Система Зрения: Что видит мозг? Развитие энергетического видения в домашних условиях


Вердикт вынесен:
Мозг - это процессор с последовательной обработкой изображения
18.11.1999. www.eetimes.com
Со времени появления машинного видения в 60-е годы, ведутся дебаты о том, какая организация процессорной обработки лучше: параллельная или последовательная? Исследователи, моделируя визуальные процессы в мозге, наблюдали параллелизм обработки в нейронных структурах, однако оставалось неясным, каким образом представлялась визуальная информация. Группа исследователей University of Iowa сделала смелое заявление, что они окончательно решили вопрос о том, как видит мозг. Теоретически и экспериментально впервые было показано, что мозг человека обрабатывает изображение последовательно, переключая внимание очень быстро от объекта к объекту .
Однако согласно новой теории, многие задачи мозг выполняет параллельно, например координация мышц при беге в парке с одновременным слушанием щебетания птиц. То есть мозг работает как процессор с параллельной обработкой при восприятии информации разного рода. Но когда поступают на обработку задачи, включающие однородную информацию, например восприятие изображения, мозг, очевидно, работает в режиме временного разделения, что означает фокусировку внимания на одном объекте и переключение внимания на другой объект так быстро (за 1/10 сек), что человек не успевает осознать это и ему кажется, что объекты сравниваются одновременно .
Это напоминает компьютер: при одновременной работе миллионов транзисторов которого на функциональном уровне осуществляется последовательный режим, т.е. выполняется одна команда в единицу времени. Таким же образом работает и мозг на функциональном уровне: визуальная информация обрабатывается последовательно при параллельной работе нейронов .

Зрение показывает только то, что мы уже видели?
10.01.2003. Извести
Зрение не снабжает человека объективной информацией об окружающем мире - оно показывает нам то, что мы не раз уже видели. Визуальная информация, обрабатываемая мозгом , - условный рефлекс, постепенно вырабатываемый в течение жизни, считают ученые Дэйл Первз из Университета Дьюка (США) и Бью Лотто из Института офтальмологии Лондонского университетского колледжа.
Исследователи в середине 90-х годов занялись решением давней проблемы неизбежной необъективности получаемых мозгом зрительных стимулов. Можно подобрать много примеров полной иллюзии глубины, яркости, цвета и движения, которые отнюдь не подтверждаются измерением тех же самых объектов с помощью линейки и других физических инструментов. Наш глаз не может, например, отличить светоотражающую, но слабо освещенную поверхность от тусклой, но освещенной ярко.
Основная идея книги, написанной этими двумя учеными, в том, что единственный способ обойти принципиальную неполноту визуальной информации - статистический подход, обобщение предыдущего опыта. То есть мозг обрабатывает полученное на сетчатке изображение, основываясь на том, что раньше значили подобные картинки. Так, методом проб и ошибок составляется примерная статистическая таблица: что могло бы значить то или иное изображение и с какой вероятностью. Все, что мы в настоящий момент видим, определено полученным ранее мозгом распределением вероятностей того, чем именно вызвано появляющееся на сетчатке изображение. Значит, и ошибки, и иллюзии зрительного восприятия имеет смысл обсуждать с тех же статистических позиций.

Пространственный код для цветного зрения
07.02.2003 Новости Науки
Ученые из Техасской медицинской школы в Хьюстоне считают, что они поняли механизм распознавания цветного изображения мозгом . Исследования проводились, правда, на макаках, однако ученые уверены, что ситуация у человека не должна отличаться принципиально.
Исследователи регистрировали интенсивность кровообращения в специфических группах клеток в процессе показа животным различных цветов. Поток крови менялся в зависимости от цветовой гаммы, на которую смотрели макаки. Пик активности для одного и того же цвета всегда приходился на один и тот же участок мозга, т.е. каждому цвету четко соответствовала одна и та же группа клеток .
В результате исследователям удалось получить что-то типа пространственной карты цветовой палитры. Причем группы клеток, отвечающие за определенный цвет, выстраиваются строго в том же порядке, что и спектр видимого света . Например, участок мозга, на который приходился пик интенсивности кровообращения для красного цвета, располагался рядом с пиком оранжевого цвета, а тот в свою очередь - рядом с желтым, и так далее.
Экспериментаторы считают, что мозг использует некую пространственную кодировку для распознавания цветов.
Кстати, известно, что отнюдь не все люди видят цвета одинаково, существуют дальтоники, например, или люди, которым сложно отличить темно синий цвет от черного. По всей видимости, тут речь идет о неком дефекте кодировки или размывании граней соседних пиков.

Мозг подобен радиоприемнику
08.01.2003. solvay-pharma.ru
Мозг в каком-то смысле действует подобно радиоприемнику с частотной модуляцией.
Таков вывод израильских нейрофизиологов из Вейцмановского института в Реховоте. Они изучали специфические клетки в нервной ткани крыс, колеблющиеся с определенными частотами. Как оказалось, мозг использует эти клетки в качестве эталонов частоты и с их помощью интерпретирует поступающие сигналы .

Мозг видит эмоции обеими половинками
16.01.2003. NTR.ru
Бельгийские ученые выяснили, что мозг воспринимает эмоции обеими половинами , хотя доминирующая роль остается за правой. Также стало ясно, что левая половина мозга расшифровывает буквальное значение эмоционального сообщения, а правая половина расшифровывает тон , с которым было сделано сообщение - его просодию.
Открытие это основывается на результатах измерения скорости движения крови в тканях мозга. Увеличение скорости предполагает возрастание активности в данной зоне, потому что в активном состоянии клетки мозга потребляют больше кислорода и глюкозы, переносимых кровью. Чтобы узнать, когда и где возрастает кровоток, ученые измерили скорость потока крови в левой и правой средних мозговых артериях. Они попросили 36 участников, подключенных к ультразвуковым датчикам, определить эмоции, выраженные в нескольких предложениях. Добровольцы должны были либо проанализировать буквальное значение слов, либо эмоцию, с которой эти слова произносятся. Каждое предложение выражало лишь одну эмоцию или же было нейтрально, дикторы произносили эти предложения также либо эмоционально, либо нейтрально. По мере прослушивания предложении участники эксперимента делали пометки в списке, где перечислялись эмоции.
Исследователи обнаружили, что когда испытуемым давалось указание сосредоточиться на значении произнесенных слов, то значительно возрастала скорость потока крови в левом полушарии мозга . Но когда внимание переключалось на то, как эти слова произносятся, скорость кровотока значительно вырастала в правом полушарии , но при этом она не спадала и в левом – что позволяет предположить, что в идентификации эмоций оба полушария играют свои роли.

Взор, затуманенный мозгом
xTerra.Ru по материалам BBC News
Человеческий мозг фильтрует воспринимаемую глазами информацию.
Доказательства основываются на прежде уже известных опытах, построенных на восприятии испытуемыми набора вертикальных и горизонтальных линий. Каждый человек с нормальным зрением способен различать линии до того момента, пока пробел между ними не станет меньше определенной величины. После этого набор линий воспринимается как размытое пятно - из-за ограниченных возможностей глаза, как считалось раньше.
Также ученым была известна любопытная ситуация, возникающая в процессе тестирования - после того, как испытуемым в течение нескольких секунд демонстрируется набор из вертикальных или горизонтальных линий, при последующей демонстрации им значительно легче различать линии, перпендикулярные только что увиденным .
Этому феномену было найдено объяснение: за восприятие вертикальных и горизонтальных линий отвечают разные группы нейронов коры головного мозга. Таким образом, если, например, в первом случае работали нейроны, ответственные за восприятие вертикальных линий, то на следующей демонстрации они уже "устают", а нейроны, отвечающие за горизонтальные линии, напротив, более "свежие".
Однако после того как ученые из Миннесоты продемонстрировали испытуемым набор линий с пробелом, недостаточным для различения, а затем показали ясно различимые линии, направленные параллельно предшествующим, испытуемым было так же сложно различать линии . По словам доктора Шенг Хи, это происходит потому, что мозг настраивается на восприятие первой картинки и не пропускает часть информации , которую глаз воспринимает при созерцании второй.
Мозг, таким образом, ограничивает остроту зрения .
Итак, часть информации, поступающей по зрительным каналам восприятия, удерживается в мозге . Какими "соображениями" при этом он "руководствуется" - это уже следующий вопрос. Ученые говорят, что это открытие вносит вклад в понимание процесса взаимосвязи зрения и сознания , приближая к раскрытию новых тайн сознания.

Видеть мозгом возможно!
03.11.2004. NTR.ru
Скептики, не желающие признавать теорию эволюции Дарвина, обычно апеллируют к человеческому глазу. Даже сам создатель теории отмечал: трудно поверить в то, что столь сложный живой прибор создан в ходе естественного отбора путем проб и ошибок. Однако ученым из Европейской лаборатории молекулярной биологии удалось выстроить стройную системы эволюции человеческого глаза, подтвердив ее строгими научными изысканиями.
Ученые установили, что светочувствительные клетки глаза - "палочки" и "колбочки" - на начальной ступени своей эволюции располагались прямо в головном мозге (конечно, не человека и не его предков, эта стадия была задолго до появления млекопитающих). Однако светочувствительные клетки в мозге человека присутствуют до сих пор - они играют важную роль в суточном цикле человеческой активности.
С течением времени часть этих клеток переместилась и образовала отдельный орган - глаз. По мере его совершенствования глаз научился не просто определять наличие света, но и формировать сложные картины окружающего мира.
В мозге содержатся также два разных вида светочувствительных клеток . У большинства примитивных существ один из видов клеток мигрировал в глаза, а второй остался в составе мозга. У человека все произошло наоборот - в глаза "переселился" второй тип, и именно из них образовались и палочки, и колбочки.
Свои выводы ученые подтвердили на примере "живого ископаемого" - морского червя Platynereis dumerilii, который практически не изменился за 600 миллионов лет своего существования. Проанализировав мозг червя, они нашли в нем клетки второго типа, уже разделившиеся на "палочки" и "колбочки", сходные с человеческими.
-------

Ученые научились читать человеческие визуальные восприятия
25.04.2005 Membrana
Юкиясу Камитани из вычислительной лаборатории неврологии в Киото, Япония, и Френк Тонг из университета Принстона, США, использовали систему магнитно-резонансной съемки и специальную программу, чтобы определить - какие картинки видел испытуемый .
В серии опытов добровольцам показывали одну из восьми картинок, на которых были полосы ориентированные различным образом. В этот момент снималась магнитная томограмма мозга. Оказалось, в ней есть небольшие отличия, зависящие от той или иной картины перед глазами.
Авторы исследования сумели написать программу, которая выявляла такие отличия и в следующих опытах, когда испытуемым давали эти картинки в случайном порядке, машина точно определяла - на что человек смотрел.
В том случае, если показывалось две картинки одновременно, человека просили сосредоточить своё внимание на одной из них. И этот выбор испытуемого также удавалось определить по анализу магнитно-резонансных изображений.
Кроме того, в ряде опытов людям показывали две картинки последовательно, но первую - в течение долей секунды, так, что человек не успевал идентифицировать ее .
Компьютер, однако, четко показывал какие именно картинки видел испытуемый, в том числе - определял реакцию мозга на изображение, которое сам человек не успевал осознать .

Слепая женщина определяет цвета одежды на ощупь
15.10.2005. MEMBRANA

Она слепая с рождения. Левый глаз ничего не видит вообще - он искусственный. В правом глазу у неё осталось лишь 1,5% от нормального зрения. Инвалидность подтверждена документами. А сама женщина демонстрирует невероятную способность – лишь трогая руками ткани, определяет их цвет.
Субботним вечером 7 октября 12 миллионов немецких зрителей наблюдали по телевизору своё любимое и очень популярное в Германии шоу ZDF "Спорим, что..?" ("Wetten, dass..?"). Героиня передачи, 48-летняя Габриеле Симон (Gabriele Simon), в прямом эфире трогала рубашки и футболки руками, после чего безошибочно определяла их окрас. Например, говорила, что вещь красная в белую полоску. В присутствии гостей студии – а это были Антонио Бандерас (Antonio Banderas) и Кэтрин Зета-Джонс (Catherine Zeta-Jones) - Габи правильно назвала цвета всех четырёх предложенных ей ведущим шоу Томасом Готтшальком (Thomas Gottschalk) предметов одежды. И всё это притом, что для большей убедительности на невидящие глаза Симон была надета повязка. Как же так?

1

Еще не так давно по историческим меркам о мозге говорили как о «черном ящике», процессы внутри которого оставались тайной. Достижения науки последних десятилетий уже не позволяют заявлять об этом столь же категорично. Однако по-прежнему в области исследования мозговой деятельности куда больше вопросов, чем однозначных ответов.

Распознать в этой, имеющей космические численные параметры и находящейся в постоянном движении системе механизмы, которые можно было бы соотнести с тем, что мы называем памятью и мышлением, крайне сложно. Порой для этого приходится проникать непосредственно в мозг. В самом прямом физическом смысле.

Создан ли нейромашинный интерфейс, позволяющий парализованным людям управлять роботом-манипулятором?

Да, такой интерфейс создан. Особенно интересны в этой связи работы нейроинженера Джона Донохью из Университета Браун (штат Род-Айленд). В возглавляемой им лаборатории разработана технология BrainGate , помогающая парализованным вырваться из «тюрьмы» своего тела. Чаще всего паралич наступает не в результате поражения головного мозга, а по причине нарушения коммуникации между головным мозгом и периферийной нервной системой - например, из-за повреждения спинного мозга. Если моторная кора цела и функционирует, в нее вставляется небольшой чип с золотыми электродами. Чип считывает сигналы, поступающие от нужных групп нейронов, и преобразует их в команды для компьютера. Если к компьютеру подсоединена роботизированная рука-манипулятор, то достаточно пациенту подумать о том, как он поднимает свою руку, и робот тут же выполнит задуманное движение. Таким же способом парализованный человек может управлять набором текста на компьютере или перемещать курсор по экрану. Единственное неудобство состоит в том, что из верхней части черепа торчат провода, однако это мелочь по сравнению с полной неподвижностью. В будущем, мечтает Донохью, электронный чип, имплантированный в мозг, будет управлять не компьютером, а мышцами тела пациента через систему электростимуляторов, которые будут вживлены в мускулатуру.

Что бы там ни говорили защитники живой природы, но экспериментировать над мозгом макак и крыс исследователям пока никто не запрещал. Однако когда речь идет о мозге человека - живом мозге, разумеется, - эксперименты на нем практически невозможны по соображениям права и этики. Проникнуть внутрь «серого вещества» можно лишь, что называется, за компанию с медициной.

Провода в голове

Одним из таких шансов, предоставленных исследователям мозговой деятельности, стала необходимость хирургического лечения тяжелых случаев эпилепсии, которые не поддаются медикаментозной терапии. Причиной заболевания становятся пораженные участки срединной височной доли. Именно эти области необходимо удалить методами нейрохирургии, однако прежде всего их надо выявить, чтобы, так сказать, не «отхватить лишнего».

Американский нейрохирург Ицхак Фрид из Калифорнийского университета (Лос-Анджелес) еще в 1970-х стал одним из первых, кто применил для этой цели технологию введения непосредственно в кору головного мозга электродов толщиной 1 мм. По сравнению с размером нервных клеток электроды имели циклопические размеры, однако даже такого грубого инструмента было достаточно, чтобы снять усредненный электросигнал от некоторого количества нейронов (от тысячи до миллиона). В принципе, для достижения чисто медицинских целей этого было достаточно, но на каком-то этапе инструмент было решено усовершенствовать. Отныне миллиметровый электрод получал окончание в виде разветвления из восьми более тонких электродов диаметром 50 мкм. Это позволило увеличить точность замеров вплоть до фиксации сигнала от сравнительно небольших групп нейронов. Были также разработаны методы, позволяющие отфильтровать из «коллективного» шума сигнал, посылаемый одной-единственной нервной клеткой мозга. Все это было сделано уже не в медицинских, а в чисто научных целях.

Именные нейроны

Объектом исследований становились люди, ожидавшие операции по поводу эпилепсии: пока внедренные в кору мозга электроды считывали сигналы от нейронов для точного определения зоны хирургического вмешательства, попутно проводились весьма интересные эксперименты. И это был тот самый случай, когда реальную пользу науке принесли иконы поп-культуры - голливудские звезды, чьи образы легко узнаваемы большинством населения планеты. Сотрудник Ицхака Фрида - врач и нейрофизиолог Родриго Киан Кирога - демонстрировал испытуемым на экране своего ноутбука подборку широко известных зрительных образов, среди которых были как популярные личности, так и знаменитые сооружения, вроде оперного театра в Сиднее. При показе этих картинок в мозге наблюдалась электрическая активность отдельных нейронов, причем разные образы «включали» разные нервные клетки. Например, был установлен «нейрон Дженнифер Энистон», который «выстреливал» всякий раз, когда на экране возникал портрет этой актрисы романтического амплуа. Какое бы фото Энистон ни демонстрировали испытуемому, нейрон «ее имени» не подводил. Более того, он срабатывал и тогда, когда на экране появлялись кадры из известного сериала, в котором актриса снималась, пусть даже ее самой в кадре не было. А вот при виде девушек, лишь похожих на Дженнифер, нейрон молчал.

Исследуемая нервная клетка, как оказалось, была связана именно с целостным образом конкретной актрисы, а вовсе не с отдельными элементами ее внешности или одежды. И это открытие давало если не ключ, то подсказку к пониманию механизмов сохранения долговременной памяти в человеческом мозге. Единственное, что мешало продвигаться дальше, - те самые соображения этики и права, о которых говорилось выше. Ученые не могли разместить электроды ни в каких других областях мозга, кроме тех, что подвергались предоперационному исследованию, да и само это исследование имело ограниченные медицинской задачей временные рамки. Это весьма затрудняло поиски ответа на вопрос, действительно ли существует нейрон Дженнифер Энистон, или Брэда Питта, или Эйфелевой башни, а может быть, в результате замеров ученые случайно натыкались лишь на одну клетку из целой связанной друг с другом синаптическими связями сети, отвечающей за сохранение или узнавание определенного образа.

Игра с картинками

Как бы то ни было, эксперименты продолжились, и к ним подключился Моран Серф - личность крайне разносторонняя. Израильтянин по происхождению, он попробовал себя в роли бизнес-консультанта, хакера и одновременно инструктора по компьютерной безопасности, а еще художника и автора комиксов, писателя и музыканта. Вот этот-то человек со спектром талантов, достойным эпохи Возрождения, взялся создать на основе «нейрона Дженнифер Энистон» и ему подобных нечто вроде нейромашинного интерфейса. В качестве испытуемых и на этот раз выступили 12 пациентов медицинского центра им. Рональда Рейгана при Калифорнийском университете. В ходе предоперационных исследований им внедрили в область срединной височной доли по 64 отдельных электрода. Параллельно начались эксперименты. Сначала этим людям показали 110 изображений поп-культурной тематики. По итогам этого первого тура были отобраны четыре картинки, при виде которых у всей дюжины испытуемых четко фиксировалось возбуждение нейронов в разных частях исследуемого участка коры. Далее на экран выводились одновременно два изображения, наложенных друг на друга, причем каждое обладало 50%-ной прозрачностью, то есть картинки просвечивали друг через друга. Испытуемому предлагалось мысленно увеличить яркость одного из двух образов, чтобы тот затушевал своего «соперника». При этом нейрон, отвечающий за образ, на котором сосредотачивалось внимание пациента, выдавал более сильный электрический сигнал, чем нейрон, связанный со вторым образом. Импульсы фиксировались электродами, поступали в декодер и превращались в сигнал, управляющий яркостью (или прозрачностью) изображения. Таким образом, работы мысли вполне хватало, чтобы одна картинка начинала «забивать» другую. Когда испытуемым предлагалось не усилить, а, наоборот, сделать один из двух образов бледнее, связка «мозг - компьютер» вновь срабатывала.

Что такое пластичность мозга?

Из каких отделов состоит и как выглядит мозг в разрезе, наука знает давно. Однако о механизмах мышления и памяти до сих пор известно немного.

Пластичностью мозга называется потрясающая способность нашего органа мышления приспосабливаться к изменяющимся обстоятельствам. Если мы обучаемся какому-либо навыку и интенсивно тренируем мозг, в области мозга, отвечающей за этот навык, появляется утолщение. Находящиеся там нейроны создают дополнительные связи, закрепляя вновь полученные умения. В случае поражения жизненно важного участка мозга он порой заново развивает утраченные центры в неповрежденной области.

Светлая голова

Стоила ли эта увлекательная игра необходимости проводить опыты над живыми людьми, тем более имеющими серьезные проблемы со здоровьем? По мнению авторов проекта - стоила, ибо исследователи не только удовлетворяли свои научные интересы фундаментального характера, но и нащупывали подходы к решению вполне прикладных задач. Если в мозге существуют нейроны (или связки нейронов), возбуждающиеся при виде Дженнифер Энистон, значит, должны быть и мозговые клетки, отвечающие за более существенные для жизни понятия и образы. В случаях, когда пациент не в состоянии говорить или сигнализировать о своих проблемах и потребностях жестами, непосредственное подключение к мозгу поможет медикам узнать о нуждах больного от нейронов. Причем чем больше ассоциаций будет установлено, тем больше сможет сообщить о себе человек.

Может ли мозг видеть без глаз?

То, что мы считаем зрением, есть на самом деле интерпретация мозгом электросигналов, генерируемых массивом светочувствительных клеток - палочек и колбочек, расположенных на внутренней стороне сетчатки. У сетчатки высокое разрешение - около 126 мегапикселей, если приблизительно выразить его в параметрах, в которых оценивается матрица цифрового фотоаппарата. Однако в строение глаза заложена масса несовершенств, и окончательная картинка - это все-таки результат вычислений, проведенных мозгом. Именно мозг «заботится» о том, чтобы зрительное восприятие создавало нам максимальные удобства при ориентации в пространстве. Но, как выясняется, даже если мозгу предложить картинку куда более низкого разрешения и даже если устройством «ввода» будет не глаз и не светочувствительные клетки, мозг и тогда сумеет нас сориентировать. Доказательство тому - работы американского ученого Пола Бач-и-Рита. Создав матрицу низкого разрешения (144 маленьких золотых контакта), на которую подавалась видеокартинка с разверткой в виде электросигналов разной интенсивности, он приложил контакты... к языку испытуемого, лишенного зрения. Поначалу электросигналы создавали лишь ощущение неприятного пощипывания, но некоторое время спустя мозг научился распознавать в этих раздражителях упрощенные очертания окружающих предметов.

Однако внедренный в мозг электрод, пусть даже 50 мкм в поперечнике, - это слишком грубый инструмент для точной адресации конкретному нейрону. Более тонкий метод взаимодействия с нервными клетками уже отрабатывается, хотя трудно сказать, когда нечто подобное может быть широко применено в отношении человека. Речь идет об оптогенетике, которая предполагает преобразование нервных клеток на генетическом уровне. Одними из пионеров этого направления считаются Эд Бойден и Карл Диссерот, начинавшие свои работы в Стэнфордском университете. Их замысел заключается в том, чтобы воздействовать на нейроны с помощью миниатюрных источников света. Для этого клетки, разумеется, необходимо сделать светочувствительными. Поскольку физические манипуляции по пересадке светочувствительных белков - опсинов - в отдельно взятые клетки относятся к области практически невозможного, исследователи предложили... заражать нейроны вирусом. Именно этот вирус внедрит в геном клеток ген, синтезирующий светочувствительный белок. У этой технологии есть несколько потенциальных применений. Одно из них - это частичное восстановление зрения глаза с пораженной сетчаткой за счет сообщения светочувствительных свойств сохранившимся несветочувствительным клеткам (есть успешные опыты на животных). Получая вызванные падающим светом электросигналы, мозг вскоре научится работать с ними и интерпретировать их как изображение, пусть и худшего качества. Другое применение - работа с нейронами непосредственно в мозге с помощью миниатюрных световодов. Активируя разные нейроны в мозге животных с помощью пучка света, можно проследить за тем, какие поведенческие реакции эти нейроны вызывают. Помимо этого, «световое» вмешательство в мозг в будущем может иметь и терапевтическое значение.

Возможно ли эмулировать головной мозг человека с помощью компьютерной программы или создать компьютер, аналогичный мозгу?

Пока такого аналога не существует, однако наука движется в этом направлении. Надо понимать, что хоть электронные вычислители нередко называют «мозгом», в реальности ЭВМ и мозг конструктивно не имеют практически ничего общего. Кроме того, если компьютер является творением человеческого разума и принципы его работы специалистам досконально известны и описаны до последней запятой, то до полного понимания того, что происходит под черепной коробкой, наука невероятно далека. Задача ученых, задействованных в проекте Blue Brain , профинансированном правительством Швейцарии и осуществляемом в сотрудничестве с корпорацией IBM, заключается, таким образом, не в том, чтобы создать электронного конкурента мозгу. В конце концов, многие специализированные задачи типа математических расчетов компьютер давно делает несравнимо лучше, чем наше «серое вещество». Цель проекта, в котором используется мощнейшая вычислительная техника, - создать компьютерную 3D-модель происходящего внутри мозга и затем с ее помощью проверять различные гипотезы, связанные с его работой. Мозг человека состоит из 100 млрд. нейронов, а количество возможных комбинаций, могущих возникнуть при их соединении, превышает число атомов во Вселенной, поэтому браться за задачу таких масштабов исследователи пока не решились. Речь идет лишь о построении модели нейронной колонки неокортекса крысы. Колонка состоит «всего лишь» из 10 000 нейронов, образующих между собой 30 млн синаптических связей. Модель строится на основе наблюдений за реальным мозгом, и в ней отражается индивидуальное поведение каждого нейрона. При этом мультипроцессорный искусственный «мозг» нуждается в колоссальном количестве электроэнергии, а потребляемая мощность мозга человека - всего 25 Вт.

Не глаза видят, а мозг

Давайте поговорим о зрении. Вы наверняка слышали такое выражение: «Увидеть – значит поверить». Но часто бывает и наоборот: поверить – значит увидеть . Ученым хорошо известно, что сильнейшее влияние на то, что, как нам кажется, мы видим, оказывают образы и идеи, воздействию которых мы подвергаемся предварительно, а также наши собственные мысли и воображение. Этим, вероятно, объясняется, почему именно люди, которые изначально верят в привидения или НЛО, гораздо чаще наблюдают эти самые явления, нежели те, кто в них не верит. Увидеть то, чего нет, может каждый, потому что мозг конструирует и интерпретирует наблюдаемую реальность. Мы видим то, что наш мозг показывает нам, отталкиваясь от информации, получаемой через органы зрения. Картинка, создаваемая мозгом, не всегда является 100-процентным отражением того, на что устремлен наш взгляд. По этой причине мы иногда не можем быть до конца уверены в том, что видим. Да, возможно, вы видели ангела. Но возможно и другое: мозг показал вам ангела, ошибочно сконструировав его образ из куста или другого предмета.

Мозг конструирует и интерпретирует наблюдаемую реальность? Звучит дико, если вдуматься. Разве мы не просто видим вещи, на которые смотрим? Как такое может быть? Большинство людей полагают, что мозг просто и честно показывает нам ту самую картинку, которую видят наши глаза. Но все обстоит не так. В реальности свет падает на сетчатку глаз и по зрительным нервам в мозг идут электрические импульсы. Затем мозг транслирует эти импульсы в зрительные образы, которые вы «видите» у себя в голове. Мозг не отражает и не проигрывает наблюдаемую вами сцену, подобно зеркалу или видеокамере с монитором. Он показывает вам сильно отредактированное и адаптированное описание наблюдаемой сцены. Предлагает вам собственную версию наблюдаемого мира. Можно сказать, что мозг снимает свой собственный фильм по мотивам реальных событий. То, что вы видите, – это не сырая видеосъемка, а художественно-документальный фильм. Мозг оставляет за собой право опускать детали, которые он считает маловажными. Может быть, это и неплохо. Более того, во многих случаях это совершенно необходимо во избежание информационной перегрузки. Вам совсем не нужно видеть каждый лист на дереве и каждую травинку, когда вы гуляете в парке. Это был бы переизбыток информации. Возникла бы непроходимая путаница у вас в голове, что только навредило бы вам. Для того чтобы вы получили представление о парке и могли нормально функционировать, достаточно иметь в голове общую картину парка, именно это мозг и дает вам. Если вам нужны дополнительные подробности, можете сфокусировать глаза и мозг на отдельном листке, отдельной травинке и т. д.

Но дальше начинаются еще более странные вещи. Мозг не только опускает огромное количество деталей, он еще и заполняет бреши образами, которые вы не только не можете видеть, но которых, возможно, вовсе не существует. Например, ваши глаза не могут уследить за быстро движущимся объектом, но мозг решает эту проблему, прикидывая, что могло бы быть полезно вам, и создает свою версию реального мира. Мозг также вставляет в нужные места статичной сцены элементы, которые, по его мнению, там должны быть, поскольку это позволяет вам лучше ориентироваться в окружающей среде. Как известно, такими фокусами славятся иллюзионисты. Даже если они не вполне понимают научную подоплеку происходящего, это не мешает им при выполнении своих фокусов максимально использовать особенности человеческого зрения. Еще раз должен подчеркнуть, что мозг делает все это не ради того, чтобы посмеяться над нами, а по той лишь причине, что в большинстве случаев это позволяет нам функционировать в жизни с максимальной эффективностью.

Мозг не только добавляет недостающие образы, он также обнаруживает шаблоны, закономерности и по ним «соединяет точки». Он делает это автоматически и очень хорошо. Он помогает нам увидеть вещи, которые в противном случае было бы очень трудно распознать. И эта способность мозга является, пожалуй, одной из причин, почему род человеческий до сих пор существует. Подобно многим другим животным, наши доисторические предки полагались на эту способность в целях выживания: она позволяла им не умереть от голода и не оказаться съеденными самим. Без этой способности невозможно было бы увидеть в листве замаскировавшуюся птицу или прячущегося в кустах кролика. Не менее важно было умение вовремя распознать контур крадущегося хищника, это позволяло нашим далеким предкам не попасть ему на обед в краткосрочной перспективе и избежать вымирания в перспективе долгосрочной.

Хотя современным горожанам редко выпадает нужда высматривать прячущегося в кустах хищника, описанная выше особенность зрения продолжает играть свою роль. Например, одна моя знакомая, которая увлекается заплывами на длинные дистанции в Карибском море, объясняла мне, что она не страдает от параноидального страха перед акулами, но вот отношение ее мозга к ним далеко от легкомысленного. Когда она плывет и опускает голову под воду, ее система зрения постоянно сканирует окрестные воды на предмет возможного появления акулы. И мозг зачастую «видит» ее, когда замечает предметы, своим контуром хотя бы отдаленно напоминающие шаблонный образ акулы. В 95 % случаев, как объясняет моя знакомая, мозг ошибается, принимая за акулу предметы, не имеющие ничего общего даже с рыбами.

Майкл Шермер, издатель журнала «Skeptic», многие годы посвятил изучению этой особенности мозга, которую описывает как «тенденцию обнаруживать шаблоны и модели в бессмысленном и бессодержательном шуме». Шермер говорит, что мозг делает это так часто и так хорошо, что его можно было бы назвать «машиной по обнаружению моделей». Это все замечательно, но до той поры, пока процесс обнаружения моделей не выходит за пределы действительности, в результате чего мы начинаем видеть то, чего не существует. И вот тогда мы рискуем навлечь на себя проблемы.

Если, гуляя на закате солнца в лесу, я наткнусь на тень, отдаленно напоминающую тень медведя, мой мозг тут же соорудит весьма подробную и убедительную модель медведя, затаившегося во мраке. Медведя нет, но я его видел! Клянусь вам, я видел его ощерившуюся пасть и горящие злобой глаза! Ладно, если медведь там был действительно, мозг спас мне жизнь, предупредив меня об этом. Но если его не было, то я лишь пережил небольшой испуг. А что, если бы вот так же я был абсолютно уверен, что своими глазами видел бигфута, демона, инопланетянина или бога? Это могло бы без нужды сильно осложнить мне жизнь. Шермер поясняет:

К сожалению, в нашем мозге не сформировалась система обнаружения вздора, которая позволяла бы отличать реальные шаблоны от ложных. В мозге нет системы обнаружения ошибок, которая регулировала бы работу механизма, создающего шаблоны и модели. И поэтому мы нуждаемся в науке, обладающей механизмами саморегуляции.

С одной стороны, способность мозга видеть шаблоны объектов, которых в реальности нет, помогает нам вовремя увидеть шаблоны того, что есть, когда это действительно имеет значение для выживания. С другой стороны, мы должны быть осведомлены об этом феномене, так как он может приводить к тому, что мы верим в то, чего нет, или в то, что является неправдой. И одним только зрением это не ограничивается. К слуху и мышлению это тоже относится. Хорошие скептики понимают, что мозг зачастую создает ложные модели, поэтому мы должны быть крайне осторожными с показаниями свидетелей, которые, к примеру, своими глазами наблюдали НЛО или что-то столь же необычное. В такой ситуации есть все основания проявить скептицизм и потребовать дополнительных доказательств. Может, эти люди что-то видели, может, нет. Но ведь мы с вами уже кое-что знаем о мозге, поэтому следует ли слепо доверяться человеку, который утверждает, что на прошлой неделе видел летающую тарелку или снежного человека? Не нужно думать, что он лжет. Любого из нас, даже обладающего 100-процентным зрением, это самое зрение может подвести. И самый блестящий мозг может прийти к неверным умозаключениям. И самая лучшая память, бывает, подводит.

Из книги Законы выдающихся людей автора Калугин Роман

Глаза не видят, если сердце приказывает ослепнуть Реальность часто оказывается вопросом личного восприятия, а не только объективных фактов. Великий мыслитель Сенека сказал: «Глаза не видят, если сердце приказывает им ослепнуть». Эта мудрость требует, чтобы мы учились

Из книги Введение в психиатрию и психоанализ для непосвященных автора Берн Эрик

3. Почему люди видят сны? Теперь читателю нетрудно понять, что такое сновидение. Это попытка ослабить напряжение Ид галлюцинацией осуществления какого-нибудь желания. Ид непрерывно стремится к удовлетворению и наяву, и во сне. В часы бодрствования его прямому выражению

Из книги Мальчик – отец мужчины автора Кон Игорь Семенович

Глава 4. Какими они себя видят?

Из книги Книга стервозной мудрости автора Рыбицкая Наталья Борисовна

Что они о нас думают и как видят Как эпиграф к теме о мужских вкусах, приведу слова Нинон Ланкло, французской куртизанки, жившей в семнадцатом веке:«Самые лестные признания не те, что делаются намеренно, а те, что вырываются помимо воли…».По большому счету, мужчины думают о

Из книги Неписаный кодекс везунчика. Как стать баловнем судьбы автора Сафин Айнур

Из книги Женский мозг и мужской мозг автора Гингер Серж

Из книги Пластичность мозга [Потрясающие факты о том, как мысли способны менять структуру и функции нашего мозга] автора Дойдж Норман

Из книги Почему мужчины врут, а женщины ревут автора Пиз Алан

МУЖЧИНЫ ВИДЯТ ТОЛЬКО «ОБЩУЮ КАРТИНУ» Мужчины предпочитают видеть только «общую картину». Им нравится удовольствоваться лишь небольшим количеством крупных деталей, вдаваться в мелочи они считают ниже собственного достоинства. Например, мужчина не часто дарит своей

Из книги Психика в действии автора Берн Эрик

3. Почему люди видят сны? С учетом всего вышесказанного читателю теперь должно быть нетрудно понять, что такое сновидение. Это попытка ослабить напряжение Ид с помощью галлюцинации исполнения какого-нибудь желания. Ид стремится к удовлетворению непрерывно, как наяву, так

Из книги Почему я чувствую, что чувствуешь ты. Интуитивная коммуникация и секрет зеркальных нейронов автора Бауэр Иоахим

Как влюбленные видят друг друга

Из книги Язык взаимоотношений (Мужчина и женщина) автора Пиз Алан

Почему женские глаза видят столь много? Миллиарды фотонов света, транслирующие информацию, равную 100 мегабайтам компьютерной памяти, падают каждую секунду на оболочку человеческого глаза. Столь большой объем данных мозг переработать не в состоянии, и поэтому он

Из книги Двадцать великих открытий в детской психологии автора Диксон Волес

Глава 5. Это видят глаза Сногсшибательно! Абсолютно гениально! Это не гиперболы (вспомните, что значит гипербола). Если и есть на свете исследование, выступающее в роли краеугольного камня для развития современных исследований познавательных способностей детей, то это

Из книги Тайная история сновидений [Значение снов в различных культурах и жизни известных личностей] автора Мосс Роберт

Боги видят во сне людей, а люди – богов Для многих людей пребывание на этой планете само по себе является результатом сновидения бога-творца. Индийцы полагают, что Вишну видит наш мир во сне и наш мир будет существовать, пока этот сон не закончится и его главные герои,

Из книги Не бери в голову автора Пэйли Крис

Люди видят во сне богов В древнем мире сновидение выступало в роли еженощного общения с богами, которые могли предстать перед человеком в любой форме. Греки, воспитанные на произведениях Гомера, знали, что боги могут проникнуть в личное пространство сновидца под видом

Из книги Все лучшие методики воспитания детей в одной книге: русская, японская, французская, еврейская, Монтессори и другие автора Коллектив авторов

Мы чувствуем собственную боль так же, как другие ее видят Открыто переживая боль, мы получаем возможность объяснять свое поведение и, соответственно, выяснять, что о нас думают другие. Наша склонность моделировать себя для других людей настолько сильна, что мы

С закрытыми глазами , для начала вам нужно подготовить себя к открытию третьего глаза. Для этого вам нужно научиться полностью расслабляться, избавляясь от всех негативных эмоций, страхов, переживаний – они все блокируют вашу духовную силу.

Попробуйте сосредоточиться на ваших чакрах – энергетических центрах, шести вращающихся кругов, которые образуют собой энергетическое поле вашего тела. Когда вы почувствуете их и научитесь очищать разум , вам будет проще работать над открытием третьего глаза.Посвящайте много времени медитации. Медитация помогает расслаблению и очищению разума.

Начните упражняться, чтобы научиться видеть с закрытыми глазами . Каждый упражнений начинайте с расслабления дыхания. Вдыхайте медленно через нос и выдыхайте воздух через рот до тех пор, пока воздух в не кончится. Повторяйте упражнение на дыхание снова и снова.

Закройте глаза. Используя указательный палец, дотроньтесь до середины лба. В этом месте располагается ваш третий глаз. Мягко надавливайте на эту точку, как будто пытаетесь открыть глаз.

Начните учиться различать цвета с закрытыми глазами . Сфокусируйтесь на каком-то предмете и сквозь веки пытайтесь увидеть его цвет. Как только у вас получится, передохните.

Практикуйтесь различать форму , глядя на них с закрытыми глазами . Сразу, как только вы начнете различать цвета, к вам придет умение видеть форму окружающих вас предметов.

После того, как вы постигните умение различать форму предметов с закрытыми глазами , тренируйтесь мысленно приближаться к ним и изучать их подробнее. Постоянно фиксируйте результаты ваших упражнений и сверяйте их с тем, что вы увидите, открыв глаза.

Как только вы усовершенствуете свое умение видеть предметы на близком расстоянии с закрытыми глазами , вы сможете попытаться использовать свой третий глаз и для удаленных . Для этого попробуйте глаза, замедлить дыхание, и позвольте вашему разуму отправиться на дальние расстояния, возможно, на другие континенты или даже в .

Источники:

  • видение с закрытыми глазами

Довольно часто в сети можно встретить экзотические предложения обучить вас чтению и видению окружающего мира с закрытыми глазами . Оставим на совести авторов подобных подходов научность этих методов. К тому же, существуют опробованные и работающие научные методики, позволяющие слабовидящим и слепым людям читать тексты без помощи зрения. Один из таких способов – метод Брайля.

Вам понадобится

  • - пособие для обучения системе Брайля;

Инструкция

Ознакомьтесь с принципами построения рельефно-точечного шрифта и чтения, называемым шрифтом Брайля. В основе его лежит комбинация точек. Выполненный в виде комбинации точек знак, имеющий определенные высоту и диаметр, записывается в ячейке. Такие сведенные в систему знаки после соответствующего обучения и формирования навыка легко распознаются на ощупь. Для чтения без помощи зрения используется указательный палец руки (или даже пальцы двух рук).

Запаситесь учебным пособием, в котором излагаются основы тактильного чтения по Брайлю. Изучите для начала основные комбинации знаков, соответствующие буквам алфавита. Запаситесь терпением, поскольку освоение новых навыков обычно идет с трудом. При должном усердии вы сможете со временем овладеть чтением с закрытыми глазами не только буквенных текстов, но и математических знаков, компьютерных символов и даже музыкальных нот.

Видеть мозгом

Научные тесты выявили «внутренне зрение» в мозге незрячего художника из Турции Эсрефа Армагана, который с рождения не видит даже света, сообщает британский журнал «Нью сайентист».

Художник с поразительной реалистичностью рисует дома, животных и пейзажи, которые он никогда в жизни не видел, однако сканирование головного мозга Армагана показало, что в процессе рисования «включается» зрительная область его коры почти в такой же степени, как и у зрячего человека. Иными словами, слепой может представить себе тот или иной образ так, как будто он когда-то его видел воочию. Причем, эти зрительные образы он помнит и может воспроизвести годы спустя.

Тестирование Армагана проводились в США, уточняет «Нью сайентист». Картины феноменальный художник рисует пальцами рук, используя собственную уникальную художественную технику – он накладывает на холст краску одного цвета, а затем после ее полного высыхания – по очереди идут в ход другие цвета. Сначала Армаган делает набросок: он проводит клинышком по поверхности холста, оставляющим неглубокую канавку, которую мастер тут же прощупывает пальцами и проверяет правильность нарисованных форм.

Ощущение цвета, как отмечает журнал, было достигнуто художником путем простого запоминания соответствий со слов зрячих людей. К примеру, Армаган раньше думал, что если предмет красный, то и тень от него должна быть такого же цвета. Только из объяснений со стороны он запомнил, что небо должно быть голубым, море синим, а трава – зеленой.

Эсрефу Армагану сейчас 51 год. Он родился в бедной семье в Стамбуле, не мог ходить в школу, и никто специально не учил его рисовать. В шесть лет Эсреф сам взял в руки карандаш, а с 18 лет стал писать масляными красками с помощью пальцев. В 42 года художник перешел на быстро засыхающую гуашь. Благодаря своим картинам Армаган прославился не только в Турции, но и получил известность за рубежом, отмечает «Нью сайентист».

Видение мозгом

Человек видит мозгом, а не глазами.

По материалам: Washington ProFile.

Исследователи из University of Rochester обнаружили, что у разных людей серьезно различается количество рецепторов-колбочек в сетчатке глаза, отвечающих за восприятие цвета. У одних людей колбочек в 40 раз больше, чем у других. Из-за этого, люди по-разному воспринимают цветовые оттенки.

Другой вывод исследования: человек воспринимает цвета не с помощью глаз, а, в основном, с помощью мозга. Причины этого пока не ясны. Статью об этом открытии опубликовал журнал Neuroscience.

Видение мозгом

Система Зрения: Что видит мозг?

Др. Ховард Гликсмен.

Зрение – это сложный процесс. Два месяца назад мы рассмотрели, как глаз может разрешать свету проходить через него и фокусироваться на сетчатке. Затем в предыдущем месяце мы подробно описали, как сетчатка может генерировать нервные импульсы, которые перемещаются к мозгу для интерпретации «зрения».

В этом раз мы рассматриваем, как эти зрительные сообщения распределяются и организовываются в пределах мозга для того, чтобы создать нейровозбуждающее пространственное изображение для анализа.

Мозг является центральным устройством обработки данных, который интерпретирует все неврологические сообщения, что поступают со всего тела. Глаз представляет собой внешнее устройство подобно любому другому чувствительному органу тела. Он находиться в углублении, проводя исследования для мозга. Под центральной слепотой подразумевается состояние, когда глаза хорошо работают, но именно мозг не производит правильной обработки данных зрительной информации.

Видение мозгом

Каждый оптический нерв состоит из примерно миллиона аксонов, которые идут от ганглиозных клеток. Не забывайте, что ганглиозные клетки просто переносят сообщения, которые они получают от биполярных клеток, а те, в свою очередь, от палочек и колбочек. Это что-то на подобие огромной нейробиомолекулярной эстафеты. Конечная цель – достичь визуального центра мозга, где определенная пространственная модель нервного возбуждения в конечном итоге обрабатывается и интерпретируется как «зрение».

Около 80% аксонов от ганглиозных клеток в оптическом нерве направляются к распределительной коробке мозга, которая называется боковым коленчатым телом. В этом соединительном нервном центре каждый ганглиозный аксон передает дальше свои сообщения с помощью высвобождения нейротрансмитера, который побуждает другой нейрон передавать дальше это сообщение к зрительной зоне коры головного мозга.

Оставшиеся 20% аксонов ганглиозных клеток меняют свое направление как раз перед распределительной коробкой, объединяются с другой системой, которая несет ответственность за некоторые автоматические рефлексы, происходящие в глазе. Когда свет проникает в глаз (освещает его), это приводит к тому, что зрачок, сокращаясь, становится меньше, а когда мало света в темной комнате, зрачок автоматически расширяется, чтобы пропустить больше света. Именно эти сообщения от ганглиозных клеток и начинают рефлексную дугу, которая порождает эти действия.

Видение мозгом

Полное изменение реальности: фокусирование побочных эффектов.

Рассмотрим природу изображения, которое проектируется на сетчатке после того, как лучи света перемещаются через глаз. Если вы когда-либо игрались с линзами, то вы должны помнить, что каждый раз, когда лучи света проходят сквозь криволинейную поверхность, то они не только преломляются, но и изображение с другой стороны становится полностью перевернутым.

Следовательно, когда мы рассматриваем то, что происходит с изображением света, когда оно проходит сквозь глаз, мы должны принять во внимание тот факт, что свет проходит три отдельных преломления. Первое преломление происходит, когда свет пересекает роговицу. На этой стадии, изображение было бы совершенно перевернутым, это означает, что оно было бы повернутым и перевернутым вверх дном. Но не забывайте, что свету все еще нужно пройти сквозь хрусталик, пока он не переместится в сетчатку.

У хрусталика есть две выпуклые поверхности в противоположность одной у роговицы. Изображение, проходя сквозь переднюю поверхность хрусталика снова приводится в порядок. Но потом оно дальше преломляется, поскольку проходит сквозь заднюю поверхность хрусталика, в результате которого возникает конечное изображение на сетчатке, которое является повернутым и перевернутым вверх дном. (см. рис. 1)

Вы можете подумать о том, как это может влиять на наше зрение? Не забывайте, что клетки фоторецепторов сетчатки просто посылают изображение в мозг на основе света, что отражает объект, на который мы смотрим. Следовательно, если изображение само по себе было перевернуто, то есть вверх дном, то сообщение, которое посылается из сетчатки в мозг, будет также это отражать. Это уже дело мозга - расшифровывать это зеркальное электрическое сообщение, которое посылается из глаз.

Видение мозгом

Все дело в перспективе.

Еще одна важная вещь, которую нужно помнить о зрении, может быть продемонстрирована следующим упражнением. Если вы сосредоточитесь на объекте, а затем переменно посмотрите на него каждым глазом, вы заметите, что есть существенное наложение между носовыми полями каждого глаза, немного под другим углом. Это означает, что, когда вы сосредотачиваете свой взгляд на чем-то, то глаз способен пересылать сообщения к мозгу, которые дают ему две различные перспективы. Вот таким образом мы можем достигать своего восприятия глубины.

Видение мозгом

Никто в действительности не может точно понять, как мы можем видеть. Это то же самое, что задать вопрос, что же является нейробиомолекулярной основой для определенной мысли, желания или эмоции.

Возможно, мы можем выяснить, в какой части мозга эти процессы происходят, с помощью каких нейротрансмитеров и в каких концентрациях, и с какими другими нейронами происходят реакции. Но мы все еще точно не понимаем, как эти процессы проявляются в особенных восприятиях, таких как зрение.

Мы не понимаем того, как мы можем думать. Философ Габриель Марсел определил эту загадку так: «проблема, которая посягает на свои собственные данные». Он подразумевал, что тот, кто задает этот вопрос, невольно становиться объектом вопроса. Человеческий мозг пробует выяснить, как он сам работает.

Видение мозгом

Вероятно, вышеизложенное вынудит людей задуматься перед тем, как они примут теорию макроэволюции и то, как она может применяться к развитию человеческого глаза и зрения. Как можно быть таким уверенным относительно теории происхождения, когда еще не понятно, как что-то фактически работает? Большинство того, что я прочитал у сторонников эволюции на тему зрения, содержит много риторики и предположений без приведения деталей и логической последовательности. Все это кажется немного преждевременным и несколько самонадеянным.

Наука пока не имеет инструментов, которые могут определенно сделать вывод об эволюции глаз и зрения. Будет ли она их когда-либо иметь? Может да, а может, нет. До этого времени, я сохраняю право смотреть на эволюционные объяснения биологов о происхождении человеческого зрения с большим количеством скептицизма, и как на чрезмерно упрощенные и требующие большого количества слепой веры.

Видение мозгом

СВЕРХВОЗМОЖНОСТИ ЧЕЛОВЕЧЕСКОГО МОЗГА

Евгений Голомлзин.

Помните, как, в свое время, третировали людей, которые утверждали, что могут видеть пальцами, носом, ступнями и другими частями тела. В лучше случае их объявляли шарлатанами, в худшем - их ждала психушка.

Теперь можно сказать, что пришло время реабилитации, потому что существует методика, которая может научить видеть, слышать и ощущать непосредственно мозгом. А наука, в лице Бехтеревой Натальи Петровны, подтвердила такую возможность.

Однажды мне на глаза попалась цифра, которая поразила меня. Человечество накопило огромное количество знаний, но, оказывается, доля знаний о самом человеке составляет среди них не более трех процентов.
Выходит, что человек больше знает о планетах Солнечной системы и строении атома, чем об устройстве самого себя. Но поскольку природа не терпит пустоты, эта ниша непременно должна быть заполнена, а значит, научные исследования ближайшего будущего будут посвящены, главным образом, изучению человека - его тела, души и духа, а также их возможностей.
Мою мысль подтвердило выступление академика Бехтеревой Натальи Петровны на всемирном конгрессе "Итоги тысячелетия", проходившем в Санкт-Петербурге в конце 2000 года. Ее доклад был посвящен сверхвозможностям человеческого мозга.

ДАРВИН, ТЫ НЕ ПРАВ!
Аристотель был уверен, что душа находится в сердце, а мозг служит для охлаждения проходимой через него крови. С тех пор прошло много времени, но мозг по-прежнему остается большой загадкой даже для специалистов.

Мозг наших далеких предков не сильно отличается от нашего мозга, что не укладывается в эволюционную теорию Дарвина. По всей видимости, человечество со временем не становится умнее. С другой стороны, наш мозг легко приспосабливается к стремительно возрастающему информационному потоку - он запросто осваивает новую технику, технологии, которые и не снились людям, жившим всего 50-100 лет назад. При этом говорят, что человек средних способностей использует свой мозг на 20-30 процентов.

"Я бы не определяла работоспособность мозга в процентах, - говорит Наталья Петровна. - Мозг использует столько своих ресурсов, сколько человеку в данный момент нужно.

Но если это так, значит, мозг изначально имеет все возможности для решения любых задач, которые возникали, возникают, и даже будут возникать перед человеком? Наука о мозге отвечает на этот вопрос утвердительно.

Видение мозгом

ФЕНОМЕН ДЕТЕКТОРА ОШИБОК
Существует интересное явление - феномен "детектора ошибок", открытый в Институте мозга еще в 1968 году. Возникает он в виде реакции мозга на отклонение деятельности человека от какого-либо плана.

Например, уходя из дома, человек проверяет, выключил ли он утюг. Достаточно сделать это один раз, как в мозгу формируется некая контролирующая программа. В результате спешащий на работу человек, уже на улице начинает чувствовать дискомфорт. Его беспокойство усиливается до тех пор, пока он не возвращается домой и не обнаруживает, что забыл выключить утюг.

Оказывается, мозг сам, независимо от человека, проверяет, все ли его хозяин сделал правильно. Если нет, он доступными способами пытается сообщить об ошибке. Чем опаснее отклонения от нормы, тем громче об этом заявляет мозг. Часто это называют интуицией. Это открытие имеет очень важное значение. Какое?

"На протяжении сотен лет человеку со школьной скамьи говорили - не убий, не укради, - говорит Бехтерева. Что при этом происходило? В мозгу возникала своеобразная охранная служба, которая называется совесть. Эта служба работала иногда сильнее, чем указы, постановления и суд. Человек не осознавая причины, стремился не выходить за рамки десяти заповедей".

Что произошло потом? Эти законы исчезли из школьной программы. Их заменили законами физики, химии, зоологии, а историю представили перечнем войн и биографиями властителей и завоевателей. Можно себе представить, какие "охранные" программы сейчас стоят в мозгу.

Последствия их работы мы видим на каждом шагу, поскольку наш "детектор ошибок" не знает, что есть норма. При решении задач взаимоотношений между людьми он пользуется физическими законами, вроде "сила действия равна силе противодействия". И тогда человек начинает крушить все вокруг - "око за око, зуб за зуб". Ничего не поделаешь - другой-то программы у него нет.

ГЕНИАЛЬНОСТЬ - ЭТО НОРМА
"Детектор ошибок" всего лишь верхушка айсберга возможностей человеческого мозга.

Однажды при лечении болезни Паркинсона стимуляцией мозга вживленными электродами, пациентка неожиданно почувствовала сильное чувство любви к лечащему врачу. Причем чувство было настолько сильным, что пришлось обращаться за помощью к психотерапевту.

В другой раз сотрудник Института экспериментальной медицины Владимир Михайлович Смирнов также занимался стимуляцией мозга больного. Внезапно тот как бы резко "поумнел" - в два раза улучшилась память, он стал быстрее считать. Пациент сказал, что ощутил что-то вроде озарения. Такое чувство возникает у творческих людей в момент, когда они становятся способны написать выдающиеся стихи, музыку, сделать открытие или изобретение.

"У меня в жизни бывало так, что буквально в готовом виде получала решения, до которых, как мне казалось, я просто не могла сама додуматься - вспоминает Наталья Петровна. - Решение ниоткуда, кроме определенного склада ума требует и определенного настроя, психического состояния. Это как бы состояние "приема". Причем оно не является чем-то экзотическим, не слишком отличается от нормы".

Выходит, что в мозгу каждого человека имеется все необходимое, чтобы стать гением? Скорее всего, это так. Каждый мозг, несомненно, обладает сверхвозможностями, и этот факт подтвердила наука. У людей, которых мы называем талантами, эта способность открыта с рождения. Бывает, что она включается в экстремальных ситуациях. Большинство же людей этими возможностями не пользуется. На это есть причины.

Известно, что для гениев характерно "сжигание" себя. Не зря их сравнивают с падающими метеорами - вспыхнул в ночи, высветил путь, поразил воображение и угас. Немногие гении доживали до преклонного возраста. Это происходило потому, что при активированных сверхвозможностях у них в мозгу были выключены защитные механизмы, призванные защитить человека от самого себя. Те гении, которые дожили до глубокой старости, такую защиту имели. А можно ли научиться открывать сверх возможности, не выключая защитные функции мозга. Теперь наука может дать утвердительный ответ.

Читайте также: