Слуховая сенсорная система человека кратко. Слуховая система человека. Строение слухового анализатора

Слуховая чуткая система служит для восприятия звуковых сигналов. Особенное значение приобрела для человека в связи с развитием языка.

Звук -- это колебание молекул упругой среды, которое происходит в виде продольных волн давления. Чтобы превратить слабые колебания давления в ощущение звука, в процессе эволюции образовались органы слуха -- уши.

Строение слухового анализатора : -- рецепторный аппарат в ухе (внутреннем); -- слуховой нерв; -- слуховая зона коры больших полушарий (височная доля).

Ухо -- орган слуха и равновесия, включает: внешнее ухо , ушная раковина, которая улавливает звуковые колебания и направляет их во внешний слуховой проход . Ушная раковина образована эластичным хрящом, снаружи покрытым кожей. У человека ушные мышцы развиты слабо и ушная раковина почти неподвижна. Кожа внешнего слухового прохода покрыта тонкими жидкими волосками. В слуховой проход открываются проливы желез, которые производят ушную серу. И волоски, и ушная сера, выполняют защитную функцию; и среднее ухо . В его полости происходит усиление звуковых колебаний. Среднее ухо состоит из: барабанной перепонки, барабанной полости (заполненной воздухом) слуховых косточек -- молоточка , наковальни, стремени (передают звуковые колебания из барабанной перепонки на овальное окно внутреннего уха, предотвращают его перегрузку), евстахиевой трубы (соединяет полость среднего уха с глоткой).

Барабанная перепонка -- тонкая эластичная пластинка, которая внешне покрыта эпителием, а изнутри слизистой оболочкой. Молоточек, сросшийся с барабанной перепонкой. Слуховые косточки соединены между собой с помощью подвижных суставов. Стремя соединено с овальным окном, которое отделяет барабанную полость от внутреннего уха. Слуховая труба соединяет барабанную полость с носоглоткой, устланная изнутри слизистой оболочкой. Она поддерживает одинаковое давление внешне и изнутри на барабанную перепонку внутреннее ухо. Расположено в камерной части височной кости. Образовано костным лабиринтом, внутри которого есть перепончатый лабиринт из соединительной ткани. Между костным и перепончатым лабиринт ом содержится жидкость -- перилимфа , а внутри перепончатого лабиринта -- эндолимфа .

Костный лабиринт состоит : -- улитки; -- преддверия; -- слухового канала.

Улитка принадлежат только звукоприемному аппарату. Преддверие, является частью лишь вестибулярного аппарата, перепонка принадлежат и к органу слуха, и к органу равновесия.

Костное преддверие, которое образует среднюю часть лабиринта внутреннего уха, имеет в стенке два открытых окна, овальное и круглое, которые соединяют костную полость с барабанной перепонкой. Овальное окно закрыто основой стремени, а круглое -- подвижной эластичной соединительно-тканной пластинкой.

Улитка -- это спиральный согнутый костный канал, который образует 2,5 оборота вокруг своей оси. Основой завитка возвращается к внутреннему слуховому проходу. Внутри костного канала завитка проходит перепончатый лабиринт, который также образует 2,5 обороты. Его полость -- перепончатый улитковый пролив, который содержит эндолимфу. Внутри улиткового пролива, на ее основной мембране расположен звукоприемный аппарат -- спиральный (кортиев) орган -- рецепторная часть слуховой системы, превращает звуковые колебания в нервное возбуждение. Кортиев орган состоит из 3--4 рядов рецепторных клеток. Каждая рецепторная клетка имеет от 30 до 120 тонких волосков, которые омываются эндолимфой. Над волосковыми клетками расположена покровная мембрана. От волосковых клеток отходят волокна слухового нерва.

Восприятие звука:

  • -- звуковые волны через ушную раковину попадают во внешний слуховой проход, вызывают колебательные движения барабанной перепонки;
  • -- колебания барабанной перепонки передаются слуховым косточкам, движения которых вызывают вибрацию основы стремени, которое закрывает овальное окно (размах колебаний уменьшается, а их сила увеличивается);
  • -- движения основы стремени овального окна колеблют перилимфу, ее колебания передаются эндолимфе (она начинает колебаться с той же частотой);
  • -- колебание эндолимфы, влечет колебание основной мембраны. При движениях основной мембраны и эндолимфы, покровная мембрана внутри улиточного пролива с определенной силой и частотой касается микроворсинок рецепторных клеток, которые возбуждаются;
  • -- возбуждение передается из рецепторных клеток другим нервным клеткам, которые лежат в спиральном узле улитки, аксоны которых образуют слуховой нерв;
  • -- импульсы по волокнам преддверно-улиткового нерва, поступают к ядрам моста. Аксоны клеток этих ядер направляются к подкорковым центрам слуха (нижние горбы среднего мозга). Высший анализ и синтез слуховых раздражений происходит в корковом центре слухового анализатора, который расположен в височной доле. Здесь происходит различение характера звука, его силы, высоты.

Вестибулярный аппарат выполняет функции восприятия положения тела, сохранения равновесия. При любом изменении положения тела (головы) раздражаются рецепторы вестибулярного аппарата. Импульсы передаются в мозг, от которого к соответствующим мышцам поступают сигналы с целью коррекции положения тела и движений.

Вестибулярный аппарат состоит из: -- преддверия; -- слуховых каналов, которые расположены в трех взаимно перпендикулярных плоскостях, заполненных эндолимфой.

В костном преддверии есть два расширения перепончатого лабиринта -- мешочки: овальный и круглый. На внутренней поверхности мешочков есть волосяные клетки, которые воспринимают положение тела в пространстве и нарушения равновесия. Волоски погружены в топкую оболочку, которая содержит многочисленные известняковые кристаллы, -- отолиты.

В расширениях слуховых каналов (ампулах) есть по одному костному гребню. К нему непосредственно прилегает перепончатый лабиринт. В ампулах слуховых каналов есть рецепторные волоски клетки, которые расположены на вершинах складок, в толще гребней. На волосковых клетках гребней располагается желатинообразный прозрачный купол.

При любом действии на рецепторные волоски клетки, в них возникает нервный импульс. Возбуждение передается нервным клеткам, аксоны которых образуют преддверно-улитковый нерв. Волокна нерва идут к вестибулярным ядрам, которые расположены на дне ромбовидной ямки мозга. Аксоны клеток вестибулярных ядер идут к ядрам мозжечка, ствола головного мозга, таламусу и к корковым центрам вестибулярного анализатора (теменная, височная доли).

Орган слуха и равновесия начинает развиваться с третьей недели эмбрионального развития. У новорожденного ребенка внешний слуховой проход короток и узок, барабанная перепонка относительно толще. Барабанная полость заполнена амниотической жидкостью, которая со временем рассасывается. Слуховая труба у детей шире и короче, чем у взрослых, что создает особенные условия для попадания микроорганизмов в полость среднего уха. Внутреннее ухо у новорожденного развито хорошо. Новорожденный ребенок реагирует на голосовые звуки вздрагиванием, изменением дыхания, прекращением плача. Выразительным слух у детей становится к концу 2--3 месяца после рождения.

Возрастные особенности слуховой сенсорной системы . уже на 8-9 месяце внутриутробного развития ребенок воспринимает звуки в пределах 20-5000 Гц и реагирует на них движениями. Четкая реакция на звук появляется у ребенка в 7-8 недель после рождения, а с 6 месяцев грудной ребенок способен к относительно тонкому анализу звуков. Слова дети слышат много хуже, чем звуковые тоны, и в этом отношении сильно отличаются от взрослых. Окончательное формирование органов слуха у детей заканчивается к 12 годам. К этому возрасту значительно повышается острота слуха, которая достигает максимума к 14-19 годам и после 20 лет уменьшается. С возрастом также изменяются пороги слышимости, и падает верхняя частота, воспринимаемых звуков.

Функциональное состояние слухового анализатора зависит от многих факторов окружающей среды. Специальной тренировкой можно добиться повышения его чувствительности. Например, занятия музыкой, танцами, фигурным катанием, художественной гимнастикой вырабатывают тонкий слух. С другой стороны, физическое и умственное утомление, высокий уровень шума, резкое колебание температуры и давления снижают чувствительность органов слуха. Кроме того, сильные звуки вызывают перенапряжение нервной системы, способствуют развитию нервных и сердечно-сосудистых заболеваний. Необходимо помнить о том, что порог болевых ощущений для человека составляет 120-130 дБ, но даже шум в 90 дБ может вызывать у человека болевые ощущения (шум промышленного города днем составляет около 80 дБ).

Для избежания неблагоприятного воздействия шума необходимо соблюдать определенные гигиенические требования. Гигиена слуха - система мер, направленная на охрану слуха, создание оптимальных условий для деятельности слуховой сенсорной системы, способствующих нормальному ее развитию и функционированию.

Различают специфическое и неспецифическое действие шума на организм человека. Специфическое действие проявляется в нарушении слуха, неспецифическое - в отклонениях со стороны ЦНС, вегетативной реактивности, в эндокринных расстройствах, функциональном состоянии сердечно-сосудистой системы и пищеварительного тракта.

У лиц молодого и среднего возраста уровни шума в 90 дБ, воздействуя в течение часа, понижают возбудимость клеток коры головного мозга, ухудшают координацию движений, отмечается снижение остроты зрения, устойчивости ясного видения и чувствительности к оранжевому цвету, нарастает частота срывов дифференцировки. Достаточно пробыть всего 6 ч в зоне шума 90 дБ (шум, испытываемый пешеходом на сильно загруженной транспортом улице) чтобы снизилась острота слуха. При часовой работе в условиях воздействия шума в 96 дБ наблюдается еще более резкое нарушение корковой динамики. Ухудшается работоспособность и снижается производительность труда.

Труд в условиях воздействия шума в 120 дБ через 4-5 лет может вызвать нарушения, характеризующиеся неврастеническими проявлениями. Появляются раздражительность, головные боли, бессонница, расстройства эндокринной системы, нарушается тонус сосудов и ЧСС, возрастает или понижается артериальное давление. При стаже работы в 5-6 лет часто развивается профессиональная тугоухость. По мере увеличения срока работы функциональные отклонения перерастают в невриты слухового нерва.

Весьма ощутимо влияние шума на детей и подростков. Более значительными оказываются повышение порога слуховой чувствительности, снижение работоспособности и внимания у учащихся после воздействия шума в 60 дБ. Решение арифметических примеров требовало при шуме в 50 дБ на 15-55%, а в 60 дБ на 81-100% больше времени, чем до действия шума, а снижение внимания достигало 16%.

Снижение уровней шума и его неблагоприятного воздействия на учащихся достигается проведением ряда мероприятий: строительных, архитектурных, технических и организационных. Например, участок учебных заведений ограждают по всему периметру живой изгородью высотой не менее 1,2 м. Большое влияние на величину звукоизоляции оказывает плотность, с какой закрыты двери. Если они плохо закрыты, то звукоизоляция снижается на 5-7 дБ. Большое значение в снижении шума имеет гигиенически правильное размещение помещений в здании учебного заведения. Мастерские, гимнастические залы размещаются на первом этаже здания, в отдельном крыле или в пристройке. Восстановлению функционального состояния слуховой сенсорной системы и сдвигов в других системах организма детей и подростков способствуют небольшие перерывы в тихих комнатах.

Вестибулярная сенсорная система играет важную роль в регуляции положения тела в пространстве и его движений. Развитие вестибулярного аппарата у детей и подростков в настоящее время мало изучено. Существуют данные о том, что ребенок рождается с достаточно зрелыми подкорковыми отделами вестибулярного анализатора.

Проприоцептивная сенсорная система также участвует в регуляции положения тела в пространстве и обеспечивает координацию абсолютно всех движений человека - от локомоторных до сложнейших трудовых и спортивных двигательных навыков. В процессе онтогенеза формирование проприорецепции начинается с 1-3 месяцев внутриутробного развития. К моменту рождения проприорецепторы и корковые отделы достигают высокой степени зрелости и способны к выполнению своих функций. Особенно интенсивно идет совершенствование всех отделов двигательного анализатора до 6-7 лет. С 3 до 7-8 лет быстро нарастает чувствительность проприорецепции, идет созревание подкорковых отделов двигательного анализатора и его корковых зон. Формирование проприорецепторов, расположенных в суставах и связках, заканчивается к 13-14 годам, а проприорецепторов мышц - к 12-15 годам. К этому возрасту, они уже практически не отличаются от таковых у взрослого человека.

Под соматосенсорной системой понимают совокупность рецепторных образований, обеспечивающих температурные, тактильные и болевые ощущения. Температурные рецепторы играют важную роль в сохранении постоянства температуры тела. Экспериментально показано, что чувствительность температурных рецепторов на первых этапах постнатального развития ниже, чем у взрослых. Тактильные рецепторы обеспечивают восприятие механических воздействий, чувство давления, прикосновения и вибрации. Чувствительность этих рецепторов у детей ниже, чем у взрослых. Уменьшение порогов восприятия происходит до 18-20 лет. Боль воспринимается специальными рецепторами, представляющими собой свободные нервные окончания. Болевые рецепторы у новорожденных детей имеют более низкую чувствительность, чем у взрослых. Особенно быстро, возрастает болевая чувствительность с 5 до 6-7 лет.

Периферическая часть вкусовой сенсорной системы - вкусовые рецепторы расположены в основном на кончике, корне и по краям языка. Новорожденный ребенок уже обладает способностью дифференцировать горькое, соленое, кислое и сладкое, хотя чувствительность вкусовых рецепторов невысока, к 6 годам она приближается к уровню взрослого.

Периферическая часть обонятельной сенсорной системы - обонятельные рецепторы располагаются в верхней части носовой полости и занимают не более 5 см 2 . У детей обонятельный анализатор начинает функционировать уже в первые дни после рождения. С возрастом чувствительность обонятельного анализатора нарастает особенно интенсивно до 5-6 лет, а затем постоянно снижается.

Сенсорной системой(анализатором) - называют часть нервной системы, состоящую из воспринимающих элементов - сенсорных рецепторов, нервных путей, передающих информацию от рецепторов в мозг и частей мозга, которые перерабатывают и анализируют эту информацию

В сенсорную систему входят 3 части

1. Рецепторы - органы чувств

2. Проводниковый отдел, связывающий рецепторы с мозгом

3. Отдел коры головного мозга, которая воспринимает и обрабатывает информацию.

Рецепторы - периферическое звено, предназначенное для восприятия раздражителей внешней или внутренней среды.

Сенсорные системы имеют общий план строения и для сенсорных систем характерна

Многослойность - наличие нескольких слоев нервных клеток, первый из которых связан с рецепторами, а последний с нейронами моторных областей коры большого мозга. Нейроны специализированы для переработки разных видов сенсорной информации.

Многоканальность - наличие множества параллельных каналов обработки и передачи информации, что обеспечивает детальность анализа сигналов и большую надежность.

Разное число элементов в соседних слоях , что формирует, так называемые, «сенсорные воронки»(суживающиеся или расширяющиеся) Они могут обеспечить устранение избыточности информации или, наоборот, дробный и сложный анализ признаков сигнала

Дифференциация сенсорной системы по вертикали и по горизонтали. Дифференциация по вертикали означает формирование отделов сенсорной системы, состоящих из нескольких нейронных слоев(обонятельные луковицы, кохлеарные ядра, коленчатые тела).

Дифференциация по горизонтали представляет наличие разных по свойствам рецепторов и нейронов в пределах одного слоя. Например палочки и колбочки в сетчатке глаза по-разному перерабатывают информацию.

Основной задачей сенсорной системы является восприятие и анализ свойств раздражителей, на основе которых возникают ощущения, восприятия, представления. Это составляет формы чувственного, субъективного отражения внешнего мира

Функции сенсорных систем

  1. Обнаружение сигналов. Каждая сенсорная система в процессе эволюции приспособилась к восприятию адекватных, присущих для данной системы раздражителей. Сенсорная система, например глаз, может получать разные - адекватные и неадекватные раздражения(свет или удар по глазу). Сенсорные системы воспринимают силу - глаз воспринимает 1 световой фотон(10 в -18 Вт). Удар по глазу(10 в -4 Вт). Электрический ток(10 в -11 Вт)
  2. Различение сигналов.
  3. Передача или преобразование сигналов . Любая сенсорная система работает, как преобразователь. Она преобразует одну форму энергию действующего раздражителя в энергию нервного раздражения. Сенсорная система не должна исказить сигнала раздражителя.
  • Может носить пространственный характер
  • Временные преобразования
  • ограничение избыточности информации(включение тормозных элементов, которые затормаживают соседние рецепторы)
  • Выделение существенных признаков сигнала
  1. Кодирование информации - в форме нервных импульсов
  2. Детектирование сигналов, т. е. выделение признаков раздражителя, имеющего поведенческое значение
  3. Обеспечивают опознание образов
  4. Адаптируются к действию раздражителей
  5. Взаимодействие сенсорных систем, которые формируют схему окружающего мира и одновременно позволяют нам соотносить нас самих с этой схемой, для нашего приспособления. Все живые организмы не могут существовать без восприятия информации из окружающей среды. Чем точнее организм получает такую информацию, тем будут выше его шансы в борьбе за существование

Сенсорные системы способны реагировать на неадекватные раздражители. Если попробовать клеммы батарейки, то это вызывает вкусовое ощущение - кислое, это действие электрического тока. Такая реакция сенсорной системы на адекватные и неадекватные раздражители, поставили перед физиологией вопрос - на сколько мы можем доверять нашим органам чувств.

Иоган Мюллер сформулировал в 1840 году закон специфической энергии органов чувств.

Качество ощущений не зависит от характера раздражителя, а определяется всецело заложенной в чувствительной системе специфической энергией, которая освобождается при действии раздражителя.

При таком подходе мы можем знать только, что заложено в нас самих, а не что в окружающем мире. Последующие исследования показали, что возбуждения в любой сенсорной системе возникают на основе одного источника энергии - АТФ.

Ученик Мюллера Гельмгольц создал теорию символов , в соответствии с которой он рассматривал ощущения, как символы и предметы окружающего мира. Теория символов отрицала возможность познания окружающего мира.

Эти 2 направления были названы физиологическим идеализмом. Что же собой представляет ощущение? Ощущение это субъективный образ объективного мира. Ощущения - это образы внешнего мира. Они существуют в нас и порождаются действием вещей на наши органы чувств. У каждого из нас этот образ будет являться субъективным, т.е. он зависит от степени нашего развития, опыта и каждый человек воспринимает окружающие предметы и явления по своему. Они будут являться объективными, т.е. это значит, то они существуют, независимо от нашего сознания. Раз имеется субъективность восприятия, то как решить, кто же наиболее правильно воспринимает? Где же будет истина? Критерием истины является практическая деятельность. Идет последовательное познание. На каждом этапе получается новая информация. Ребенок пробует игрушки на вкус, разбирает их на детали. Именно на основе этого глубоко опыта мы приобретаем более глубокие знания о мире.

Классификация рецепторов.

  1. Первичные и вторичные. Первичные рецепторы представляют собой рецепторное окончание, которое образовано самим первым чувствительным нейроном(Тельце Пачини, тельце Мейснера, диск Меркеля, Тельце Руффини). Этот нейрон лежит в спинальном ганглии. Вторичные рецепторы воспринимают информацию. За счет специализированных нервных клеток, которые затем передают возбуждение на нервное волокно. Чувствительные клетки органов вкуса, слуха, равновесия.
  2. Дистантные и контактные. Часть рецепторов воспринимает возбуждение при непосредственном контакте - контактные , а другие могут воспринимать раздражение на некотором расстоянии - дистантные
  3. Экстерорецепторы, интерорецепторы. Экстерорецепторы - воспринимают раздражение из внешней среды - зрение, вкус и др. и они обеспечивают на приспособление к окружающей среде. Интерорецепторы - рецепторы внутренних органов. Они отражают состояние внутренних органов и внутренней среды организма.
  4. Соматические - поверхностные и глубокие. Поверхностные - кожи, слизистых оболочек. Глубокие - рецепторы мышц, сухожилий, суставов
  5. Висцеральные
  6. Рецепторы ЦНС
  7. Рецепторы специальных чувств - зрительные, слуховые, вестибулярные, обонятельные, вкусовые

По характеру восприятия информации

  1. Механорецепторы(кожа, мышцы, сухожилия, суставы, внутренние органы)
  2. Терморецепторы(кожа, гипоталамус)
  3. Хеморецепторы(дуга аорты, каротидный синус, продолговатый мозг, язык, нос, гипоталамус)
  4. Фоторецептоыр(глаз)
  5. Болевые(ноцицептивные) рецепторы(кожа, внутренние органы, слизистые оболочки)

Механизмы возбуждения рецепторов

В случае первичных рецепторов, действие раздражителя воспринимается окончанием чувствительного нейрона. Действующий раздражитель может вызывать гиперполяризацию или деполяризацию поверхностной мембраны рецепторы в основном за счет изменения натриевой проницаемости. Повышение проницаемости к ионам натрия приводит к деполяризации мембраны и на мембране рецептора возникает рецепторный потенциал. Он существует до тех пор, пока действует раздражитель.

Рецепторный потенциал не подчиняется закону «Все или ничего», его амплитуда зависит от силы раздражителя. У него нет периода рефрактерности. Это позволяет суммироваться рецепторным потенциалам при действии последующих раздражителей. Он распространяется мелено, с угасанием. Когда рецепторный потенциал достигает критической пороговой величины, он вызывает появление потенциала действия в ближайшем перехвате Ранвье. В перехвате Ранвье возникает потенциал действия, который подчиняется закону «Все или ничего» Этот потенциал будет распространяющимся.

Во вторичном рецепторе действие раздражителя воспринимается рецепторной клеткой. В этой клетке возникает рецепторный потенциал, следствием которого будет являться выделение медиатора из клетки в синапс, который действует на постсинаптическую мембрану чувствительного волокна и взаимодействие медиатора с рецепторами приводит к образованию другого, локального потенциала, который называют генераторным . Он по своим свойства идентичен рецепторным. Его амплитуда определяется количеством выделившегося медиатора. Медиаторы - ацетилхолин, глутамат.

Потенциалы действия возникают периодически, т.к. для них характерен период рефрактерности, когда мембрана утрачивает свойство возбудимости. Потенциалы действия возникают дискретно и рецептор в сенсорной системе работает, как аналогово-дискретный преобразователь. В рецепторах наблюдается приспособление - адаптация к действию раздражителей. Есть быстроадаптирующиеся, есть медленно адаптирующиеся. При адаптация снижается амплитуда рецепторного потенциала и число нервных импульсов, которые идут по чувствительному волокну. Рецепторы кодируют информацию. Оно возможно по частоте потенциалов, по группировки импульсов в отдельные залпы и интервалами между залпами. Кодирование возможно по числу активированных рецепторов в рецептивном поле.

Порог раздражения и порог развлечения.

Порог раздражения - минимальная сила раздражителя, которая вызывает ощущение.

Порог развлечении - минимальная сила изменения раздражителя, при которой возникает новое ощущение.

Волосковые клетки возбуждаются при смещении волосков на 10 в -11 метра - 0,1 амстрема.

В 1934 году Вебер сформулировал закон, устанавливающий зависимость между первоначальной силой раздражения и интенсивностью ощущения. Он показал, что изменение силы раздражителя, етсь величина постоянная

∆I / Io = К Io=50 ∆I=52,11 Io=100 ∆I=104,2

Фехнер определили, что ощущение прямопропорционально логарифму раздражения

S=a*logR+b S-ощущение R- раздражение

S=KI в Aстепени I - сила раздражения, К и А - константы

Для тактильных рецепторов S=9,4*I d 0,52

В сенсорных системах есть рецепторы саморегуляции чувствительности рецепторов.

Влияние симпатической системы - симпатическая система повышает чувствительность рецепторов к действию раздражителей. Это полезно в ситуации опасности. Повышает возбудимость рецепторов - ретикулярная формация. В составе чувствительных нервов обнаружены эфферентные волокна, которые могут изменять чувствительность рецепторов. Такие нервные волокна есть в слуховом органе.

Сенсорная система слуха

У большинства людей, живущих в современной остановке слух прогрессивно падает. Это происходит с возрастом. Этому способствует загрязнение звуками окружающей среды - автотранспорт, дискотека и др. Изменения в слуховом аппарате становятся не обратимыми. Уши человека содержат 2 чувствительных органа. Слух и равновесие. Звуковые волны распространяются в форме сжатий и разряжений в упругих средах и при этом распространение звуков в плотных средах идет лучше, чем в газах. Звук обладает 3мя важными свойствами - высотой или частотой, мощностью, или интенсивностью и тембром. Высота звука зависит от частоты колебаний и ухо человека воспринимает с частотой от 16 до 20000 Гц. С максимальной чувствительностью от 1000 о 4000 Гц.

Основная частота звука гортани мужчины - 100 Гц. Женщины - 150 Гц. При разговоре возникают дополнительные высокочастотные звуки в форме шипения, свиста, которые исчезают при разговоре по телефону и это делает речь понятнее.

Мощность звука определяется амплитудой колебаний. Мощность звука выражают в Дб. Мощность представляет собой логарифмическую зависимость. Шепотная речь - 30 Дб, нормальная речь - 60-70 Дб. Звук транспорта - 80, шум мотора самолета - 160. Мощность звука 120 Дб вызывает дискомфорт, а 140 приводят к болезненным ощущениям.

Тембр определяется вторичными колебаниями на звуковых волнах. Упорядоченные колебания - создают музыкальные звуки. А беспорядочные колебания вызывают просто шум. Одна и та же нот звучит по разному на разных инструментах из за разных дополнительных колебаний.

Ухо человека имеет 3 составные части - наружное, среднее и внутренне ухо. Наружное ухо представлено ушной раковиной, которое действует как звука улавливающая воронка. Ухо человека менее совершенно улавливает звуки, чем у кролика, лошади, которые умеют управлять своими ушами. В основе ушной раковины - хрящ, за исключением мочки уха. Хрящевая ткань придает эластичность и форму уху. Если хрящ повреждается, то он восстанавливается разрастаясь. Наружный слуховой проход S образной формы - внутрь, вперед и вниз, длина 2,5 см. Слуховой проход покрыт кожей с малой чувствительностью наружной части и высокой чувствительностью внутренней. В наружной части слухового прохода имеются волосы, которые предупреждают попадание в слуховой проход частиц. Железы слухового прохода вырабатывают желтую смазку, которая тоже предохраняет слуховой проход. В конце прохода - барабанная перепонка, которая состоит из фиброзных волокон, покрытых снаружи кожей, а внутри - слизистой. Барабанная перепонка отделяет среднее от наружного уха. Она колеблется с частотой воспринимаемого звука.

Среднее ухо представлено барабанной полостью, объем которой равен примерно 5-6 капель воды и барабанная полость заполнена водухом, выстлана слизистой оболочкой и содержит 3 слуховые косточки: молоточек, наковальня и стремечко.среднее ухо сообщается с носоглоткой с помощью евстахиевой трубы. В состоянии покоя просвет евстахиевой трубы закрыт, что выравнивает давление. Воспалительные процессы, приводящие к воспалению этой трубы вызывают ощущение заложенности. Среднее ухо отделено от внутреннего овальным и круглым отверстием. Колебания барабанной перепонки через систему рычагов передаются стремечком на овальное окно, причем наружное ухо осуществляет передачу звуков воздушным способом.

Имеется различие площади барабанной перепонки и овального окна(площадь барабанной перепонки равна 70мм в кв. а у овального окна- 3.2мм в кв). При передаче колебания с перепонки на овальное окно амплитуда уменьшается а сила колебаний увеличивается в 20-22 раза. В частотах до 3000 Гц передается 60% Е на внутреннее ухо. В среднем ухе имеется 2 мышцы изменяющие колебания: мышца напрягающая барабанную перепонку(прикрепляется к центральной части барабанной перепонки и к рукоятке молоточка)- при увеличении силы сокращения уменьшается амплитуда; мышца стремечка- ее сокращения ограничивают колебания стремечка. Эти мышцы предупреждают травмы барабанной перепонки. Кроме воздушной передачи звуков есть и костная передача, но это сила звука не в состоянии вызвать колебания костей черепа.

Внутрее ухо

внутреннее ухо представляет собой лабиринт, состоящий из взаимосвязанных трубочек и расширений. Во внутреннем ухе располагается орган равновесия. Лабиринт имеет костную основу, а внутри располагается перепончатый лабиринт и там находится эндолимфа. К слуховой части относится улитка, она образует 2.5 оборота вокруг центральной оси и делится на 3 лестницы: вестибулярная, барабанная и перепончатая. Вестибулярный канал начинается мембраной овального окна, а заканчивается круглым окном. На вершине улитки эти 2 канала сообщаются с помощью геликокрема. А оба этих канала заполнены перилимфой. В среднем перепончатом канале располагается звуковоспринимающий аппарат — кортиев орган. Основная мембрана построена из эластических волокон, которые начинаются у основания(0.04мм) и до вершины (0.5мм). К вершине плотность волокон уменьшается в 500 раз. На основной мембране располагается кортиев орган. Он построен из 20-25 тысяч специальных волосковых клеток, расположенных на поддерживающих клетках. Волосковые клетки лежат в 3-4 ряда(наружный ряд) и в один ряд(внутренний). На вершине волосковых клеток имеются стереоцили или киноцили- самые большие стереоцили. К волосковым клеткам подходят чувствительные волокна 8 пары ЧМН от спирального ганглия. При этом 90% выделенных чувствительных волокон оказываются на внутренних волосковых клетках. На одну внутреннюю волосковую клетку конвергирует до 10 волокон. А в составе нервных волокон есть и эфферентные(оливо-улиточный пучок). Они образуют тормозные синапсы на чувствительных волокнах от спирального ганглия и иннервирует наружные волосковые клетки. Раздражение кортиевого органа связано с передачей колебаний косточек на овальное окно. Низкочастотные колебания распространяются от овального окна до вершины улитки (вовлекается вся основная мембрана).при низких частотах наблюдается возбуждение волосковых клеток лежащих на вершине улитки. Изучением распространения волн в улитке занимался Бекаши. Он обнаружил, что с увеличением частоты вовлекается меньший по протяженности столб жидкости. Высокочастотные звуки не могут вовлечь весь столб жидкости, поэтому чем больше частота, тем меньше колеблется перилимфа. Колебания основной мембраны могут возникать при передаче звуков через перепончатый канал. При колебании основной мембраны происходит смещение волосковых клеток вверх, что вызывает деполяризацию, а если вниз- волоски отклоняются внутрь, что приводит к гиперполяризации клеток. При деполяризации волосковых клеток открываются Са-каналы и Са способствует потенциалу действия, который несет информацию о звуке. Наружные слуховые клетки имеют эфферентную иннервацию и передача возбуждения идет с помощью Асh на наружных волосковых клетках. Эти клетки могут изменять свою длину: они укорачиваются при гиперполяризации и удлиняются при поляризации. Изменение длины наружных волосковых клеток влияет на колебательный процесс, что улучшает восприятие звука внутренними волосковыми клетками. Изменение потенциала волосковых клеток связано с ионным составом эндо- и перилимфы. Перилимфа напоминает ликвор, а эндолимфа имеет высокую концентрацию К(150 ммоль). Поэтому эндолимфа приобретает положительный заряд к перилифме.(+80мВ). Волосковые клетки содержат много К; они имеют мембранный потенциал и отрицательно заряженный внутри и положительный снаружи(МП=-70мВ), а разница потенциалов дает возможность проникновения К из эндолимфы внутрь волосковых клеток. Изменение положения одного волоска открывает 200-300 К- каналов и возникает деполяризация. Закрытие сопровождается гиперполяризацией. В кортиевом органе идет частотное кодирование за счет возбуждения разных участков основной мембраны. При этом было показано что звуки низкой частоты могут кодироваться числом нервных импульсов таким же количеством как и звуком. Такое кодирование возможно при восприятии звука до 500Гц. Кодирование информации звука достигается увеличением числа залпов волокон на более интенсивный звук и за счет числа активирующихся нервных волокон. Чувствительные волокна спирального ганглия оканичиваются в дорсальных и вентральных ядрах улитки продолговатого мозга. От этих ядер сигнал поступает в ядра оливы как своей так и противоположной стороны. От ее нейронов идут восходящие пути в составе латеральной петли которые подходят к нижним бугоркам четверохолмия и медиальному коленчатому телу зрительного бугра. От последнего сигнал идет в верхнюю височную извилину(извилина Гешля). Это соответствует 41 и 42 полям(первичная зона) и 22 поле(вторичная зона). В ЦНС существует топотоническая организация нейронов, то есть воспринимаются звуки с разной частотой и разной интенсивностью. Корковый центр имеет значение для восприятия, последовательности звука и пространственной локализации. При поражении 22 поля нарушается определение слов (рецептивная оппозия).

Ядра верхней оливы делят на медиальные и латеральные части. А латеральные ядра определяют неодинаковую интенсивность звуков, поступающих к обеим ушам. Медиальное ядро верхней оливы улавливает временные различия поступления звуковых сигналов. Обнаружено что сигналы от обоих ушей поступают в различные дендритные системы одного и того же воспринимающего нейрона. Нарушение слухового восприятия может проявляться звоном в ушах при раздражении внутреннего уха или слухового нерва и двумя типами глухоты: проводниковой и нервной. Первая связана с поражениями наружного и среднего уха(серная пробка).Вторая связана с дефектами внутреннего уха и поражениями слухового нерва. У пожилых людей утрачивается способность воспринимать высокочастотные голоса. За счет двух ушей можно определять пространственную локализацию звука. Это оказывается возможным, если звук отклоняется от средины положения на 3 градуса. При восприятии звуков возможно развитие адаптации за счет ретикулярной формации и эфферентных волокон(воздействием на наружные волосковые клетки.

Зрительная система.

Зрение - многозвеньевой процесс, начинающийся с проекции изображения на сетчатку глаза, затем идёт возбуждение фоторецепторов, передача и преобразование в нейронных слоях зрительной системы и заканчивается принятием высшими корковыми отделами решения о зрительном образе.

Строение и функции оптического аппарата глаза. Глаз имеет шарообразную форму, что важно для поворота глаза. Свет проходит через несколько прозрачных сред - роговицу, хрусталик и стекловидное тело, имеющие определённые преломляющие силы, выражающихся в диоптриях. Диоптрия равна преломляющей силе линзы с фокусным расстоянием 100 см. Преломляющая сила глаза при рассматривании далёких предметов - 59D, близких - 70,5D. На сетчатке образуется уменьшенное перевёрнутое изображение.

Аккомодация - приспособление глаза к ясному видению предметов на разных расстояниях. Хрусталик играет главную роль в аккомодации. При рассмотрении близких предметов ресничные мышцы сокращаются, циннова связка расслабляется, хрусталик становится более выпуклым в силу его эластичности. При рассмотрении дальних - мышцы расслаблены, связки натянуты и растягивают хрусталик, делая его более уплощённым. Ресничные мышцы иннервируются парасимпатическими волокнами глазодвигательного нерва. В норме дальняя точка ясного видения - в бесконечности, ближайшая - 10 см от глаза. Хрусталик с возрастом теряет эластичность, поэтому ближайшая точка ясного видения отодвигается и развивается старческая дальнозоркость.

Аномалии рефракции глаза.

Близорукость (миопия). Если продольная ось глаза слишком длинная или увеличивается преломляющая сила хрусталика, то изображение фокусируется перед сетчаткой. Человек плохо видит вдаль. Назначаются очки с вогнутыми стёклами.

Дальнозоркость (гиперметропия). Развивается при уменьшении преломляющих сред глаза или при укорочении продольной оси глаза. В результате изображение фокусируется за сетчаткой и чел плохо видит близкорасположенные предметы. Назначаются очки с выпуклыми линзами.

Астигматизм - неодинаковое преломление лучей в разных направлениях, обусловленное не строго сферической поверхностью роговой оболочки. Компенсируются очками с поверхностью, приближающейся к цилиндрической.

Зрачок и зрачковый рефлекс. Зрачок - отверстие в центре радужной оболочки, через которое лучи света проходят внутрь глаза. Зрачок повышает чёткость изображения на сетчатке, увеличивая глубину резкости глаза и за счёт устранения сферической аберрации. Если прикрыть глаз от света, а затем открыть его, то зрачок быстро сужается - зрачковый рефлекс. На ярком свету размер - 1,8 мм, при среднем - 2,4, в темноте - 7,5. Увеличение приводит к ухудшению качества изображения, но повышает чувствительность. Рефлекс имеет адаптационное значение. Расширяет зрачок симпатика, сужает - парасимпатика. У здоровых размеры обоих зрачков одинаковы.

Структура и функции сетчатки. Сетчатка - внутренняя светочувствительная оболочка глаза. Слои:

Пигментный - ряд отростчатых эпителиальных клеток чёрного цвета. Функции: экранирование (препятствует рассеиванию и отражению света, повышая чёткость), регенерация зрительного пигмента, фагоцитоз обломков палочек и колбочек, питание фоторецепторов. Контакт между рецепторами и пигментным слоем слабая, поэтому именно здесь происходит отслойка сетчатки.

Фоторецепторы. Колбы отвечают за цветовое зрение, их - 6-7 млн. Палки за сумеречное, их - 110-123 млн. Они расположены неравномерно. В центральной ямке - только колбы, здесь - наибольшая острота зрения. Палки чувствительнее колб.

Строение фоторецептора. Состоит из наружной воспринимающей части - наружного сегмента, с зрительным пигментом; соединительной ножки; ядерной части с пресинаптическим окончанием. Наружная часть состоит из дисков - двумембранная структура. Наружные сегменты постоянно обновляются. Пресинаптическое окончание содержит глутамат.

Зрительные пигменты. В палках - родопсин с поглощением в области 500 нм. В колбах - йодопсин с поглощениями 420 нм (синий), 531 нм (зелёный), 558 (красный). Молекула состоит из белка опсина и хромофорной части - ретиналя. Только цис-изомер воспринимает свет.

Физиология фоторецепции. При поглощении кванта света цис-ретиналь превращается в транс-ретиналь. Это вызывает пространственные изменения в белковой части пигмента. Пигмент обесцвечивается и переходит в метародопсин II, способный взаимодействовать с примембранным белком трансдуцином. Трансдуцин активируется и связывается с ГТФ, активируя фосфодиэстеразу. ФДЭ разрушает цГМФ. В результате концентрация цГМФ падает, что приводит к закрытию ионных каналов, при этом понижается концентрация натрия, приводя к гиперполяризации и возникновению рецепторного потенциала, распостраняющимся по клетке до пресинаптического окончания и вызывая уменьшение выделения глутамата.

Восстановление исходного темнового состояния рецептора. При утрате метародопсином способности взаимодействовать с трандуцином и активируется гуанилатциклаза, синтезирующая цГМФ. Гуанилатциклаза активируется падением концентрации кальция, выбрасываемого из клетки белком-обменником. В результате концентрация цГМФ повышается и она вновь связывается с ионным каналом, открывая его. При открытии в клетку идут натрий и кальций, деполяризуя мембрану рецептора, переводя его в темновое состояние, что вновь ускоряет выход медиатора.

Нейроны сетчатки.

Фоторецепторы синаптически связаны с биполярными нейронами. При действии света на медиатор уменьшается выделение медиатора, что приводит к гиперполяризации биполярного нейрона. От биполярного сигнал передаётся на ганглиозный. Импульсы от многих фоторецепторов конвергируют к одному ганглиозному нейрону. Взаимодействие соседних нейронов сетчатки обеспечивается горизонтальными и амакриновыми клетками, сигналы которых меняют синаптическую передачу межде рецепторами и биполярными (горизонтальные) и между биполярными и ганглиозными (амакриновые). Амакриновые клетки осуществляют боковое торможение между соседними ганглиозными клетками. В системе есть и эфферентные волокна, действующие на синапсы между биполярными и ганглиозными клетками, регулируя возбуждение меж ними.

Нервные пути.

1ый нейрон - биполярный.

2ой - ганглиозный. Их отростки идут в составе зрительного нерва, делают частичный перекрёст (необходимо для обеспечения каждого полушария информацией от каждого глаза) и идут в мозг в составе зрительного тракта, попадая в латеральное коленчатое тело таламуса (3ий нейрон). Из таламуса - в проекционную зону коры 17ое поле. Здесь 4ый нейрон.

Зрительные функции.

Абсолютная чувствительность. Для возникновения зрительного ощущения необходимо, чтобы световой раздражитель имел минимальную (пороговую) энергию. Палка может быть возбуждена одним квантом света. Палки и колбы мало различаются по возбудимости, но число рецепторов, посылающих сигналы на одну ганглиозную клетку различно в центре и на периферии.

Зрительная алаптация.

Приспособление зрительной сенсорной системы к условиям яркрй освещённости - световая адаптация. Обратное явление - темновая адаптация. Повышение чувствительности в темноте - поэтапное, обусловленное темновым восстановлением зрительных пигментов. Сначала восстанавливается йодопсин колб. Это мало влияет на чувствительность. Затем восстанавливается родопсин палок, что очень сильно повышает чувствительность. Для адаптации так же важны процессы изменения связей между элементами сетчатки: ослабление горизонтального торможения, приводящее к увеличению числа клеток, посылающее сигналы на ганглиозный нейрон. Влияние ЦНС тоже играет роль. При освещении одного глаза понижает чувствительность другого.

Дифференциальная зрительная чувствительность. По закону Вебера человек различит разницу в освещении, если оно будет сильнее на 1-1,5%.

Яркостной контраст происходит из-за взаимного латерального торможения зрительных нейронов. Серая полоска на светлом фоне кажется темнее серой на тёмном, так как клетки возбуждённые светлым фоном тормозят клетки, возбуждённые серой полоской.

Слепящая яркость света . Слишком яркий свет вызывает неприятное ощущение ослепления. Верхняя граница слепящей яркости зависит от адаптации глаза. Чем дольше была темновая адаптация, тем меньшая яркость вызывает ослепление.

Инерция зрения. Зрительное ощущение появляется и пропадает не сразу. От раздражения до восприятия проходит 0,03-0,1 с. Быстро следующие одно за другим раздражения сливаются в одно ощущение. Минимальная частота следования световых стимулов, при которой происходит слияние отдельных ощущений, называется критической частотой слития мельканий. На этом основано кино. Ощущения, продолжающиеся после прекращения раздражения - последовательные образы (образ лампы в темноте после её выключения).

Цветовое зрение.

Весь видимый спектр от фиолетового (400нм) до красного (700нм).

Теории. Трёхкомпонентная теория Гельмгольца. Цветовое ощущение обеспечиваемое тремя типами колб, чувствительных к одной части спектра (красной, зелёной или синей).

Теория Геринга. В колбах есть вещества чувствительные к бело-чёрному, красно-зелёному и жёлто-синему излучениям.

Последовательные цветовые образы. Если смотреть на окрашенный предмет, а затем на белый фон, то фон приобретёт дополнительный цвет. Причина - цветовая адаптация.

Цветовая слепота. Дальтонизм - расстройство, при котором невозможно различие цветов. При протанопии не различается красный цвет. При дейтеранопии - зелёный. При тританопии - синий. Диагностируется полихроматическими таблицами.

Полная потеря цветовосприятия - ахромазия, при которой всё видится в оттенках серого.

Восприятие пространства.

Острота зрения - максимальная способность глаза различать отдельные детали объектов. Нормальный глаз различает две точки, видимые под углом 1минута. Максимальная острота в области жёлтого пятна. Определяется специальными таблицами.

Слуховая сенсорная система

Служит для восприятия и анализа звуковых колебаний внешней среды частотой 15-20000 Гц (10-11 октав), у детей до 22000 Гц. Состоит из 3 отделов:

· Периферический отдел – состоит из наружного, среднего и внутреннего уха.

Ø Наружное ухо (ушные раковины) является звукоулавливающим аппаратом. Звуковые колебания передаются по наружному слуховому проходу к барабанной перепонке, которая отделяет наружное ухо от среднего.

Ø Среднее ухо является звукопроводящим аппаратом и представляет собой воздушную полость, которая через слуховую (Евстахиеву) трубу соединяется с полостью носоглотки. Колебания от барабанной перепонки через среднее ухо передают 3 соединœенные друг с другом слуховые косточки – молоточек, наковальня и стремечко. Стремечко через перепонку овального окна передает эти колебания жидкости, находящейся во внутреннем ухе – перилимфе.

Ø Внутреннее ухо – звуковоспринимающий аппарат. Оно расположено в пирамидке височной кости и содержит улитку, которая у человека образует 2,5 спиральных витка. Улитковый канал разделœен двумя перегородками (основной мембраной и вестибулярной мембраной) на 3 хода – верхний (вестибулярная лестница) и нижний (барабанная лестница) соединяются и заполнены перилимфой , а средний (перепончатый канал) заполнен эндолимфой и содержит Кортиев орган, в котором находятся механоРц звуковых колебаний – волосковые клетки . Звуки разной частоты возбуждают разные волосковые клетки и разные нервные волокна, ᴛ.ᴇ. осуществляется пространственное кодирование. Увеличение силы звука приводит к увеличению числа возбужденных волосковых клеток и нервных волокон.

· Проводниковый отдел – первый нейрон находится в спиральном узле улитки и получает возбуждение от рецепторов внутреннего уха, затем по его волокнам (слуховой нерв) информация идет ко второму нейрону в продолговатом мозге, затем часть волокон идет к третьему нейрону в среднем мозге, а часть к ядрам промежуточного мозга.

· Корковый отдел – представлен четвертым нейроном, который находится в первичном проекционном слуховом поле в височной области коры больших полушарий и обеспечивает возникновение ощущения, во вторичном слуховом поле происходит обработка звуковой информации – формирование восприятия и опознание информации, затем сведения поступают в третичное поле нижнетеменной зоны, где соединяются с другими формами информации.

Различают костную и воздушную проводимость звука. В обычных условиях у человека преобладает воздушная проведение звуковых колебаний через наружное и среднее ухо к рецепторам внутреннего. При костной проводимости звуковые колебания передаются через кости черепа непосредственно улитке (при нырянии). Нерегулярные звуковые волны формируют ощущение шума, а регулярные, ритмичные волны воспринимаются как музыкальные тоны. Звуки распространяются со скоростью 343м/с при температуре воздуха равной 15-16 о С.

Рис. 21. Схема строения среднего и внутреннего уха. Обозначения: А - наружный слуховой проход; Б - среднее ухо; В - внутреннее ухо; 1 - полукружные каналы (а - верхний; б - задний; в - латеральный); 2 - ампула; 3 - овальное окно; 4 - отолитовый аппарат; 5 -круглое окно; 6 - барабанная лестница; 7 - средняя лестница; 8 - отверстие улитки (геликотерма); 9 -основная мембрана; 10 - вестибулярная лестница; 11 - Евстахиева труба; 12 - барабанная перепонка; M- молоточек; H - наковальня; С - стремечко

Слуховая сенсорная система - понятие и виды. Классификация и особенности категории "Слуховая сенсорная система" 2017, 2018.

Слух является органом чувств человека, который способствует психическому развитию полноценной личности, ее адаптации в социуме. Со слухом связанны звуковые языковые общения. С помощью слухового анализатора человек воспринимает и различает звуковые волны, состоящие из последовательных сгущения и разрежения воздуха.

Слуховой анализатор состоит из трех частей: 1) рецепторного аппарата, содержащегося во внутреннем ухе; 2) проводящих путей, представленных восьмой парой черепно-мозговых (слуховых) нервов; 3) центра слуха в височной доле коры больших полушарий.

Слуховые рецепторы (фонорецепторы) содержатся в улитке внутреннего уха, которая расположена в пирамиде височной кости. Звуковые колебания, прежде чем дойти до слуховых рецепторов, проходят через всю систему звукопроводящих и звукоусиливающих частей.

Ухо - это орган слуха, который состоит из 3-х частей: внешнего, среднего и внутреннего уха.

Наружное ухо состоит из ушной раковины и наружного слухового прохода. Наружное ухо служит для улавливания звуков. Ушная раковина образована эластичным хрящом, снаружи покрыта кожей. Внизу дополнена складкой - мочкой, которая заполнена жировой тканью.

Наружный слуховой проход (2,5 см), где происходит усиление звуковых колебаний в 2-2,5 раза, выслан тонкой кожей с тонкими волосами и видоизмененными потовыми железами, которые вырабатывают ушную серу, состоящий из жировых клеток и содержит пигмент. Волоски и ушная сера выполняют защитную роль.

Среднее ухо состоит из барабанной перепонки, барабанной полости и слуховой трубы. На границе между наружным и средним ухом находится барабанная перепонка, которая внешне покрыта эпителием, а изнутри слуховой оболочкой. Звуковые колебания, которые подходят к барабанной перепонке, заставляют ее колебаться с той же частотой. С внутренней стороны перепонки находится барабанная полость, внутри которой расположены слуховые косточки , соединенные между собой - молоточек, наковальня и стремя . Через системы слуховых косточек колебания барабанной перепонки передаются во внутреннее ухо. Слуховые косточки размещены так, что образуют рычаги, которые уменьшают размах звуковых колебаний и увеличивают их силу.



Барабанная полость соединена с носоглоткой с помощью евстахиевой трубы, которая поддерживает одинаковое давление извне и изнутри на барабанную перепонку.

На рубеже среднего и внутреннего уха является перепонка, которая содержит овальное окно . Стремя прилегает к овальному окну внутреннего уха.

Внутреннее ухо находится в полости пирамиды височной кости и представляет собой костный лабиринт, внутри которого есть перепончатый лабиринт из соединительной ткани. Между костным и перепончатыми лабиринтами содержится жидкость - перилимфа, а внутри перепончатого лабиринта - эндолимфа. В стенке, отделяющей среднее ухо от внутреннего, кроме овального окна, есть еще круглое окно, которое делает возможным колебания жидкости.

Костный лабиринт состоит из трех частей: в центре - преддверие, спереди от него улитка , а сзади - полукружные каналы . Внутри среднего канала улитки, в улитковом ходе содержатся звуковоспринимающий аппарат - спиральный или кортиев орган. Он имеет основную пластинку, которая состоит примерно из 24 тыс. фиброзных волоконец. На основной пластинке вдоль нее в 5 рядов расположены опорные и волосковые чувствительные клетки, которые являются собственно слуховыми рецепторами . Волоски рецепторных клеток омываются эндолимфой и контактируют с покровной пластинкой. Волосковые клетки охватываются нервными волосками улитковой ветви слухового нерва. В продолговатом мозге содержится второй нейрон слухового пути, дальше этот путь идет, в основном перекрещиваясь, к задним буграм четверохолмия, а от них в височную область коры, где расположена центральная часть слухового анализатора.

Для слухового анализатора звук является адекватным раздражителем. Все вибрации воздуха, воды и другого упругого среды делятся на периодические (тоны) и непериодические (шумы). Тона бывают высокие и низкие. Основной характеристикой каждого звукового тона является длина звуковой волны, которой соответствует определенное количество колебаний в секунду. Длину звуковой волны определяют расстоянием, которое проходит звук в секунду, поделенную на количество полных колебаний, осуществляемых тело, которое звучит, в секунду.

Человеческое ухо воспринимает звуковые колебания в пределах 16-20 000 Гц, сила которых выражается в децибелах (дБ). Звуковые колебания частотой более 20 кГц человек не слышит. Это - ультразвуки.

Звуковые волны - это продольные колебания среды. Сила звука зависит от размаха (амплитуды) колебаний воздушных частиц. Звук характеризуется тембром или окраской.

Наибольшую возбудимость ухо имеет к звукам с частотой колебаний от 1000 до 4000 Гц. Ниже и выше этого показателя возбудимость уха снижается.

В 1863 году Гельмгольц предложил резонансную теорию слуха . Воздушные звуковые волны, попадая в наружный слуховой проход, обуславливают колебания барабанной перепонки, далее колебания передаются через среднее ухо. Система слуховых косточек, действуя как рычаг, усиливает звуковые колебания и передает их жидкости, содержащейся между костным и перепончатыми лабиринтами завитки. Звуковые волны могут передаваться и через воздух, содержащийся в среднем ухе.

По резонансной теории, колебания эндолимфы вызывают колебания основной пластинки, волокна которой имеют разную длину, настроенные на разные тона и составляют собой набор резонаторов, которые звучат в унисон различным звуковым колебаниям. Кратчайшие волны воспринимаются у основы улитки, а длинные у верхушки.

Во время колебания соответствующих резонирующих участков основной пластинки колеблются и расположенные на ней чувствительны волосковые клетки. Мельчайшие волоски этих клеток касаются при колебании покровной пластинки и деформируются, что ведет к возбуждению волосковых клеток и проведения импульсов по волокнам улиткового нерва в центральную нервную систему. Поскольку полной изоляции волокон основной мембраны нет, то одновременно начинают колебаться и соседние волокна, что соответствует обертонам. Обертон - звук, число колебаний которого в 2, 4, 8 и т.д. раз превышает число колебаний основного тона.

При длительном воздействии сильных звуков возбудимость звукового анализатора снижается, а при длительном пребывании в тишине возбудимость возрастает. Это адаптация . Наибольшая адаптация наблюдается в зоне более высоких звуков.

Чрезмерный шум не только ведет к потере слуха, но и вызывает психические нарушения у людей. Специальными опытами на животных доказана возможность появления "акустического шока " и "акустических коряг", порой смертельных.

6. Болезни уха и гигиена слуха. Профилактика негативного влияния "школьного" шума на организм школьника

Воспаление уха - отит . Чаще всего встречается отит среднего уха - опасная болезнь, потому что рядом с полостью среднего уха - головной мозг и его оболочки. Отит чаще всего возникает как осложнение гриппа, острых респираторныхзаболеваний; инфекция из носоглотки может перейти по евстахиевой трубе в полость среднего уха. Отит протекает как тяжелое заболевание и проявляется сильными болями в ухе, высокой температурой тела, сильной головной болью, значительным снижением слуха. При упомянутых признаках необходимо немедленно обратиться к врачу. Профилактика отита: лечение острых и хронических болезней носоглотки (аденоидов, насморка, гайморита). Если возник насморк, нельзя сильно сморкаться, чтобы инфекция через евстахиеву трубу попала в среднее ухо. Нельзя сморкаться одновременно обеими половинами носа, а надо делать это поочередно, прижимая крыло носа к носовой перегородки.

Глухота - полная потеря слуха на одно или оба уха. Она может быть приобретенной или врожденной.

Приобретенная глухота чаще всего является следствием двустороннего отита среднего уха, который сопровождался разрывом обеих барабанных перепонок или тяжелому воспалению внутреннего уха. Глухота может быть вызвана тяжелыми дистрофическими поражениями слуховых нервов, которые часто связаны с профессиональными факторами: шумом, вибрацией, действием паров химических веществ или с травмами головы (например, в результате взрыва). Частой причиной глухоты является отосклероз - болезнь, при которой слуховые косточки (особенно стремя) становятся неподвижными. Эта болезнь была причиной глухоты у выдающегося композитора Людвига Ван Бетховена. К глухоте может привести бесконтрольное применение антибиотиков, которые негативно действуют на слуховой нерв.

Врожденная глухота связана с врожденным нарушением слуха. причинами которого могут быть вирусные болезни матери во время беременности (краснуха, корь, грипп), бесконтрольное употребление ею некоторых лекарств, особенно- антибиотиков, употребление алкоголя, наркотиков, курения. Рожденный глухой ребенок, никогда не слыша речи, становится глухонемым.

Гигиена слуха - система мер, направленная на охрану слуха, создание оптимальных условий для деятельности слухового анализатора, способствует нормальному его развитию и функционированию.

Различают специфическое и неспецифическое действие шума на организм человека. Специфическое действие проявляется в нарушениях слуха разной степени, неспецифическое - в различных отклонениях в деятельности ЦНС, расстройствах вегетативной реактивности, эндокринных расстройствах, функциональном состоянии сердечно-сосудистой системы и пищеварительного тракта. У лиц молодого и среднего возраста при уровне шума 90 дБ (децибел), который длится в течение часа, снижается возбудимость клеток коры головного мозга, ухудшаются координация движений, острота зрения, устойчивость ясного видения, удлиняется латентный период зрительной и слухомоторных реакций. По такой же продолжительности работы в условиях воздействия шума, уровень которого составляет 96 дБ, наблюдается еще более резкие нарушения корковой динамики, фазовые состояния, запредельной торможения, расстройства вегетативной реактивности. Ухудшаются показатели мышечной работоспособности (выносливости, утомляемости) и показатели труда. Работа в условиях воздействия шума, уровень которого - 120 дБ, может вызвать нарушения в виде астенических неврастеническим проявлений. Появляются раздражительность, головные боли, бессонница, расстройства эндокринной системы. Происходят изменения в сердечно-сосудистой системе: нарушается тонус сосудов и ритм сердечных сокращений, возрастает или снижается артериальное давление.

На взрослых и особенно детей чрезвычайно негативное влияние (неспецифический и специфический) производит шум в помещениях, где включены на полную громкость радиоприемники, телевизоры, магнитофоны и тому подобное.

Сильно влияет шум на детей и подростков. Изменение функционального состояние слухового и других анализаторов наблюдается у детей под влиянием "школьного" шума, уровень интенсивности которого в основных помещениях школы колеблется от 40 до 110 дБ. В классе уровень интенсивности шума в среднем составляет 50-80 дБ, во время перерывов может достигать 95 дБ.

Шум, который не превышает 40 дБ, не вызывает негативных изменений в функциональном состоянии нервной системы. Изменения заметны при воздействии шума, уровень которого составляет 50-60 дБ. Согласно данным исследований, решения математических задач требует при шумовой громкости 50 дБ на 15-55%, 60 дБ - на 81 -100% больше времени, чем к действию шума. Ослабление внимания школьников в условиях воздействия шума указанной громкости достигало 16%. Снижение уровней "школьного" шума и его неблагоприятного воздействия на здоровье учащихся достигается благодаря ряду комплексных мероприятий:строительных, технических и организационных.

Так, ширина "зеленой зоны" со стороны улицы должна быть не менее 6 м. Целесообразно вдоль этой полосы на расстоянии не менее 10 м от здания посадить деревья, кроны которых задерживать распространение шума.

Важное значение в уменьшении "школьного" шума имеет гигиенически правильное расположение учебных помещений в здании школы. Мастерские, спортивные залы размещаются на первом этаже в отдельном крыле или пристройке.

Гигиеническим стандартам, направленным на сохранение зрения и слуха учащихся и учителей, должны отвечать размеры учебных помещений: длина (размер от доски до противоположной стенки) и глубина классных комнат. Длина классной комнаты, не превышает 8 м, обеспечивает ученикам с нормальной остротой зрения и слуха, которые сидят на последних партах, четкое восприятие речи учителя и ясное видение того, что написано на доске. По первым и вторыми партами (столами) в любом ряду отводятся места для учащихся с ослабленным слухом, поскольку речь воспринимается от 2 до 4 м, а шепот - от 0,5 до 1 м. Восстановить функциональное состояние слухового анализатора и предупредить сдвиги в других физиологических системах организма подростка помогают небольшие перерывы (10-15 мин.).

Звуковых сигналов (звуковых излучений) внешней среды (главным образом, колебания воздуха с разной частотой и силой), в том числе речевых сигналов. Эта функция реализуется с учас­тием - важнейшего компонента , который прошел сложный путь эво­люции.

Слуховая сенсорная система состоит из следующих разделов:

  • периферический отдел, который представляет собой сложный специализированный орган, состоящий из наружного, среднего и внутреннего уха;
  • проводниковый отдел - первый нейрон проводникового отдела, находящийся в спиральном узле улитки, получает от рецепторов внутреннего уха, отсюда информация поступает по его волокнам, т. е. по слуховому нерву (входящему в 8 пар черепно-мозговых нервов) ко второму нейрону в продолговатом мозге и после перекреста часть волокон идет к третьему нейрону в заднем двухолмии , а часть к ядрам - внутреннему коленчатому телу;
  • корковый отдел - представлен четвертым нейроном, который находится в первичном (проекционном) слуховом поле и области коры и обеспечивает возникновение ощущения, а более сложная обработка звуковой информации происходит в расположенном рядом вторичном слуховом поле, отвечающем за формирование восприятия и опознание информации. Полученные сведения поступают в третичное поле нижнетеменной зоны, где интегрируются с другими формами информации

Читайте также: