохром Р-450, отщепляющий боковую цепь превращает его в прегненолон. Отщепление боковой цепи включает в себя две реакции гидроксилирования: сначала при С-22, затем при С-20; последующее расщепление боковой связи (удаление 6-углеродного фрагмента изокапроальдегида) приводит к образованию 21-углеродного стероида (рис. 48.2). АКТГ-зависимый белок может связывать и активировать холестерол или Р-450. Мощным ингибитором и биосинтеза стероидов является аминоглутэтимид.

У млекопитающих все стероидные гормоны синтезируются из холестерола через промежуточное образование прегненолона в ходе последовательных реакций, которые протекают в митохондриях либо эндоплазматическом ретикулуме клеток надпочечников. Важную роль в стероидогенезе играют гидроксилазы, катализирующие реакции с участием молекулярного кислорода и NADPH; в определенных этапах процесса участвуют дегидрогеназы, изомераза и лиаза. В отношении стероидогенеза клетки проявляют определенную специфичность. Так, -гидроксилаза и -гидроксистероид-дегидрогена-за - ферменты, необходимые для синтеза альдо-стерона, - присутствуют только в клетках клубочковой зоны и потому только они продуцируют этот минералокортикоид. На рис. 48.3 схематически изображены пути синтеза трех основных классов стероидов надпочечников. Названия ферментов заключены в рамочки, превращения на каждом из этапов выделены цветом.

Синтез минералокортикоидов

Синтез альдостерона протекает по специфичному для минералокортикоидов пути и локализован в клубочковой зоне надпочечников. Превращение прегненолона в прогестерон происходит в результате действия двух ферментов гладкого эндоплазматического ретикулума -Зр-гидроксистеро иддегидрогеназы (Зр-ОН-СД) и Д5-4-изомеразы. Далее прогестерон подвергается гидроксилированию по положению и образуется -дезоксикортикосгерон (ДОК), являющийся активным минералокортикоидом (задерживает Na+). Следующее гидроксилирование (по С-11) приводит к образованию кортикостерона, обладающего глюкокортикоидной активностью и в малой степени-минералокортикоидной (менее 5% от активности альдостерона). У некоторых видов (например, у грызунов) кортикостероид- самый мощный глюкокортикоидный гормон. Гидроксилирование по необходимо для проявления как глюко-, так и минералокортикоидной активности, но наличие гидроксильной группы при С-17 ведет в большинстве случаев к тому, что стероид

Рис. 48.2. Отщепление боковой цеии холестерола и основные структуры стероидных гормонов.

обладает в большей мере глюкокортикоидной активностью и в меньшей степени-минералокортикоидной. В клубочковой зоне фермент гладкого эндоплазматического ретикулума -гидроксилаза отсутствует, но есть митохондриальная 18-гидроксилаза. Под действием этого последнего ферменга кортикостерон превращается в 18-гидроксикортикостерон, из которого далее образуется альдостерон - путем окисления спиртовой группы при С-18 в альдегидную. Уникальный набор ферментов в кчубочковой зоне и специфический характер ее регуляции (см. ниже) позволили ряду ученых не только рассматривать надпочечники как две эндокринные железы, но и кору надпочечников - как два фактически разных органа.

Синтез глюкокортикоидов

Для синтеза кортизола необходимы три гидроксилазы, воздействующие последовательно на положения Первые две реакции идут очень быстро тогда как гидроксилирование по относительно медленно. Если сначала происходит гидроксилирование по то это создает препятствие для действия -гидроксилазы и синтез стероидов направляется по минералокортикоидному пути (образование альдостерона или кортикостерона в зависимости от типа клеток). -Гидроксилаза-фермент гладкого эндоплазматического ретикулума, воздействующий либо на прогестерон, либо (чаще) на прегненолон. Продукт реакции - -гидроксипрогестерон-далее гидроксилируется по с образованием -дезокси-кортизола. Гидроксилирование последнего по дает кортизол - самый мощный из природных глюкокортикоидных гормонов человека. -Гидроксилаза - фермент гладкого эндоплазматического ретикулума, а -гидроксилаза-митохондриальный фермент. Из этого следует, что во время стероидогенеза в клетках клубочковой и пучковой зон происходит челночное движение субстратов: их вход в митохондрии и выход из них (рис. 48.4).

Синтез андрогенов

Основной андроген или, точнее, предшественник андрогенов, вырабатываемый корой надпочечников, - это дегадроэпиандростерон (ДЭА). Большая часть 17-гидроксипрегненолона направляется на синтез глюкокортикоидов, но небольшая его доля подвергается окислению с отщеплением двухуглеродной боковой цепи под действием 17,20-лиазы. Этот фермент выявлен в надпочечниках и гонадах; его субстратом служат только 17а-гидрокси-соединения. Продукция андрогенов заметно возрастает, если нарушается биосинтез глюкокортикоидов из-за недостаточности одной из идроксилаз (см. ниже, адреногенитальный синдром). Большая часть

(см. скан)

Рис. 48.3. Последовательности реакций, обеспечивающие синтез трех основных классов стероидных гормонов. Участвующие ферменты обведены рамкой; произошедшие на каждом этапе модификации выделены цветом. (Slightly modified and reproduced, with permission from Harding B. W. Page 1135 in Endocrinology v.2, Debroot L. Y. , Grune and Stratton. 1979.)

Рис. 48.4. Внутриклеточная локализация последовательных этапов биосинтеза i люкортикоидов. В ходе стероидогенеза в клетках надпочечников происходит челночное движение предшественников гормонов между митохондриями и эндоплазматическим ретикулумом. Участвующие ферменты: 1) С20_22-лиаза, 2) 3(3 i идроксистероид-дегид-рогеназа и Д54-изомераза, 3) 17а-гидроксилаза, 4) 21-гид-роксилаза, 5) 11Р-гидроксилаза. (Slightly modified and reproduced, with permission from Hardind B.W. Page 1135 in Endocrinology v.2, Debroot L. Y . Crune and Stratton, 1979.)

ДЭА быстро модифицируется путем присоединения сульфата, причем примерно половина ДЭА сульфатируется в надпочечниках, а остальная часть в печени. Сульфатированный ДЭА биологически неактивен, но удаление сульфатной группы восстанавливает активность. ДЭА - это в сущности прогормон, поскольку под действием ЗР-ОН-СД и Д5-4-изомеразы этот слабый андроген превращается в более активный андростендион. В небольшом количестве андростендион образуется в надпочечниках и при воздействии лиазы на -гидроксипрогес-терон. Восстановление андростендиона по положению С-17 приводит к образованию тестостерона - самого мощного андрогена надпочечников. Однако по этому механизму в надпочечниках синтезируется лишь малое количество тестостерона, а в основном это превращение протекает в других тканях.

Из венозной крови, оттекающей от надпочечников, можно выделить в небольших количествах и другие стероиды, в том числе -дезок-сикортикостерон, прогестерон, прегненолон, -гидроксипрогестерон и очень немного эстрадиола, образованного путем ароматизации тестостерона. Продукция этих гормонов надпочечниками столь низка, что не играет существенной роли на фоне продукции дргих желез.

Читайте также: