Где развиваются клетки крови в пренатальный период. В Т- и в В-лимфоцитопоэзе выделяют три этапа. класс - унипотентные поэтин-чувствительные клетки

  • 63.Развитие, строение, количество и функциональное значение эозинофильных лейкоцитов.
  • 64.Моноциты. Развитие, строение, функции и количество.
  • 65.Развитие, строение и функциональное значение нейтрофильных лейкоцитов.
  • 66. Развитие кости из мезенхимы и на месте хряща.
  • 67.Строение кости как органа. Регенерация и трансплантация костей.
  • 68.Строение пластинчатой и ретикулофиброзной костной ткани.
  • 69.Костные ткани. Классификация, развитие, строение и изменения под влиянием факторов внешней и внутренней среды. Регенерация. Возрастные изменения.
  • 70.Хрящевые ткани. Классификация, развитие, строение, гистохимическая характеристика и функция. Рост хрящей, регенерация и возрастные изменения.
  • 72. Регенерация мышечных тканей.
  • 73.Поперечнополосатая сердечная мышечная ткань. Развитие, строение типичных и атипичных кардиомиоцитов. Особенности регенерации.
  • 74.Поперечнополосатая мышечная ткань скелетного типа. Развитие, строение. Структурные основы сокращение мышечного волокна.
  • 76.Нервная ткань. Общая морфофункциональная характеристика.
  • 77.Гистогенез и регенерация нервной ткани.
  • 78.Миелиновые и безмиелиновые нервные волокна. Строение и функция. Процесс миелинизации.
  • 79.Нейроциты, их классификация. Морфологическая и функциональная характеристика.
  • 80.Строение чувствительных нервных окончаний.
  • 81.Строение двигательных нервных окончаний.
  • 82.Межнейральные синапсы. Классификация, строение и гостофизиология.
  • 83.Нейроглия. Классификация, развитие, строение и функция.
  • 84.Олигодендроглия, ее местоположение, развитие и функциональное значение.
  • 88.Парасимпатический отдел нервной системы, его представительство в составе цнс и на периферии.
  • 89.Спинальные нервные узлы. Развитие, строение и функции.
  • 60. Гемограмма и лейкоцитарная формула. Возрастные особенности. Значение в диагностике заболеваний.

    В медицинской практике анализ крови играет большую роль. При клинических анализах исследуют химический состав крови, определяют количество эритроцитов, лейкоцитов, гемоглобина, резистентность эритроцитов, быстроту их оседания – скорость оседания эритроцитов (СОЭ) и др.

    Качественный состав крови (анализ крови) определяется такими понятиями, как гемограмма и лейкоцитарная формула.

    Гемограмма – количественное содержание форменных элементов крови в одном литре.

    Лейкоцитарная формула – это процентное содержание отдельных форм лейкоцитов.

    Возрастные изменения в крови.

    Число эритроцитов в момент рождения и в первые часы жизни выше, чем у взрослого человека, и достигает 6,0 – 7,0х10^12 в 1 л. К 10-14 сут оно равно тем же цифрам, что и во взрослом организме.

    В последующие сроки происходит снижение числа эритроцитов с минимальными показателями на 3-6 м месяце жизни (физиологическая анемия). Число эритроцитов становится таким же, как и во взрослом организме, в период полового созревания. Для новорожденных характерно наличие анизоцитоза (разнообразие размеров) с преобладанием макроцитов, увеличенное содержание ретикулоцитов, а также присутствие незначительного числа ядросодержащих предшественников эритроцитов.

    Число лейкоцитов у новорожденных увеличено и достигает 10,0 – 30,0х10^9 в 1 л.

    В течение 2 нед после рождения число их падает до 9,0-15,0х10^9 в 1 л. Количество лейкоцитов достигает к 14-15 годам уровня, который сохраняется у взрослого. Соотношение числа нейтрофилов и лимфоцитов у новорожденного такое же, как и у взрослых, - 4,5 – 9,0х10^9 в 1 л.

    В последующие сроки содержание лимфоцитов возрастает, а нейтрофилов падает, и, т.о., к 4-м суткам количество этих видов лейкоцитов уравнивается (первый физиологический перекрест лейкоцитов). Дальнейший рост числа лимфоцитов и падение нейтрофилов приводят к тому, что на 1-2 году жизни лимфоциты составляют 65%, а нейтрофилы – 25%. Новое снижение числа лимфоцитов и повышение нейтрофилов приводят к выравниванию обоих показателей у 4-летних детей (второй физиологический перекрест). Постепенное снижение содержания лимфоцитов и повышение нейтрофилов продолжаются до полового созревания, когда количество этих видов лейкоцитов достигает нормы взрослого.

    61.Этапы кроветворения в эмбриональном и постэмбриональных периодах развития.

    Гемопоэз – развитие крови. Различают эмбриональный гемопоэз, который происходит в эмбриональный период и приводит к развитию крови как ткани, и постэмбриональный гемопоэз, который представляет собой процесс физиологической регенерации крови.

    Эмбриональный гемопоэз.

    В развитии крови как ткани в эмбриональный период можно выделить 3 основных этапа:

      Мезобластический (желточный), когда начинается развитие клеток крови во внезародышевых органах и появляется первая регенерация стволовых клеток крови. (с 3-й по 9-ю неделю)

      Печеночный (гепатотимусолиенальный), который начинается в печени с 5-6-й недели развития плода, когда печень становится основным органом гемопоэза, в ней образуется вторая регенерация СКК. Кроветворение в печени достигает максимума через 5 мес и завершается перед рождением.

      Медуллярный (костномозговой) (медулло-тимусолимфоидный)– появление третьей генерации СКК в костном мозге, где гемопоэз начинается с 10-й недели и постепенно нарастает к рождению, а после рождения красный костный мозг становится центральным органом гемопоэза.

    Желточный этап.

    Начиная со 2-3 недели эмбриогенеза, в мезенхиме желточного мешка в результате пролиферации мезенхимных клеток образуются «кровяные островки», представляющие собой очаговые скопления мезенхимных клеток. Затем происходит дивергентная дифференцировка этих клеток. Периферические клетки, ограничивающие островки, уплощаются, соединяются между собой и образуют эндотелиальную выстилку сосуда. Центральные клетки округляются, превращаясь в стволовые кроветворные клетки. Из этих клеток в сосудах, т.е. интраваскулярно начинается процесс образования первичных эритроцитов. Они характеризуются:

    Крупными размерами и называются мегалобластами. В их цитоплазме накапливается гемоглобин, ядро у некоторых удаляется, а в других сохраняется. В результате образуются первичные эритроциты, отличающиеся бОльшими, чем у нормацитов размерами;

    Наличием ядра;

    Такой тип кроветворения называется мегабластическим. Он характерен для ранних этапов эмбриогенеза. Одновременно начинается нормобластическое кроветворение с образованием нормоцитов, содержащих фетальный гемоглобин.

    Часть стволовых клеток оказывается вне сосудов (экстраваскулярно) и из них начинают развиваться зернистые лейкоциты, которые затем мигрирует в сосуды.

    Начиная с 4-й недели эмбриогенеза желточный этап кроветворения угасает и к концу 3-го месяца он полностью прекращается.

    Итог этапа – образование стволовых клеток крови первой генерации.

    На 3-й неделе в мезенхиме тела зародыша начинают формироваться сосуды. На первых порах они являются пустыми щелевидными образованиями. Из желточного мешка СКК мигрируют в тело зародыша и заселяют закладки будущих кроветворных органов.

    Второй этап – гепатотимусолиенальный начинается на 5-й неделе эмбриогенеза в печени, экстраваскулярно – по ходу капилляров, врастающих с мезенхимой внутрь печени. В печени активно развиваются стволовые клетки второй генерации и из них образуются эритроциты и гранулоциты до конца 5-го месяца, затем процесс гемоцитопоэза там постепенно снижается. Тимус начинает заселяться СКК, начиная с 7-8 недели, дает начало Т-лимфоцитам.

    Селезенка заселяется СКК на 7-8 неделе, в ней экстраваскулярно начинается универсальное кроветворение, т.е. происходит миело- и лимфоцитопоэз. Особенно активно кроветворение происходит в селезенке с 5 по 7-й месяцы, затем миелоидное кроветворение постепенно угасает и к концу эмбриогенеза оно полностью прекращается. Лимфоидное кроветворения осуществляется здесь как в эмбриогенезе, так и в постнатальном периоде.

    Третий период эмбрионального кроветворения – медулло-тимусолиенальный. Закладка костного мозга осуществляется во 2-м месяце эимбриогенезе. Кроветворение в нем начинается с 4-го месяца закладка СКК третьей генерации, а с 6-го месяца он является основным органом миелоидного и частично лимфоидного кроветворения, т.е. органом универсального гемоцитопоэза. В это же время в тимусе, селезенке и лимфатических узлах происходит лимфоидное кроветворение.

    Постэмбриональный гемопоэз.

    Постэмбриональный гемопоэз представляет собой процесс физиологической регенерации крови. (клеточное обновление), который компенсирует физиологическое разрушение дифференцированных клеток.

    Гемопоэз (кроветворение) - процесс образования, созревания и дифференцировки кроветворных клеток конечных стадий дифференцировки из клеток-предшественниц в условиях специфического микроокружения. Гемопоэз осуществляется в костном мозге плоских костей (череп, рёбра, грудина, позвонки, кости таза) и эпифизов трубчатых костей. Другими кроветворными органами являются селезёнка, тимус, лимфатические узлы и печень. В этой статье мы рассмотрим основные признаки и симптомы гемопоэза у человека.

    Признаки гемопоэза

    Основные признаки гемопоэза

    Различают пренатальный и постнатальный гемопоэз.

    Пренатальный гемопоэз

    В пренатальном периоде клетки крови образуются в нескольких развивающихся органах.

    Клетки кровяных островков желточного мешка до 12 недель внутриутробного развития образуют первые клетки крови - первичные эритробласты - крупные клетки, содержащие ядро и эмбриональные типы НЬ.

    В течение второго месяца развития стволовые клетки крови заселяют печень, селезёнку и тимус. Образуются все виды клеток крови.

    Костный мозг у эмбриона закладывается к концу третьего месяца внутриутробного периода; в это время он не участвует в кроветворении. К четвёртому месяцу внутриутробного периода в костном мозге появляются лимфоидные элементы и родоначальные клетки крови, а с пятого месяца возникает дифференцированное костномозговое кроветворение. Помимо этого, созревание лимфоцитов происходит и в других органах - печени, тимусе, селезёнке, лимфатических узлах. Последние в антенатальном периоде также являются органом эритроцитопоэза. К моменту рождения, после рождения и у взрослого кроветворение ограничивается костным мозгом и лимфоидной тканью. При недостаточности костного мозга восстанавливается экстрамедуллярный гемопоэз (гемопоэз в печени, селезёнке и лимфатических узлах).

    Постнатальный гемопоэз

    Зрелые клетки периферической крови развиваются из своих предшественников, созревающих в костном мозге. Стволовая кроветворная клетка - CFU-blast - родоначальница всех форменных элементов крови. Для стволовых клеток характерно морфологическое сходство с малыми лимфоцитами и способность к самообновлению. Они редко и медленно размножаются. Их потомки - полипотентные клетки-предшественницы лимфоцитопоэза (CFU-Ly) и миелопоэза (CFU-GEMM). В результате деления CFU-Ly и CFU-GEMM их потомки остаются полипотентными или дифференцируются в один из нескольких типов унипотентных стволовых клеток, также способных делиться, но дифференцирующихся только в одном направлении (образуя один клеточный тип). Унипотентные коммитированные (дифференцирующиеся) клетки морфологически не отличаются от стволовых клеток. Они пролиферируют и в присутствии факторов роста дифференцируются в клетки-предшественницы.

    Схема гемопоэза

    • CFU-blast - стволовая кроветворная клетка;
    • CFU-GEMM - полипотентная клетка-предшественница миелопоэза;
    • CFU-Ly - полипотентная клетка-предшественница лимфоцитопоэза;
    • CFU-GM - полипотентная клетка-предшественница гранулоцитов и моноцитов;
    • CFU-G - полипотентная клетка-предшественница нейтрофилов и базофилов.

    К кроветворным органам относят костный мозг (основной орган постнатального гемопоэза), тимус, лимфатические узлы, селезёнку, пейерову бляшку кишечника. Разрушение клеток крови происходит в основном в селезёнке.


    Симптомы гемопоэза

    По каким симптомам гемопоэз определяется?

    Костный мозг - основной кроветворный орган постнатального гемопоэза. Различают жировой костный мозг, деятельный костный мозг и строму. Жёлтый костный мозг (назван так из-за большого скопления жировых клеток) - неактивная часть, начинающая действовать при необходимости для усилении гемопоэза (например, при хронической гипоксии или тяжёлых кровотечениях). В красном костном мозге преобладают созревающие эритроциты, что придаёт костномозговым очагам гемопоэза красный цвет. Строма костного мозга состоит из эндотелиальных, адвентициальных и ретикулярных клеток (фибробласты костного мозга), макрофагов, жировых клеток, остеокластов, остеобластов, остеоцитов и внеклеточного матрикса.

    Вилочковая железа (тимус) - центральный орган лимфопоэза. Здесь происходит антигеннезависимая дифференцировка Т-лимфоцитов. Предшественники Т-клеток попадают в корковое вещество тимуса из костного мозга. Тимус состоит из двух долей, разделённых соединительнотканной трабекулой. В доле зрелого тимуса различают корковый и мозговой слои. Корковый слой содержит делящиеся клетки - клетки-предшественницы Т-лимфоцитов, ранние протимоциты, имеющие морфологию лимфобластов. Их дальнейшая дифференцировка в CD4+- и CD8+-Т-лимфоциты протекает в мозговой части дольки тимуса и состоит в селекции клеток, которые способны связывать чужеродные Аг (положительная селекция), но не способны реагировать с собственными Аг (отрицательная селекция). В результате селекции только 3-5% клеток, продуцируемых в тимусе, приобретают специфические маркёры Т-хелперов и Т-супрессоров и мигрируют через мозговое вещество во вторичные лимфоидные органы (селезёнка, лимфатические узлы). Остальные клетки погибают в корковом слое. Кроме того, в тимусе вырабатываются гуморальные факторы иммунной системы.

    Лимфатический узел - снаружи покрыт соединительнотканной капсулой, от которой отходят трабекулы. В лимфатическом узле различают корковую и мозговую части, а также синусы. В корковой части располагаются в основном В-лимфоциты и макрофаги, организованные в первичные и вторичные фолликулы. Т-лимфоциты преимущественно располагаются в субкортикальной зоне и в центре вторичных фолликулов. В лимфатическом узле Т-лимфоциты взаимодействуют с В-лимфоцитами и фолликулярными дендритными клетками в процессе иммунного ответа. Из паренхимы лимфатического узла лимфоциты поступают в выносящие лимфатические сосуды.

    Пейеровы бляшки . По ходу ЖКТ в непосредственной связи с эпителием располагаются лимфоидные скопления, называемые пейеровыми бляшками. Их строение аналогично лимфоидным фолликулам селезёнки и лимфатических узлов. Главный компонент - большие зародышевые центры, окружённые лимфоцитами.

    Селезёнка - самый большой орган системы крови, покрытый снаружи соединительнотканной капсулой. Растяжение капсулы при увеличении селезёнки вызывает болевой синдром. В паренхиме органа различают красную пульпу (содержит эритроциты и многочисленные макрофаги, уничтожающие старые эритроциты), белую пульпу (совокупность лимфоидной ткани селезёнки, представленную скоплениями Т-лимфоцитов вокруг артерий, выходящих из трабекул) и лимфатические фолликулы, содержащие скопление В-лимфоцитов.

    Организм человека является очень сложной системой, все структуры которой взаимосвязаны. Разрыв даже одного звена влечет за собой неминуемые негативные последствия. Основой жизни организма является . Процесс ее образования (гемопоэз) подчинен множеству факторов и регулируется на разных уровнях. Эта система очень хрупкая, но важная, поэтому даже малейшие изменения хотя бы одного компонента могут послужить причиной серьезных проблем со здоровьем.

    Что представляет собой процесс кроветворения и где он происходит

    Сам по себе гемопоэз — это многоэтапная последовательность получения взрослых кровяных клеток из клеток, которые являются их предшественниками и не встречаются в циркулирующей по сосудам крови. Зрелыми называются клетки, которые обычно обнаруживаются в нормальном анализе крови человека.

    Где же происходят все эти сложные процессы? Клетки предшественницы образуются в ряде органных структур человеческого тела.

    1. Основным коллектором кроветворных процессов является костный мозг. Все действо идет в полостях костей, где находится стромальное микроокружение. К частичкам такого окружения относятся клетки, выстилающие сосуды, фибробласты, костные клетки, жировые и многие другие. Все, что их окружает, состоит из белков, различных волокон, между которыми находится основное костное вещество. В строме есть адгезивная составляющая, которая как бы притягивает основные кроветворящие клетки. Самые «первые» структуры схемы гемопоэза находятся в костном мозге. Родоначальники лимфоцитов образуются здесь же, а дозревают потом в вилочковой железе и селезенке, а также в лимфоузлах.
    2. – еще один немаловажный орган. Она состоит из красной и белой зон. В красной зоне складируются и разрушаются эритроциты, в белой зоне обитают т-лимфоциты. Склады в-лимфоцитов находятся по окружности от красной зоны.
    3. Вилочковая железа – основной «завод» по производству лимфоцитов. Туда попадают из костного мозга недозрелые клетки. В тимусе они очень быстро преобразуются, большая часть из них гибнет, а выжившие превращаются в хелперов и супрессоров и направляются к селезенке и лимфоузлам. Чем старше человек, тем меньше его вилочковая железа. Со временем она полностью редуцируется, становясь комком жира.
    4. – это так называемые иммунные ответчики, которые за счет предоставления антигена первые реагируют на изменения в иммунитете. По периферии узла находятся Т-лимфоциты, а в сердцевине – зрелые клетки.
    5. Пейеровы бляшки – аналог узлов, только расположены они по ходу кишечника.

    Вот так, пройдя множество преобразований, стволовая клетка становится одной из клеток кровяного русла.

    Назначение схемы гемопоэза

    Все выше сказанное можно объединить в единую схему.

    Назначение такой схемы трудно переоценить. Она имеет огромное количество плюсов и несомненную значимость.

    • При помощи такой схемы можно отчетливо отследить все этапы образования интересующей клетки.
    • Если нужная клетка не образовалась, можно отследить на каком этапе произошла ошибка и цепочка действий прервалась.
    • Найдя ошибку в системе, врач может воздействовать на интересующее звено кроветворения, чтобы его простимулировать.

    Всем известно, что многие , особенно кроветворной системы, характеризуются присутствием в крови незрелых форм клеток. Исходя из этого, применив подобную схему, можно отчетливо понять суть процесса, правильно поставить диагноз и своевременно начать лечение.

    Таким образом, схема гемопоэза ясно представляет структуру периферической крови по компонентам, что также немаловажно в диагностике патологических процессов.

    Гемоцитопоэз

    Гемоцитопоэз процесс образования форменных элементов крови. Различают два вида кроветворения: миелоидное и лимфоидное.

    В свою очередь миелоидное кроветворение подразделяется на эритропоэз, гранулоцитопоэз, моноцитопоэз, тромбоцитопоэз.

    В гемопоэзе различают два периода: эмбриональный и постэмбриональный.

    Эмбриональный период представляет собой гистогенез и приводит к образованию крови как ткани. Осуществляется в эмбриогенезе поэтапно, в нем различаются три основные этапа:

    Желточный (мезобластический);

    Печеночный

    Медуллярный (костно-мозговой)

    Желточный этап.

    В мезенхиме желточного мешка образуются «кровяные островки», представляющие собой очаговые скопления мезенхимных клеток. Затем происходит дивергентная дифференцировка этих клеток.

    Периферические клетки образуют эндотелиальную выстилку сосуда. Центральные клетки округляются, превращаясь в стволовые кроветворные клетки. Их этих клеток в сосудах, т.е. интраваскулярно начинается процесс образования первичных эритроцитов. Они отличаются большими, чем у нормоцитов размерами, наличием ядра и содержанием особого вида гемоглобина – HbP (эмбрионального). Такой тип кроветворения называется мегалобластическим.

    Часть стволовых клеток оказывается вне сосудов и из них начинают развиваться зернистые лейкоциты, которые затем мигрируют в сосуды.

    Важнейшим итогом этого этапа является образование стволовых клеток крови I-й генерации.

    Второй этап – печеночный - начинается на 5-й неделе эмбриогенеза в печени, экстраваскулярно – по ходу капилляров, врастающих с мезенхимой внутрь печени. В печени активно развиваются стволовые клетки II-й генерации и из них образуются эритроциты и гранулоциты до конца 5-го месяца, затем процесс гемоцитопоэза там постепенно снижается. Тимус начинает заселяться стволовыми клетками с 7-8 недели, дает начало Т-лимфоцитам.

    Селезенка заселяется стволовыми клетками на 7-8 неделе и в ней экстраваскулярно начинается универсальное кроветворение, т.е. происходит и миело- и лимфоцитопоэз..

    Третий период эмбрионального кроветворения – медулло-тимусо-лиенальный . Закладка красного костного мозга начинается со 2-го месяца эмбриогенеза. Кроветворение в нём начинается с 4-го месяца закладкой стволовых клеток III-й генерации, а с 6-го месяца он является основным органом миелоидного и частично лимфоидного кроветворения, т.е. осуществляется универсальный гемоцитопоэз.

    Постнатальный период кроветворения.

    Постэмбриональное кроветворение является физиологической регенерацией и восполняет естественную убыль форменных элементов крови.

    В настоящее время принята унитарная теория кроветворения, на основе которой И.Л. Чертковым и А.И. Воробьевым разработана принятая в настоящее время схема кроветворения.


    Согласно этой схеме существует два вида кроветворения: миелоидное и лимфоидное.

    Миелопоэз в свою очередь подразделяется на эритропоэз, гранулоцитопоэз, моноцитопоэз и тромбоцитопоэз.

    Лимфоцитопоэз подразделяется на Т- и В-лимфоцитопоэз.

    В процессе поэтапной дифференцировки стволовых клеток в форменные элементы крови в каждом ряду кроветворения образуются типы клеток, которые в совокупности образуют классы клеток.

    Всего в схеме кроветворения различают 6 классов клеток:

    I – стволовые клетки – полипотентные

    II – полустволовые – коммитированные, мультипотентные

    III- унипотентные -

    IV- бластные – клетки предшественники

    V - созревающие

    VI- зрелые форменные элементы.

    I класс – стволовые полипотентные клетки. Концентрация этих клеток очень редка 10–4– 10-5от общего числа клеток костного мозга.

    Располагаются в местах, хорошо защищенных от внешних

    воздействий и обладающих обильным кровоснабжением.

    С возрастом число стволовых клеток не изменяется.

    Способны к неограниченному самоподдержанию своей популяции.

    По морфологии соответствуют малому лимфоциту,

    Стволовые клетки крови устойчивы к действию повреждающих факторов, в том числе и радиации.

    Поддержание численности популяции происходит с помощью симметричных (некоммитирующих) митозов.

    Стволовые клетки делятся редко.

    Способны циркулировать в кровь, мигрируя в другие кроветворные органы.

    II класс – полустволовые , ограниченно полипотентные (или частично коммитированные) клетки бывают двух типов:

    Предшественники миелопоэза

    Предшественники лимфопоэза

    Каждая из них также образует колонию, т.е. клон клеток, но либо миелоидных, либо лимфоидных. В последнее время среди полустволовых клеток миелопоэза выделены 3 типа клеток: КОЕ-ГМ (дающие начало моноцитам и гранулоцитам), КОЕ-ГнЭ (гранулоцитам и эритроцитам), КОЕ-МгцЭ (мегакариоцитам и эритроцитам). Все полустволовые клетки также как стволовые по морфологии являются лимфоцитоподобными и способны к ограниченному самоподдержанию.

    III класс – унипотентные поэтинчувствительные клетки- предшественники своего ряда. По морфологии соответствуют малым лимфоцитам, способны давать колонии, состоящие только из одного типа форменных элементов.

    Методом колониеобразования среди унипотентных клеток определены

    КОЕ-М – предшественники моноцитов

    КОЕ-Гн – нейтрофильных гранулоцитов

    КОЕ-Эо – эозинофильных гранулоцитов

    КОЕ-Б – базофильных гранулоцитов

    КОЕ-Э – эритроцитов (её предшественник БОЕ-Э – бурст-образующая единица)

    КОЕ-Мгц – мегакариоцитов.

    Частота деления этих клеток и способность к дифференцировке зависит от содержания в крови особых биологически активных веществ – поэтинов, специфичных для каждого ряда кроветворения (эритропоэтины, тромбопоэтины и т.д.).

    Первые три класса объединяются в класс морфологически не идентифицируемых клеток, имеющих морфологию малого лимфоцита.

    IV класс – бластные клетки (эритробласты, лимфобласты, мегакариобласты, монобласты, миелобласты). Эти клетки имеют характерную морфологию – имеют крупные размеры, крупное, богатое преимущественно эухроматином ядро с 2-4 ядрышками. По цитохимическим свойствам можно идентифицировать бласты разных рядов кроветворения.

    V класс – класс созревающих клеток , характерных для своего ряда кроветворения.

    Эритроидный ряд.

    Клетки эритропоэтического ряда - эритрон - составляют от 20 до 30% всех клеток костного мозга. За один час образуется 10 10 эритроцитов. Родоначальник – БОЕ-Э – (от англ бурст – взрыв), из неё образуется более дифференцированная КОЕ-Э, чувствительная к эритропоэтину.

    Под влиянием эритропоэтина КОЕ-Э дифференцирутся, давая начало морфологически распознаваемым стадиям эритроидного ряда. Ими являются:

    Делящиеся клетки проэритробласт

    базофильный эритробласт

    полихроматофильный эритробласт

    Неделящиеся клетки оксифильный эритробласт

    ретикулоцит

    эритроцит

    Процесс дифференцировки сопровождается уменьшением размеров клеток, снижением содержания и, в конечном итоге, утрата всех органоидов, конденсация ядра с последующим его удалением из клетки. Самым ярким признаком эритроидной дифференцировки является появление в цитоплазме гемоглобина. Синтез гемоглобина продолжается до конца стадии ретикулоцита. Длительность всех этапов эритропоэза около 7 суток.

    В костном мозге эритробласты созревают в тесном контакте с макрофагами, образуя эритробластические островки. Находящиеся в этих островках макрофаги снабжают эритробласты железом.

    Денуклеация (удаление ядра) происходит путем отделения от оксифильного эритробласта отростка, содержащего ядро. Выброшенное ядро окружено тонкой полоской цитоплазмы.

    Специфическими факторами регуляции эритропоэза являются эритропоэтины, кейлоны. Эритропоэтин – продуцируется на 90% почкой, на 10% печенью и вырабатывается в ответ на гипоксию. Его действие усиливается неспецифическими факторами. К ним относят, например тестостерон, АКТГ, преднизолон, витамины В6 и В12.

    Зрелые эритроциты, обладающие большой эластичностью за счет активного движения проходят сквозь цитоплазму эндотелиальных клеток, проникая через поры, образуемы только во время миграции.

    Гранулоцитопоэз.

    Гранулоцитопоэз – образование и дифференцировка гранулоцитов происходит в красном костном мозге.

    Миелобласты и образующиеся после их коммитирующего митоза промиелоциты трех рядов (нейтрофильного, эозинофильного, базофильного) гранулоцитопоэза являются делящимися клетками и морфологически сходны. Это крупные клетки, содержащие округлое ядро. В цитоплазме накапливаются первичные азурофильные гранулы, относящиеся к лизосомам.

    Следующие клетки развития: миелоциты, метамиелоциты, палочкоядерные и сегментоядерные гранулоциты характеризуются дивергентной дифференцировкой цитоплазмы.

    В нейтрофильном ряду появляются нейтрофильные гранулы, в базофильном – базофильные, в эозинофильном – специфические оксифильные. Из этих клеток способны делиться только миелоциты. Одновременно происходит уменьшение размеров клеток, изменение формы ядра от округлой до сегментированной, в различной степени в перечисленных рядах, усиление конденсации хроматина. Кроме того, на плазмолемме появляются разнообразные рецепторы, подвижность клеток нарастает.

    Развитие нейтрофилов от КОЕ-ГнМ до выхода в кровоток завершается за 13-14 сут. Эозинофилы и базофилы созревают быстрее. Гранулоциты остаются в костном мозге в течение 1-2 сут., образуя костно-мозговой пул (запас) зрелых клеток. Затем они выходят в кровь, где циркулируют несколько часов.

    Моноцитопоэз

    Унипотентный предшественник моноцита (КОЕ-М) превращается в монобласт. Далее различают промоноцит и моноцит .

    Морфологически созревание выражается в изменении формы ядра от округлой до бобовидной, в увеличении относительного количества цитоплазмы и появлении в ней лизосом, уменьшении базофилии цитоплазмы. Моноциты не образуют резервного костно-мозгового пула, покидают костный мозг вскоре после образования. Затем несколько часов циркулирует в крови. После выселения в ткани они превращаются в макрофаги.

    Развитие тромбоцитов.

    Кровяные пластинки образуются в костном мозге из мегакариоцитов.

    Унипотентный предшественник (КОЕ-МГЦ) превращается в мегакариобласт – крупную клетку (диаметр около 16 мкм) с лапчатым ядром, базофильной цитоплазмой. Они превращаются в промегакариоциты и затем мегакариоциты. Количество мегакариоцитов в клоне невелико (от 4 до 50). Это связано с тем, что предшественники не только делятся, но и полиплоидизируются.

    Зрелый мегакариоцит образует пропластинчатые отростки (ленты), которые вытягиваются в просвет синусоида. От этих лент отшнуровываются фрагменты цитоплазмы, ограниченные мембранами, превращаясь в кровяные пластинки.

    Цикл развития от стволовой клетки до тромбоцитов составляет около 10 сут. Тромбоцитопоэз регулируется КСФ-Мег и тромбопоэтином.

    Лимфоцитопоэз.

    В отличие от миелопоэза, лимфоцитопоэз осуществляется поэтапно, сменяя разные лимфоидные органы. И в Т- и в В-лимфоцитопоэзе выделяются 3 этапа:

    1. Костномозговой этап. На этом этапе из стволовых клеток дифференцируются предшественники Т- и В-лимфоцитопоэза.

    2. Этап антигеннезависимой дифференцировки, осуществляемый в центральных органах иммуногенеза. На этом этапе образуются лимфоциты, способные только распознавать антигены.

    3. Этап антигензависимой дифференцировки, осуществляемый в периферических лимфоидных органах. Из клеток, способных распознать антиген формируются эффекторные клетки, способные уничтожить антиген.

    Т-лимфоцитопоэз

    Первый этап осуществляется в красном костном мозге, где находятся принадлежащие к I классу стволовые клетки, II классу –полустволовые клетки лимфоцитопоэза и III классу – унипотентные Т-поэтинчувствительные клетки-предшественницы Т-лимфоцитопоэза – про-Т-лимфоциты (протимоциты). Клетки III класса мигрируют в кровяное русло и оседают в тимусе.

    Второй этап – этап антигеннезависимой дифференцировки осуществляется в корковом веществе тимуса. Под влиянием тимозина, унипотентные предшественники превращаются в IV класс – Т-лимфобласты, затем V класс – незрелые Т- лимфоциты (претимоциты) , и VI класс - Т лимфоциты. Здесь образуются все типы Т-лимфоцитов – Т-хелперы, Т-супрессоры, Т-киллеры.

    Незрелые и затем зрелые тимоциты приобретают антигенраспознающие рецепторы к самым разнообразным антигенным веществам, однако здесь с антигенами они не встречаются, т.к. тимус защищен особым гемато-тимусным барьером. Одновременно происходит выбраковка Т-лимфоцитов, направленных против собственных антигенных детерминант. Образованные Т-лимфоциты проникают в сосудистое русло и с током крови заносятся в периферические лимфоидные органы.

    Третий этап – этап антигензависимой дифференцировки осуществляется в Т-зависимых зонах периферических лимфоидных органов –лимфатических узлов, селезенки, лимфоидной ткани трубчатых органов, где создаются условия для встречи антигена с Т-лимфоцитом , имеющим рецептор к данному антигену.

    Контакт с антигенными детерминантами вызывает активизацию Т-лимфоцита, он превращается в Т-иммунобласт . Процесс превращения Т-лимфоцита в Т-иммунобласт называется реакцией бласттрансформации. Т-иммунобласт неоднократно делится митотическим путем и образует клон клеток.

    Часть Т-лимфоцитов из полученного клона становятся Т-лимфоцитами памяти.

    Т-хелперы секретируют медиаторы – лимфокины, стимулирующие гуморальный иммунитет.

    Т-супрессоров синтезируют лимфокины, которые угнетают гуморальный иммунитет.

    Т-киллерный иммунобласт дает клон клеток, среди которых различаются

    - Т-киллеры – цитотоксические лимфоциты, которые являются эффекторами клеточного иммунитета.

    - Т-клетки памяти , обеспечивающие при повторно встрече с антигеном (по механизму новой бласттрансформации) вторичный иммунный ответ, который протекает быстрее и сильнее первого;

    - Т-амплификаторы , которые не рециркулируют, являются короткоживущими, стимулируют размножение клеток – источников Т-лимфоцитов;

    В-лимфоцитопоэз

    Первый этап осуществляется в красном костном мозге и включает: I класс – стволовые клетки, II класс – полустволовые клетки, III класс – унипотентные В-поэтинчувствительные клетки – про-В-лимфоциты, в которых еще не начинается реаранжировка генома.

    Второй этап – антигеннезависимой дифференцировки у птиц осуществляется в специальном лимфоидном органе – фабрициевой сумке. У млекопитающих и человека его аналог точно не установлен, но большинство исследователей считают, что второй этап также происходит в красном костном мозге. Здесь образуются IV класс – В-лимфобласты (на уровне которых начинается реаранжировка генома), V класс – В-пролимфоциты (пре-В-лимфоциты, в цитоплазме которых выявляется IgM), VI класс – рецепторные Во- лимфоциты – характеризуются появлением иммуноглобулинов класса М на поверхности плазматической мембраны.

    В процессе второго этапа В-лимфоциты приобретают разнообразные рецепторы к антигенам.

    Третий этап – антигензависимой пролиферации и дифференцировки осуществляется в В-зонах периферических лимфоидных органов.

    Здесь происходит встреча рецепторного Во-лимфоцита, его активизация и трансформация в В-иммунобласт. В результате пролиферации иммунобласта образуется клон клеток, среди которых различают В-клетки памяти и плазмоциты. Последние являются эффекторами гуморального иммунитета, т.е. синтезируют иммуноглобулины (антитела) разных классов. Во время первой стадии антителообразования лимфоциты секретируют IgM. Затем после перестройки гена (реаранжировки) происходит смена класса иммуноглобулина и синтезируются IgG.

    Антитело взаимодействует со специфичным ему антигеном с образованием комплекса антиген-антитело. Эти иммунные комплексы затем фагоцитируются макрофагами, эозинофилами, нейтрофилами.

    Натуральные киллеры (NK-клетки) образуются в красном костном мозге. Эти клетки выделяют специфический фактор NKCF (natural killer cytotoxic factor), дистантно действующий на клетки-мишени постепенно и длительно. При клонировании NK-клеток клетки-памяти не образуются.


    Кроветворение (гемопоэз) — процесс, при котором происходит серия клеточных дифференцировок, приводящих к образованию зрелых клеток периферической крови. Кроветворение осуществляется в кроветворных органах, представляющих собой сложную систему, продуцирующую клетки крови или принимающую участие в иммунных реакциях. Будучи гистогенетически единой, кроветворная система в своем функционировании характеризуется определенной независимостью поведения отдельных ростков кроветворения.
    К органам гемопоэза относят вилочковую железу, лимфатические узлы, селезенку и печень (кроветворение в этих органах происходит в основном в антенатальном периоде, а после рождения интенсивность его быстро снижается), костный мозг. Кроветворные органы имеют общие черты строения:
    - их строму составляет ретикулярная ткань, паренхиму — кроветворные клетки;
    -органы богаты элементами, относящимися к системе мононуклеарных фагоцитов;
    - характерным является наличие капилляров синусоидного типа. В синусах между эндотелиальными клетками имеются поры, связывающие ткань кроветворных органов с кровяным руслом. Такое строение обеспечивает транспорт клеток крови, а также поступление из крови в кроветворные органы гуморальных факторов (гемопоэтинов).

    Периоды кроветворения

    Различают три периода кроветворения: желточный, печеночный, костномозговой.
    У зародыша, по мере его развития, локализация кроветворения последовательно меняется.
    I. Желточный (мезобластический, ангиобластический) период. Впервые кроветворение начинается в стенке желточного мешка. Здесь появляются скопления мезенхимных клеток - кровяные островки. Периферические клетки островков уплощаются и образуют стенку первичных сосудов. Центральные клетки кровяных островков округляются и внутри сосудов, т.е. интраваскулярно, вступают в т.н. мегалобластический эритропоэз:
    Образующиеся первичные эритроциты имеют большой размер, часто содержат ядра, содержат особый вид гемоглобина - т.н. Hb эмбриона (Hb Р).
    Позднее в желточном мешке начинается нормобластический эритропоэз - образование обычных эритроцитов (нормоцитов); вне сосудов (экстраваскулярно) образуются первичные лейкоциты (причём, только гранулоциты); часть стволовых клеток (1-ой генерации) выходит в кровь и переносится в зачаток печени.
    II. Печёночный этап. С 6-й недели эмбрионального развития центром кроветворения становится печень. Процесс кроветворения (в т.ч. эритропоэз) происходит экстраваскулярно - вокруг капилляров, врастающих в печёночные дольки; образуются все форменные элементы крови; при этом эритроциты имеют обычный размер и содержат другой (нежели мегалоциты) вид гемоглобина - фетальный (Hb F). Наряду с клетками крови, из печени разносятся также стволовые кроветворные клетки 2-ой генерации.
    III. Медуллярный этап. Названные стволовые клетки (2-й генерации) оседают в зачатках тимуса, лимфоузлов, селезёнки и красного костного мозга. Все эти органы (а не только красный костный мозг, как следует из названия этапа) включаются в кроветворение на медуллярном этапе; причём, кроветворение в них происходит экстраваскулярно, эритроциты (если они образуются в органе) содержат, в основном, HbF и в меньшей степени HbA (гемоглобин взрослых); перечисленные органы остаются органами кроветворения также после рождения. Однако, как правило, суживается спектр образуемых в них клеток.
    Тимус. Вскоре красный костный мозг начинают покидать предшественники Т-лимфоцитов. Своё антигеннезависимое созревание они заканчивают в тимусе. В итоге, кроветворная роль тимуса быстро суживается до одной, но ключевой, функции - обеспечения антигеннезависимого созревания Т-лимфоцитов.
    Лимфоузлы и селезёнка. Вначале в лимфоузлах и селезёнке образуются все виды форменных элементов крови. Такая способность сохраняется в лимфоузлах до 15-й недели развития, а в селезёнке - до рождения. Затем эти органы (а также лимфоидная система слизистых оболочек) тоже концентрируются лишь на одной функции (если говорить о кроветворении) - антигензависимом созревании В- и Т-лимфоцитов. А именно: здесь образуются лимфатические узелки; в последних оседают В- и Т-лимфоциты из, соответственно, красного костного мозга и тимуса; после антигенной стимуляции соответствующие клоны лимфоцитов вступают в активную пролиферацию и в дальнейшую дифференцировку.
    Красный костный мозг. Вначале в красном костном мозгу тоже образуются все клетки крови, а затем, как отмечалось, его начинают покидать предшественники Т-лимфоцитов.
    Таким образом, у взрослого животного красный костный мозг сохраняет способность образовывать все виды клеток крови, кроме Т-лимфоцитов, а также предшественники Т-лимфоцитов. Причём, на протяжении всего последующего онтогенеза в нём сохраняются стволовые кроветворные клетки 3-го поколения.

    Органы кроветворения у взрослых

    Центральные органы кроветворения: красный костный мозг и тимус.
    Красный костный мозг:
    Локализация - губчатое вещество плоских и губчатых костей, а также эпифизов трубчатых костей. Консистенция - полужидкая, поэтому из красного костного мозга приготовляют как срезы, так и мазки.
    Функция: в красном костном мозгу, как говорилось выше, происходят все стадии созревания эритроцитов, гранулоцитов, моноцитов, тромбоцитов и В-лимфоцитов (нестимулированых). Кроме того, здесь же образуются предшественники Т-лимфоцитов, которые далее мигрируют в тимус.
    Тимус (вилочковая, или зобная железа).
    Локализация - за грудиной. Функция: в тимусе завершается созревание Т-лимфоцитов и происходит их пролиферация, одновременно элиминируются те Т-лимфоциты, которые настроены против собственных антигенных детерминант организма.
    Периферические органы кроветворения. Периферические органы кроветворения составляют т.н. периферическую лимфоидную систему, которая включает: лимфоидную систему слизистых оболочек, многочисленные лимфатические узлы, располагающиеся по ходу лимфатических сосудов, и селезёнку.
    Очень многочисленны компоненты лимфоидной системы слизистых оболочек:
    - глоточное лимфоидное кольцо (или кольцо Пирогова);
    - в стенке тонкой кишки - одиночные (солитарные) лимфатические фолликулы, а также их скопления (пейеровы бляшки);
    - в стенке червеобразного отростка - лимфатические узелки;
    - в стенке воздухоносных путей - лимфатические узелки (бронхоассоциированная лимфоидная ткань - БАЛТ).
    Функция. В периферической лимфоидной ткани, как уже отмечалось, оседают В- и Т-лимфоциты из центральных органов кроветворения, образуя лимфоидные узелки. Именно здесь происходит встреча лимфоцитов (В- и Т-клеток) с антигенами - чужеродными молекулами (которые могут находиться либо в растворённом состоянии, либо на поверхности клеток). Это вызывает соответствующие иммунные реакции, которые обычно включают и интенсивную пролиферацию антигенстимулированных клеток.

    Кроветворная ткань

    Выделяют два типа кроветворения - миело- и лимфопоэз. Миелопоэз - образование всех форменных элементов крови, кроме лимфоцитов, т.е. эритроцитов, гранулоцитов, моноцитов и тромбоцитов. Лимфопоэз - образование лимфоцитов (Т- и В-клеток).
    Отсюда выделяют два типа кроветворной ткани - миелоидная и лимфоидная ткань. Миелоидная - ткань, в которой происходит миелопоэз; представлена красным костным мозгом. В миелоидной ткани, кроме миелопоэза, совершаются и важные события лимфопоэза: созревание В-лимфоцитов и начальные стадии созревания Т-лимфоцитов. Ткань, в которой происходит дозревание и функционирование лимфоцитов, называется лимфоидной (локализация - см. выше).
    И в миелоидной ткани костного мозга, и в лимфоидной ткани соответствующих органов содержатся два основных компонента. Первый - стромальный компонент. Он может быть представлен:
    - ретикулярной тканью - в красном костном мозгу, лимфоузлах и селезёнке,
    - рыхлой соединительной тканью - в лимфатических фолликулах слизистых оболочек,
    - эпителиальной тканью - в тимусе.
    Второй компонент - гемальный - гемопоэтические (кроветворные) клетки на разных стадиях созревания. Они находятся в тесной связи с элементами стромального компонента, образующими микроокружение. Кроветворные клетки и клетки стромального компонента (будучи разновидностью соединительной ткани) имеют мезенхимное происхождение. Исключение составляет тимус: здесь строма долек представлена эпителиальной тканью.

    Теории кроветворения.

    Унитарная теория кроветворения

    Существует несколько теорий кроветворения:
    - унитарная теория (А. А. Максимов, 1909 г.) - все форменные элементы крови развиваются из единого предшественника - стволовой клетки;
    - дуалистическая теория предусматривает два источника кроветворения, для миелоидного и лимфоидного ростков отдельно;
    - полифилетическая теория предусматривает для каждого форменного элемента свой источник развития.
    На сегодняшний день общепринятой является унитарная теория кроветворения, на основании которой разработана современная схема кроветворения (И. Л. Чертков и А. И. Воробьев, 1973 г., 1981 г.).

    Постэмбриональный гемоцитопоэз

    Постэмбриональный гемоцитопоэз - пути дифференцировки исходных стволовых клеток в различные виды форменных элементов крови. Все клетки крови происходят из единого источника - стволовых клеток крови. В процессе поэтапной дифференцировки стволовых клеток в зрелые форменные элементы крови в каждом ряду кроветворения образуются промежуточные типы клеток, которые в схеме кроветворения составляют классы клеток. Соответственно числу разных видов форменных элементов крови, на схемах 1 и 2 показаны 6 направлений миелопоэза и 2 направления лимфопоэза.
    В каждом из этих путей дифференцировки различают 6 классов клеток:
    1 класс - стволовые клетки;
    2 класс - полустволовые клетки;
    3 класс - унипотентные клетки;
    4 класс - бластные клетки;
    5 класс - созревающие клетки;
    6 класс - зрелые форменные элементы.

    Морфологическая и функциональная характеристика клеток различных классов схемы кроветворения

    Общие свойства клеток классов I-III
    1. Локализация. Данные клетки находятся, в основном, в красном костном мозгу. Но при этом способны попадать в кровь и после циркуляции вновь выселяться в кроветворные органы (репопуляция).
    2. Морфология. Все клетки похожи на малые лимфоциты, т.е. друг от друга морфологически не отличаются, а отличаются только по поверхностным антигенам. Причина в том, что на данных стадиях дифференцировка идёт лишь на уровне генома.
    3. Самоподдержание. Клетки классов I-III обладают способностью к самоподдержанию: при их делениях часть дочерних клеток полностью идентична материнским (т.е. пополняет пул клеток того класса, к которому принадлежали родительские клетки), и лишь другая часть подвергается дифференцировке (превращается в клетки последующих классов).
    4. Образование колоний. Благодаря предыдущим свойствам (самоподдержанию и дифференцировке), способны образовывать колонии, почему для многих из них используется обозначение КоЕ (колониеобразующие единицы).
    Определение способности к образованию колоний. Способность к образованию колоний определяют следующим образом. 1. Мышей-реципиентов облучают такой дозой радиации, при которой погибают все их гемопоэтические клетки. 2. В кровь вводят клетки костного мозга от необлучённых мышей-доноров. 3. Через две недели исследуют селезёнку облучённых мышей. На её поверхности видны узелки. Каждый из них - колония (клон) клеток, развившихся из одной гемопоэтической клетки класса I, II или III. Замечание: подобные колонии можно получить также в тканевой культуре.

    Особенности клеток классов I, II и III
    I. Класс I: стволовые клетки крови.
    1. Эти клетки делятся редко; в основном же они находятся в Gо-периоде. Поэтому их доля (от общего числа гемопоэтических клеток) в кроветворных органах очень низкая (10-4 - 10-5).
    2. При этом они являются полипотентными: могут давать начало всем форменным элементам крови.
    3. На первом этапе их дифференцировки образуются полустволовые клетки двух видов:
    - предшественники миелопоэза и предшественники лимфопоэза.
    II. Класс II: полустволовые клетки. Клетки класса II имеют три принципиальные особенности:
    1. Коммитированность. От предыдущих (полипотентных) клеток они отличаются тем, что являются коммитированными, или частично детерминированными: возможности дальнейших превращений для каждой из них уже ограничена.
    2. Олигопотентность. От последующих же клеток они отличаются тем, что ещё сохраняют возможность дифференцироваться не по одному, а по двум или более различным направлениям.
    3. Чувствительность к регуляторам. Данные клетки приобретают чувствительность к регуляторам гемопоэза, которые и определяют направление дифференцировки.
    Виды полустволовых клеток. К полустволовым клеткам относятся предшественники миелопоэза и образующиеся из них клетки следующей стадии развития - КоЕ-ГнЭ, КоЕ-ГМ, КоЕ-МГЦЭ, а также предшественники лимфопоэза.
    Итого - 5 видов клеток, где КоЕ - т.н. колониеобразующие клетки (единицы) (хотя способность образовывать колонии присуща всем клеткам классов I-III, в т.ч. стволовым клеткам и предшественникам миело- и лимфопоэза).
    Потенции развития полустволовых КоЕ: В обозначениях полустволовых КоЕ буквы после чёрточки показывают, в какие клетки крови способны дифференцироваться данные КоЕ:
    КоЕ-ГнЭ - по двум направлениям - в нейтрофильные гранулоциты (Гн) и в эритроциты (Э);
    КоЕ-ГМ - по четырём направлениям - во все три вида гранулоцитов (Г) (нейтрофилы, эозинофилы, базофилы), а также в моноциты (М);
    КоЕ-МГЦЭ - по двум направлениям - в мегакариоциты (МГЦ) - источники тромбоцитов - и в эритроциты (Э) (напомним: последние могут образовываться также из КоЕ-ГнЭ).
    Таким образом, два вида из полустволовых КоЕ - бипотентны, а один вид - тетрапотентен.
    Регуляторы миелопоэза. Превращение предшественников миелопоэза в тот или иной из трёх перечисленных видов КоЕ происходит под действием регуляторов:
    - эритропоэтин (синтезируемый в почках, лёгких и печени) стимулирует образование КоЕ-ГнЭ;
    - лейкопоэтин - образование КоЕ-ГМ;
    - тромбопоэтин - образование КоЕ-МГЦЭ.
    Размещено на сайт

    III. Класс III: унипотентные клетки
    В отличие от предыдущих клеток, каждая клетка этого класса может развиваться только по одному направлению. Поэтому естественно, что (по числу разных видов форменных элементов крови) имеются 8 видов унипотентных клеток - предшественники:
    1) моноцитов - КоЕ-М
    2) базофильных гранулоцитов - КоЕ-Б
    3) эозинофильных гранулоцитов - КоЕ-Эо
    4) нейтрофильных гранулоцитов - КоЕ-Гн
    5) эритроцитов - КоЕ-Э
    6) мегакариоцитов - КоЕ-МГЦ
    7) предшественников В-лимфоцитов
    8) предшественников Т-лимфоцитов.

    Гомобластический и гетеробластический типы кроветворения

    Преобразование стволовых клеток крови в унипотентные клетки включает следующие процессы: митотические деления; одновременно происходящее постепенное сужение потенций развития клеток.
    Гомобластический тип кроветворения. В обычных условиях начальные стадии гемопоэза протекают с небольшой интенсивностью, и содержание клеток классов I-III (а также класса IV) в костном мозгу очень низко. Преобладают же (и значительно) клетки последующих стадий развития - обычно той последней стадии, на которой клетки ещё способны делиться. Такой тип кроветворения называют гомобластическим - в силу преобладания в костном мозгу клеток одной стадии.
    Гетеробластический тип кроветворения. В экстремальных ситуациях (например, после острой кровопотери) дифференцировочные деления начальных клеток ряда ускоряются, а расход зрелых форм увеличивается. Это приводит к перераспределению соотношения клеточных форм в костном мозгу: доля поздних форм снижается, а доля ранних форм повышается. В таком случае говорят о гетеробластическом типе кроветворения: в заметном количестве присутствуют клетки нескольких стадий.
    Принципиальной разницы между этими "типами" кроветворения нет: в обоих случаях функционирует вся "вертикаль" гемопоэза, и в обоих случаях достигается стационарное состояние (т.е. постоянство количества клеток) каждой клеточной формы.

    Особенности лимфопоэза. Дифференциация клеток по антигенной
    Специфичности

    На ранних стадиях лимфопоэза происходит перестройка геномной области, кодирующей фрагменты иммуноглобулинов, и в результате в каждой клетке образуется лишь один полный ген иммуноглобулина.
    В итоге, каждая клетка приобретает способность синтезировать и нести на поверхности иммуноглобулины (антитела) только к одному виду (из множества возможных) антигенных детерминант. В силу случайности процесса геномной перестройки, образуется большое число разных клеток, отличающихся по своей антигенной специфичности.
    Образование клонов с разной антигенной специфичностью.
    Последующие деления клеток приводят к образованию клонов лимфоцитов с разной антигенной специфичностью. По некоторым оценкам, число таких клонов близко к 107 . Прежде полагали, что дифференциация на клоны происходит только в эмбриональный период. По альтернативным представлениям, это совершается постоянно - в красном костном мозгу и, возможно, в тимусе (если в него попадают стволовые или полустволовые клетки).

    Гемопоэтические клетки класса IV
    Деления и созревание 8 видов клеток класса III приводят к образованию бластов - клеток класса IV. Здесь впервые изменяется морфология клеток (за счёт начала специфических синтезов): от клеток классов I-III (похожих на малые лимфоциты) бласты отличаются большим размером, более светлым ядром и светлой цитоплазмой, появлением в цитоплазме первых продуктов специфических синтезов.
    Несмотря на последнее обстоятельство, между собой (т.е. "по горизонтали") бластные клетки морфологическически практически неразличимы. В отличие от предыдущих клеток, бласты не способны к самоподдержанию. Это означает, что при их делениях образуются только более дифференцированные клетки, а клетки, подобные родительским, не воспроизводятся.

    Завершающие стадии миелопоэза

    Общая характеристика:
    1.Множественность промежуточных форм - класс V гемопоэтических клеток почти в каждом из 6 направлений миелопоэза представлен не одной клеточной формой, а целым рядом последовательно переходящих друг в друга клеток. Потому-то он и обозначается как класс созревающих клеток.
    2. Морфология. Здесь уже имеются чёткие морфологические отличия не только "по вертикали" - между смежными клетками каждого ряда, но и "по горизонтали" - между клетками различных направлений дифференцировки.
    Таким образом, каждая из многочисленных гемопоэтических клеток класса V, в принципе, может быть морфологически идентифицирована (хотя на практике для этого требуется достаточно большой опыт.)
    3. Результат созревания. В конечном счёте, дифференцировка клеток V приводит к образованию дифференцированных клеток, т.е. клеток класса VI, или зрелых форменных элементов крови.

    Читайте также: