Электроэнцефалография - что это такое? Как проводится электроэнцефалография? Пробы во время ЭЭГ. Использование ЭЭГ в научных целях

11.02.2002

Момот Т.Г.

    Чем обусловлена необходимость проведения электроэнцефалографического исследования?

    Необходимость применения ЭЭГ обусловлена тем, что её данные должны учитываться как у здоровых людей при профессиональном отборе, особенно у лиц, работающих в стрессовых ситуациях или с вредными условиями производства, так и при обследовании пациентов для решения дифференциально-диагностических задач, что особенно важно на ранних стадиях заболевания для выбора наиболее эффективных методов лечения и контроля за проводимой терапией.

    Каковы показания к проведению электроэнцефалографии?

    Несомненными показаниями к проведению обследования следует считать наличие у больного: эпилепсии, неэпилептических кризовых состояний, мигрени, объёмного процесса, сосудистого поражения головного мозга, черепно-мозговой травмы, воспалительного заболевания головного мозга.

    Кроме того, и в других случаях, представляющих затруднение для лечащего врача, больной также может быть направлен на электроэнцефалографическое обследование; часто многократные повторные обследования ЭЭГ проводятся для контроля действия лекарственных препаратов и уточнения динамики заболевания.

    Что включает в себя подготовка пациента к обследованию?

    Первое требование при проведении ЭЭГ-обследований - ясное понимание электрофизиологом его целей. Например, если врачу необходима лишь оценка общего функционального состояния ЦНС обследование проводится по стандартному протоколу, если необходимо выявить эпилептиформную активность или наличие локальных изменений индивидуально меняются время исследования и функциональные нагрузки, может быть применена длительная мониторинговая запись. Поэтому, лечащий врач, направляя пациента на электроэнцефалографическое исследование, должен собрать анамнез больного, обеспечить, при необходимости, предварительное его обследование у рентгенолога и офтальмолога и четко сформулировать основные задачи диагностического поиска нейрофизиологу. При проведении стандартного исследования нейрофизиологу на этапе первичной оценки электроэнцефалограммы необходимо иметь данные о возрасте и состоянии сознания пациента, а дополнительная клиническая информация может влиять на объективную оценку тех или иных морфологических элементов.

    Как добиться безупречного качества записи ЭЭГ?

    Эффективность компьютерного анализа электроэнцефалограммы зависит от качества ее регистрации. Безупречная запись ЭЭГ - залог ее последующего корректного анализа.

    Регистрация ЭЭГ проводится только на заранее откалиброванном усилителе. Калибровка усилителя производится согласно прилагаемой к электроэнцефалографу инструкции.

Для проведения обследования пациент удобно располагается в кресле или укладывается на кушетку, на его голову надевается резиновый шлем и накладываются электроды, которые подсоединены к электроэнцефалографическому усилителю. Более подробно эта процедура описана ниже.

    Схема расположения электродов.

    Крепление и наложение электродов.

    Уход за электродами.

    Условия регистрации ЭЭГ.

    Артефакты и их устранение.

    Процедура регистрации ЭЭГ.

A. Схема расположения электродов

Для регистрации ЭЭГ используется система расположения электродов "10-20%", включающая 21 электрод, или модифицированная система "10-20%", которая содержит 16 активных электродов с референтным усреднённым общим. Особенностью последней системы, которая используется фирмой "DX системы" является наличие непарного затылочного электрода Оz и непарного центрального Сz. Некоторые версии программы предусматривают систему расположения 16 электродов с двумя затылочными отведениями O1 и О2, при отсутствии Сz и Оz. Заземляющий электрод располагается по центру переднелобной области. Буквенные и цифровые обозначения электродов соответствуют международной схеме расположения "10-20%". Отведение электрических потенциалов осуществляется монополярным способом с усреднённым общим. Преимуществом этой системы является менее трудоёмкий процесс наложения электродов при достаточной информативности и возможность преобразования к любым биполярным отведениям.

B. Крепление и наложение электродов осуществляется в следующем порядке:

    Электроды подсоединяются к усилителю. Для этого штеккеры электродов вставляются в электродные гнезда усилителя.

    На пациента надевается шлем. В зависимости от размеров головы пациента размеры шлема регулируются путем подтягивания и ослабления резиновых жгутов. Места расположения электродов определяются соответственно системе расположения электродов, и на пересечении с ними устанавливаются жгуты шлема. Необходимо помнить, что шлем не должен вызывать у пациента неприятные ощущения.

    Ватным тампоном, смоченным в спирте обезжириваются места, предназначенные для постановки электродов.

    Соответственно обозначениям, указанным на панели усилителя, устанавливаются электроды на предусмотренных системой местах, парные электроды располагаются симметрично. Непосредственно перед постановкой каждого электрода электродный гель наносится на контактирующую с кожным покровом поверхность. Необходимо помнить, что гель, применяемый в качестве проводника, должен быть предназначен для электродиагностики.

C. Уход за электродами.

Особое внимание следует уделить уходу за электродами: после окончания работы с пациентом электроды следует промыть тёплой водой и просушить чистым полотенцем, не допускать изломов и чрезмерного натягивания кабелей электродов, а также попадания воды и физраствора на разъёмы электродных кабелей.

D. Условия регистрации ЭЭГ.

Условия регистрации электроэнцефалограммы должны обеспечивать состояние расслабленного бодрствования пациента: удобное кресло; свето- и звукоизолированная камера; правильное наложение электродов; расположение фонофотостимулятора на расстоянии 30-50 см от глаз исследуемого.

После наложения электродов пациент должен удобно расположиться в специальном кресле. Мышцы верхнеплечевого пояса должны быть расслаблены. Качество записи может быть проверено при включении электроэнцефалографа в режим регистрации. Однако электроэнцефалограф может регистрировать не только электрические потенциалы головного мозга, но и посторонние сигналы (т.н. - артефакты).

E. Артефакты и их устранение.

Наиболее важным этапом применения ЭВМ в клинической электроэнцефалографии является подготовка исходного электроэнцефалографического сигнала, сводимого в память ЭВМ. Основным требованием здесь является обеспечение ввода безартефактной ЭЭГ (Зенков Л.Р., Ронкин М.А., 1991 г.).

Для устранения артефактов необходимо определить их причину. В зависимости от причины возникновения артефакты делятся на физические и физиологические.

Физические артефакты обусловлены техническими причинами, к которым относятся:

    Неудовлетворительное качество заземления;

    Возможное влияние от различной аппаратуры, работающей в медицине (рентгенологическая, физиотерапевтическая и др.);

    Неоткалиброванный усилитель электроэнцефалографических сигналов;

    Некачественое наложение электродов;

    Повреждение электрода (контактирующей с поверхностью головы части и соединительного провода);

    Наводка от работающего фонофотостимулятора;

    Нарушение электропроводимости при попадании воды и физраствора на разъёмы электродных кабелей.

Для устранения неисправностей, связанных с неудовлетворительным качеством заземления, помех от работающей вблизи аппаратуры и работающего фонофотостимулятора, необходима помощь инженера-установщика для правильного заземления медицинской аппаратуры и установки системы.

При некачественном наложении электродов - переустановить их согласно п.Б. настоящих рекомендаций.


Поврежденный электрод необходимо заменить.


Очистить спиртом разъёмы электродных кабелей.


К физиологическим артефактам, которые обусловлены биологическими процессами организма обследуемого относятся:

    Электромиограмма - артефакты движения мышц;

    Электроокулограмма - артефакты движения глаз;

    Артефакты, связанные с регистрацией электрической активности сердца;

    Артефакты, связанные с пульсацией сосудов (при близком расположении сосуда от регистрирующего электрода;

    Артефакты, связанные с дыханием;

    Артефакты, связанные с изменением сопротивления кожных покровов;

    Артефакты, связанные с беспокойным поведением пациента;

Полностью избежать физиологических артефактов не всегда возможно, поэтому если они кратковременны (редкое моргание глаз, напряжение жевательных мышц, непродолжительное беспокойство) - рекомендуется удалять их при помощи специального режима, предусмотренного программой. Главная задача исследователя на этом этапе состоит в правильном распознавании и своевременном удалении артефактов. В некоторых случаях для улучшения качества ЭЭГ используются фильтры.

    Регистрация электромиограммы может быть связана с напряжением жевательных мышц и воспроизводится в виде высокоамплитудных колебаний бета-диапазона в области височных отведений. Аналогичные изменения обнаруживаются при глотании. Определенные трудности возникают и при обследовании пациентов с тикоидными подергиваниями, т.к. происходит наслоение электромиограммы на электроэнцефалограмму, в этих случаях необходимо применить антимускульную фильтрацию или назначить соответствующую медикаментозную терапию.

    Если пациент длительно моргает, можно попросить его самостоятельно лёгким нажатием указательного и большого пальцев держать веки закрытыми. Эту процедуру может осуществлять и медицинская сестра. Окулограмма регистрируется в лобных отведениях в виде билатерально-синхронных колебаний дельта-диапазона, превышающих по амплитуде уровень фона.

    Электрическая активность сердца может регистрироваться преимущественно в левых задневисочных и затылочном отведениях, совпадает по частоте с пульсом, представлена единичными колебаниями тета-диапазона, незначительно превышающих уровень фоновой активности. Заметной погрешности при автоматическом анализе не вызывает.

    Артефакты, связанные с пульсацией сосудов, представлены колебаниями преимущественно дельта-диапазона, превышают уровень фоновой активности и устраняются путём перемещения электрода в соседнюю, не расположенную над сосудом область.

    При артефактах, связанных с дыханием пациента регистрируются регулярные медленноволновые колебания, совпадающие по ритму с дыхательными движениями и обусловленные механическими движениями грудной клетки, чаще проявляющимися во время пробы с гипервентиляцией. Для устранения рекомендуется попросить пациента перейти на диафрагмальное дыхание и избегать посторонних движений во время дыхания.

    При артефактах, связанных с изменением сопротивления кожных покровов, которые могут быть обусловлены нарушением эмоционального состояния пациента регистрируются нерегулярные колебания медленных волн. Для их устранения необходимо успокоить пациента, повторно протереть участки кожи под электродами спиртом и проскарифицировать их мелом.

    Вопрос о целесообразности исследования и возможности применения препаратов у пациентов в состоянии психомоторного возбуждения решается совместно с лечащим врачом индивидуально для каждого пациента.

В тех случаях, когда артефакты представляют собой медленные волны, которые трудно устранить, можно проводить регистрацию с постоянной времени 0,1 сек.

F. Что представляет собой процедура регистрации ЭЭГ?

Процедура регистрации ЭЭГ при обычном обследовании продолжается около 15-20 минут и включает в себя запись "фоновой кривой" и запись ЭЭГ при различных функциональных состояниях. Удобно иметь несколько заранее созданных протоколов регистрации, включающих функциональные тесты разной длительности и последовательности. При необходимости может применяться длительная мониторинговая запись, длительность которой изначально ограничена только резервами бумаги или свободного пространства на диске, где расположена база данных. запись по протоколу. Запись по протоколу может содержать несколько функциональных проб. Индивидуально выбирается протокол исследования или создаётся новый, в котором указывается последовательность проб, их тип и длительность. Стандартный протокол включает пробу с открыванием глаз, 3-х минутную гипервентиляцию, фотостимуляцию на частоте 2 и 10 Гц. При необходимости производится фоно- или фото-стимуляция на частотах до 20 Гц, триггерная стимуляция по заданному каналу. В специальных случаях применяются, кроме того: сжимание пальцев в кулак, звуковые стимулы, приём различных фармакологических препаратов, психологические тесты.

Что представляют собой стандартные функциональные пробы?

Проба "открыть-закрыть глаза" проводится обычно длительностью около 3 секунд с интервалами между последовательными пробами от 5 до 10 секунд. Считается, что открывание глаз характеризует переход к деятельности (большую или меньшую инертность процессов торможения); а закрывание глаз характеризует переход к покою (большую или меньшую инертность процессов возбуждения).

В норме при открывании глаз происходит подавление альфа-активности и усиление (не всегда) бета-активности. При закрывании глаз повышается индекс, амплитуда и регулярность альфа-активности.

Латентный период ответа при открытых и закрытых глазах варьирует от 0,01-0,03 секунд и 0,4-1 секунды соответственно. Считается, что ответ на открывание глаз это переход от состояния покоя к состоянию деятельности и характеризует инертность процессов торможения. А ответ на закрывание глаз - это переход от состояния деятельности к покою и характеризует инертность процессов возбуждения. Параметры ответов у каждого больного обычно стабильны при повторных пробах.

При проведении пробы с гипервентиляцией пациенту необходимо дышать редкими, глубокими вдохами и выдохами в течение 2-3 минут, иногда долее. У детей моложе 12-15 лет гипервентиляция уже к концу 1-ой минуты закономерно приводит к замедлению ЭЭГ, нарастающему в процессе дальнейшей гипервентиляции одновременно с частотой колебаний. Эффект гиперсинхронизации ЭЭГ в процессе гипервентиляции выражен тем отчетливее, чем моложе обследуемый. В норме такая гипервентиляция у взрослых людей не вызывает особых изменений ЭЭГ или иногда приводит к увеличению процентного вклада альфа ритма в суммарную электрическую активность и амплитуды альфа-активности. Следует отметить, что у детей до 15-16 лет появление регулярной медленной высокоамплитудной генерализованной активности при гипервентиляции является нормой. Такая же реакция наблюдается у молодых (до 30 лет) взрослых. При оценке реакции на гипервентиляционную пробу следует учитывать степень и характер изменений, время их появления после начала гипервентиляции и длительность их сохранения после окончания пробы. В литературе нет единого мнения о том, как долго сохраняются изменения ЭЭГ после окончания гипервентиляции. По наблюдениям Н.К.Благосклоновой, сохранение изменений на ЭЭГ дольше 1 минуты следует расценивать как признак патологии. Однако в ряде случаев гипервентиляция приводит к появлению особой формы электрической активности мозга - пароксизмальной. Ещё в 1924 г. О. Foerster показал, что интенсивное глубокое дыхание в течение нескольких минут провоцирует у больных эпилепсией появление ауры или развёрнутого эпилептического припадка. С введением в клиническую практику электроэнцефалографического обследования, было выявлено, что у большого числа больных эпилепсией уже в первые минуты гипервентиляции появляется и усиливается эпилептиформная активность.

Световая ритмическая стимуляция.

В клинической практике анализируется появление на ЭЭГ ритмических ответов разной степени выраженности, повторяющих ритм световых мельканий. В результате нейродинамических процессов на уровне синапсов, кроме однозначного повторения ритма мельканий, на ЭЭГ могут наблюдаться явления преобразования частоты стимуляции, когда частота ответов ЭЭГ выше или ниже частоты стимуляции обычно в чётное количество раз. Важно, что в любом случае возникает эффект синхронизации активности мозга с внешним датчиком ритма. В норме оптимальная частота стимуляции для выявления максимальной реакции усвоения лежит в области собственных частот ЭЭГ, составляя 8-20 Гц. Амплитуда потенциалов при реакции усвоения не превышает обычно 50 мкВ и чаще всего не превосходит амплитуду спонтанной доминирующей активности. Лучше всего реакция усвоения ритма выражена в затылочных отделах, что, очевидно, обусловлено соответствующей проекцией зрительного анализатора. Нормальная реакция усвоения ритма прекращается не позднее чем через 0,2-0,5 секунд по прекращению стимуляции. Характерной особенностью мозга при эпилепсии является повышенная склонность к реакциям возбуждения и синхронизации нейронной активности. В связи с этим на определённых, индивидуальных для каждого обследуемого частотах мозг больного эпилепсией даёт гиперсинхронные высокоамплитудные ответы, называемые иногда фотоконвульсивными реакциями. В ряде случаев ответы на ритмическую стимуляцию возрастают по амплитуде, приобретают сложную форму пиков, острых волн, комплексов пик-волна и других эпилептических феноменов. В некоторых случаях электрическая активность мозга при эпилепсии под влиянием мелькающего света приобретает авторитмический характер самоподдерживающегося эпилептического разряда независимо от частоты стимуляции, вызвавшей его. Разряд эпилептической активности может продолжаться после прекращения стимуляции и иногда переходить в малый или большой эпилептический припадок. Такого рода эпилептические приступы называются фотогенными.

В некоторых случаях используются специальные пробы с темновой адаптацией (пребывание в затемнённом помещении до 40 минут), частичной и полной (от 24 до 48 часов) депривацией сна, а также совместный ЭЭГ и ЭКГ-мониторинг, и мониторинг ночного сна.

Как возникает электроэнцефалограмма?

О происхождении электрических потенциалов мозга.


На протяжении многих лет теоретические представления о происхождении потенциалов мозга неоднократно менялись. В нашу задачу не входит глубокий теоретический анализ нейрофизиологических механизмов генерации электрической активности. Образное высказывание Грея Уолтера о биофизическом значении получаемой электрофизиологом информации приводится в следующей цитате: "Электрические изменения, которые вызывают регистрируемые нами переменные токи разной частоты и амплитуды, возникают в клетках самого мозга. Несомненно, что это их единственный источник. Мозг следует описывать как обширный агрегат электрических элементов, столь же многочисленных, как звёздное население Галактики. В океане мозга вздымаются беспокойные приливы нашего электрического бытия, в тысячи раз относительно более мощные, чем приливы земных океанов. Это происходит при совместном возбуждении миллионов элементов, что делает возможным измерение ритма их повторных разрядов по частоте и амплитуде.

Не известно, что заставляет эти миллионы клеток действовать вместе и что вызывает разряд одной клетки. Мы все еще очень далеки от объяснения этих основных механизмов мозга. Будущие исследования, возможно, откроют перед нами динамическую перспективу удивительных открытий, подобную той, которая открылась перед физиками в их попытках понять атомную структуру нашего бытия. Быть может, как и в физике, эти открытия удастся описать в терминах математического языка. Но уже сегодня, когда мы движемся в русле новых идей, адекватность используемого языка и четкое определение принимаемых нами допущений приобретают возрастающую важность. Арифметика является адекватным языком для описания высоты и времени прилива, однако, если мы хотим предсказать его возрастание и спад, мы должны использовать другой язык, язык алгебры с её специальными символами и теоремами. Сходным образом электрические волны и приливы в мозгу могут быть адекватно описаны с помощью подсчета, арифметики; но, когда наши претензии возрастают и мы хотим понять и предсказать поведение мозга, появляется много неизвестных "иксов" и "игреков" мозга. Необходимо, таким образом, иметь и его алгебру. Некоторым это слово кажется устрашающим. Но оно означает не более чем "соединение кусков сломанного".

Записи ЭЭГ можно рассматривать, следовательно, как частицы, осколки зеркала мозга, его speculum speculorum. Попыткам соединить их с осколками другого происхождения должна предшествовать тщательная сортировка. Электроэнцефалографическая информация приходит, как и обычное донесение, в зашифрованном виде. Вы можете раскрыть шифр, но это еще не означает, что добытая вами информация обязательно будет иметь большое значение...

Функция нервной системы заключается в восприятии, сопоставлении, хранении и генерации многих сигналов. Головной мозг человека представляет собой не только механизм намного более сложный, чем любой другой, но и механизм, имеющий длительную индивидуальную историю. Исследовать в этой связи только частоты и амплитуды компонентов волнистой линии на ограниченном отрезке времени было бы по меньшей мере переупрощением." (Грей Уолтер. Живой мозг. М., Мир, 1966).

Зачем нужен компьютерный анализ электроэнцефалограммы?

Исторически клиническая электроэнцефалография развивалась на основании визуального феноменологического анализа ЭЭГ. Однако уже в начале развития электроэнцефалографии у физиологов возникло стремление оценить ЭЭГ с помощью количественных объективных показателей, применить методы математического анализа.

Сначала обработка ЭЭГ и подсчет разных количественных параметров её производились вручную путём оцифровки кривой и вычисления частотных спектров, различие которых в разных областях объяснялось цитоархитектоникой корковых зон.

К количественным методам оценки ЭЭГ следует отнести также планиметрический и гистографический методы анализа ЭЭГ, выполнявшиеся также путём измерения амплитуды колебаний вручную. Исследование пространственных отношений электрической активности коры головного мозга человека проводилось с применением топоскопа, который давал возможность исследовать в динамике интенсивность сигнала, фазовые отношения активности и проводить выделение выбранного ритма. Применение корреляционного метода для анализа ЭЭГ было впервые предложено и разработано Н. Винером в 30-х годах, а наиболее подробное обоснование применения спектрально-корреляционного анализа к ЭЭГ приведено в работе Г. Уолтера.

С внедрением в медицинскую практику цифровых ЭВМ стало возможным производить анализ электрической активности на качественно новом уровне. В настоящее время наиболее перспективным при изучении электрофизиологических процессов является направление цифровой электроэнцефалографии. Современные методы компьютерной обработки электроэнцефалограммы позволяют проводить детальный анализ различных ЭЭГ-феноменов, просматривать любой участок кривой в увеличенном виде, производить его амплитудно-частотный анализ, представлять полученные данные в виде карт, цифр, графиков, диаграмм и получать вероятностные характеристики пространственного распределения факторов, обусловливающих возникновение на конвекситальной поверхности электрической активности.

Спектральный анализ, получивший наибольшее распространение при анализе электроэнцефалограмм был использован для оценки фоновых стандартных характеристик ЭЭГ в разных группах патологий (Ponsen L., 1977), хронического влияния психотропных препаратов (Saito M., 1981), прогноза при нарушениях мозгового кровообращения (Saimo K. et al., 1983), при гепатогенной энцефалопатии (Van der Rijt C.С. et al., 1984). Особенностью спектрального анализа является то, что он представляет ЭЭГ не в виде временной последовательности событий, а в виде спектра частот за определенный промежуток времени. Очевидно, что спектры будут в тем большей степени отражать фоновые стабильные характеристики ЭЭГ, чем за более длительную эпоху анализа они зарегистрированы в сходных экспериментальных ситуациях. Длительные эпохи анализа предпочтительны также в связи с тем, что в них менее выражены отклонения в спектре, вызванные кратковременными артефактами, если они не имеют значительной амплитуды.

При оценке обобщенных характеристик фоновой ЭЭГ большинство исследователей выбирают эпохи анализа 50 - 100 сек, хотя по данным J. Mocks и T. Jasser (1984), достаточно хорошо воспроизводимые результаты дает и эпоха 20 сек, если производится выбор ее по критерию минимальной активности в полосе 1,7 - 7,5 Гц в отведении ЭЭГ. Относительно надежности результатов спектрального анализа мнения авторов колеблются в зависимости от состава исследованных и конкретных задач, решаемых с помощью этого метода. R. John и др. (1980) пришли к выводу, что абсолютные спектры ЭЭГ у детей ненадежны, и высоковоспроизводимыми являются только относительные спектры, зарегистрированные при закрытых глазах испытуемого. В то же время G. Fein и др. (1983), исследуя спектры на ЭЭГ нормальных и дизлексических детей, пришли к выводу об информативности и большей ценности абсолютных спектров, дающих не только распределение мощности по частотам, но и ее реальное значение. При оценке воспроизводимости спектров ЭЭГ у подростков при повторных исследованиях, первое из которых произведено в возрасте 12,2 года, а второе в 13 лет, обнаружены надежные корреляции только в полосе альфа1 (0,8) и альфа2 (0,72), в то время, как по остальным спектральным полосам воспроизводимость менее надежна (Gasser T. et al., 1985). При ишемическом инсульте из 24 количественных параметров, полученных на основе спектров от 6 отведений ЭЭГ, надежным предсказателем прогноза была только абсолютная мощность локальных дельта-волн (Sainio K. et al., 1983).

В связи с чувствительностью ЭЭГ к изменениям мозгового кровотока ряд работ посвящен спектральному анализу ЭЭГ при транзиторных ишемических атаках, когда изменения, выявляемые ручным анализом, представляются несущественными. V. Kopruner и др. (1984) у 50 здоровых и 32 больных с нарушениями мозгового кровообращения исследовали ЭЭГ в состоянии покоя и при сжимании мячика правой и левой рукой. ЭЭГ подвергали компьютерному анализу с вычислением мощности по основным спектральным полосам. На основе этих исходных данных получаем 180 параметров, которые подвергали обработке по методу мультивариационного линейного дискриминантного анализа. На этой основе получен мультипараметрический показатель асимметрии (МПА), позволивший дифференцировать здоровых и больных, группы больных по тяжести неврологического дефекта и по наличию и размеру поражения на компьютерной томограмме. Наибольший вклад в МПА давали отношения мощности тета к мощности дельта. Дополнительными значимыми параметрами асимметрии были мощность тета и дельта, пиковая частота и связанная с событиями десинхронизация. Авторы отметили высокую степень симметрии параметров у здоровых и главную роль асимметрии в диагностике патологии.

Особый интерес представляет использование спектрального анализа в исследовании мю-ритма, который при визуальном анализе обнаруживается только у небольшого процента лиц. Спектральный анализ в сочетании с техникой усреднения полученных спектров за несколько эпох позволяет выявить его у всех исследуемых.

Поскольку распространение мю-ритма совпадает с зоной кровоснабжения средней мозговой артерии, его изменения могут служить индексом нарушений в соответствующей области. Диагностическими критериями являются различия пиковой частоты и мощности мю-ритма в двух полушариях (Pfurtschillir G., 1986).

Высокую оценку метода вычисления спектральной мощности на ЭЭГ дают C.C. Van der Rijt и др. (1984) при определении стадии печеночной энцефалопатии. Индикатором утяжеления энцефалопатии является снижение средней доминантной частоты в спектре, причем степень корреляции настолько тесная, что позволяет установить классификацию энцефалопатий по этому показателю, оказывающемуся более надежным, чем клиническая картина. В контроле средняя доминантная частота больше или равна 6,4 Гц, а процент тета ниже 35; в I стадии энцефалопатии средняя доминантная частота лежит в том же диапазоне, но количество тета равно или выше 35%, во II стадии средняя доминантная частота ниже 6,4 Гц, содержание тета-волн в том же диапазоне и количество дельта-волн не превосходит 70%; в III стадии количество дельта-волн больше 70%.

Другая область применения математического анализа электроэнцефалограммы методом быстрого преобразования Фурье касается контроля кратковременных изменений ЭЭГ под влиянием некоторых внешних и внутренних факторов. Так, этот метод используется для контроля состояния церебрального кровотока при операциях эндатерэктомии или операциях на сердце, учитывая высокую чувствительность ЭЭГ к нарушениям мозговой циркуляции. В работе M. Myers и др. (1977) ЭЭГ, предварительно пропущенную через фильтр с ограничениями в пределах 0,5 - 32 Гц, переводили в цифровую форму и подвергали быстрому преобразованию Фурье последовательные эпохи длительностью 4 сек. Спектральные диаграммы последовательных эпох располагали на дисплее друг под другом. Результирующая картина представляла собой трехмерный граф, где ось Х соответствовала частоте, Y - времени регистрации и воображаемая координата, соответствующая высоте пиков, отображала спектральную мощность. Метод даёт демонстративное отображение колебаний во времени спектрального состава в ЭЭГ, которое в свою очередь в высокой степени коррелирует с колебаниями мозгового кровотока, определяющегося по артериовенозной разнице давлений в мозге. По заключению авторов, данные ЭЭГ могли быть эффективно использованы для коррекции нарушений мозговой циркуляции во время операции анестезиологом, не специализировавшимся в анализе ЭЭГ.

Метод спектральной мощности ЭЭГ представляет интерес при оценке влияния некоторых психотерапевтических воздействий, психических нагрузок и функциональных проб. Р.Г. Биниауришвили и др. (1985) наблюдали увеличение общей мощности и особенно мощности в полосе дельта- и тета-частот при гипервентиляции у больных эпилепсией. В исследованиях почечной недостаточности оказалась эффективной методика анализа спектров ЭЭГ во время световой ритмической стимуляции. Исследуемым предъявляли последовательные 10-секундные серии вспышек света от 3 до 12 Гц с одновременной непрерывной регистрацией последовательных спектров мощности за эпохи 5 секунд. Спектры размещали в виде матрицы с получением псевдотрёхмерного изображения, в котором время представлено по оси, уходящей от наблюдателя при взгляде сверху, частота - по оси Х, амплитуда - по оси Y. В норме наблюдался чётко очерченный пик на доминантной гармонике и менее четкий на субгармонике стимуляции, постепенно смещавшийся вправо по ходу нарастания частоты стимуляции. При уремии наблюдалось резкое снижение мощности на основной гармонике, преобладание пиков на низких частотах с общей дисперсией мощности. В более точном количественном выражении это проявлялось в снижении активности на более низкочастотных гармониках ниже основной, что коррелировало с ухудшением состояния больных. Наблюдалось восстановление нормальной картины спектров усвоения ритмов при улучшении состояния вследствие диализа или трансплантации почек (Аmel B. et al., 1978). В некоторых работах используют метод выделения определённой интересующей частоты на ЭЭГ.

При исследованиях динамических сдвигов на ЭЭГ используются обычно короткие эпохи анализа: от 1 до10 секунд. Преобразование Фурье обладает некоторыми особенностями, которые отчасти затрудняют согласование получаемых с его помощью данных с данными визуального анализа. Суть их заключается в том, что на ЭЭГ медленные феномены имеют большую амплитуду и длительность, чем высокочастотные. В связи с этим в спектре, построенном по классическому алгоритму Фурье, наблюдается некоторое преобладание медленных частот.

Оценка частотных составляющих ЭЭГ используется для локальной диагностики, так как именно эта характеристика ЭЭГ является одним из главных критериев при визуальном поиске локальных поражений мозга. При этом встаёт вопрос выбора значимых параметров оценки ЭЭГ.

В экспериментально-клиническом исследовании попытки применить спектральный анализ к нозологической классификации поражений мозга, как и следовало ожидать, оказались неуспешными, хотя подтвердилась полезность его как метода выявления патологии и локализации поражения (Mies G., Hoppe G., Hossman K.A.., 1984). В настоящем режиме программы спектральный массив отображается с разной степенью перекрытия (50- 67%) представлен диапазон изменения эквивалентных значений амплитуды (масштаб цветового кодирования) в мкВ. Возможности режима позволяют выводить сразу 2 спектральных массива, по 2-м каналам или полушариям для сравнения. Автоматически масштаб гистограмм рассчитывается так, что белый цвет соответствует максимальному эквивалентному значению амплитуды. Плавающие параметры масштаба цветового кодирования позволяют без зашкала представлять любые данные по любому диапазону, а также сравнивать фиксированный канал с остальными.

Какие методы математического анализа ЭЭГ наиболее распространены?

В основе математического анализа ЭЭГ положено преобразование исходных данных методом быстрого преобразования Фурье. Исходная электроэнцефалограмма после перевода ее в дискретную форму разбивается на последовательные сегменты, каждый из которых используется для построения соответствующего количества периодических сигналов, которые затем подвергают гармоническому анализу. Выходные формы представляются в виде числовых значений, графиков, графических карт, сжатых спектральных областей, ЭЭГ-томограмм и др. (Дж. Бендат, А. Пирсол, 1989, Прикладной анализ случайных данных, гл.11)

Какие основные аспекты применения компьютерной ЭЭГ?

Традиционно ЭЭГ наиболее широко используется при диагностике эпилепсии, что обусловлено нейрофизиологическими критериями, входящими в определение эпилептического припадка как патологического электрического разряда нейронов головного мозга. Объективно зафиксировать соответствующие изменения электрической активности во время припадка можно только электроэнцефалографическими методами. Однако, актуальной остается старая проблема диагностики эпилепсии в случаях, когда непосредственное наблюдение приступа невозможно, данные анамнеза неточны или ненадежны, а данные рутинной ЭЭГ не дают прямых указаний в виде специфических эпилептических разрядов или паттернов эпилептического припадка. В этих случаях использование методов мультипараметрической статистической диагностики позволяет не только получать надежную диагностику эпилепсии из ненадежных клинико - электроэнцефалографических данных, но и решать вопросы необходимости лечения противосудорожными препаратами при черепно-мозговой травме, изолированном эпилептическом припадке, фебрильных судорогах и др. Таким образом, применение автоматических методов обработки ЭЭГ в эпилептологии является в настоящее время наиболее интересным и перспективным направлением. Объективизация оценки функционального состояния головного мозга при наличии у больного пароксизмальных приступов неэпилептического генеза, сосудистой патологии, воспалительных заболеваний головного мозга и др. с возможностью проведения лонгитудинальных исследований позволяет наблюдать динамику развития заболевания и эффективность терапии.

Основные направления математического анализа ЭЭГ могут быть сведены к нескольким главным аспектам:

    Преобразование первичных электроэнцефалографических данных в более рациональную и приспособленную к конкретным лабораторным задачам форму;

    Автоматический анализ частотных и амплитудных характеристик ЭЭГ и элементы анализа ЭЭГ методами распознавания образов, частично воспроизводящими операции, осуществляемые человеком;

    Преобразование данных анализов в форму графиков или топографических карт (Rabending Y., Heydenreich C., 1982);

    Метод вероятностной ЭЭГ-томографии, позволяющий исследовать с определенной долей вероятности местонахождение фактора, обусловившего электрическую активность на скальповой ЭЭГ.

Какие основные режимы обработки содержит программа "DX 4000 practic"?

При рассмотрении различных методов математического анализа электроэнцефалограммы можно показать, какую информацию даёт тот или иной метод нейрофизиологу. Однако, ни один из имеющихся в арсенале методов не может в полной мере осветить всех сторон такого сложного процесса, как электрическая активность головного мозга человека. Только комплекс разных методов позволяет проанализировать закономерности ЭЭГ, описать и количественно оценить совокупность разных её сторон.

Широкое применение получили такие методы как частотный, спектральный и корреляционный анализ, позволяющие оценить пространственно-временные параметры электрической активности. В числе последних программных разработок фирмы "DX-системы" - автоматический анализатор ЭЭГ, определяющий локальные изменения ритмики, отличающиеся от типичной картины для каждого пациента, синхронные вспышки, обусловленные влиянием со стороны срединных структур, пароксизмальную активность с отображением ее очага и путей распространения. Хорошо зарекомендовал себя метод вероятностной ЭЭГ-томографии, позволяющий с определённой степенью достоверности отобразить на функциональном срезе местонахождение фактора, обусловившего электрическую активность на скальповой ЭЭГ. В настоящее время идёт апробирование 3-х мерной модели функционального очага электрической активности с пространственным и послойным отображениях его в плоскостях и совмещением со срезами, принятыми при исследовании анатомических структур головного мозга методами ЯМРТ. Этот метод используется в программной версии "DX 4000 Research".

Всё большее применение в клинической практике при оценке функционального состояния головного мозга находит метод математического анализа вызванных потенциалов в виде картирования, спектрального и корреляционного методов анализа.

Таким образом, развитие цифровой ЭЭГ является наиболее перспективным методом исследования нейрофизиологических процессов головного мозга.

Применение корреляционно-спектрального анализа позволяет исследовать пространственно-временные взаимоотношения ЭЭГ- потенциалов.

Морфологический анализ различных ЭЭГ-паттернов оценивается пользователем визуально, однако возможность его просмотра при различной скорости и масштабе может быть осуществлена программно. Более того, последние разработки позволяют подвергать записи электроэнцефалограмм режиму автоматического анализатора, который оценивает фоновую ритмическую активность, характерную для каждого пациента, отслеживает периоды гиперсинхронизации ЭЭГ, локализацию некоторых патологических паттернов, пароксизмальную активность, источник её возникновения и пути распространения. Регистрация ЭЭГ даёт объективную информацию о состоянии головного мозга при различных функциональных состояниях.

Основными методами компьютерного анализа электроэнцефалограммы, представленными в программе "DX 4000 PRACTIC" являются ЭЭГ-томография, ЭЭГ-картирование и представление характеристик электрической активности головного мозга в виде сжатых спектральных областей, цифровых данных, гистограмм, корреляционных и спектральных таблиц и карт.

Диагностическую ценность при исследовании ЭЭГ имеют короткоживущие (от 10 мсек) и относительно постоянные электроэнценцефалографические паттерны ("электроэнцефалографические синдромы"), а также характерная для каждого человека электроэнцефалографическая картина и ее изменения, связанные с возрастом и (в норме) и при патологии по степени вовлечения в патологический процесс разных отделов мозговых структур. Таким образом, нейрофизиолог должен подвергнуть анализу разные по длительности, но не по значимости ЭЭГ-паттерны, и получить наиболее полную информацию о каждом из них, и об электроэнцефалографической картине в целом. Следовательно, при анализе ЭЭГ-паттерна необходимо учитывать время его существования, так как временной отрезок, подвергаемый анализу должен быть соизмерим с исследуемым ЭЭГ-феноменом.

Виды представления данных быстрого преобразования Фурье зависят от области применения этого метода, также как и интерпретация данных.

ЭЭГ-томография.

Автором данного метода является А.В. Крамаренко. Первые программные разработки проблемной лаборатории "DX-системы" были оснащены режимом ЭЭГ-томографа, и сейчас он уже успешно используется в более чем 250 лечебных учреждениях. Сущность и области практического применения этого метода описаны в работе автора.

ЭЭГ-картирование.

Для цифровой электроэнцефалографии стали традиционными преобразования получаемой информации в виде карт: частотных, амплитудных. Топографические карты отражают распределение спектральной мощности электрических потенциалов. Преимущества этого подхода заключаются в том, что некоторые задачи распознавания, согласно данным психолога, решаются человеком лучше на основе визуально-пространственного восприятия. Кроме того, представление информации в форме картины, воспроизводящей реальные пространственные соотношения в мозге исследуемого, также оцениваются как более адекватное с клинической точки зрения по аналогии с такими методами исследования, как ЯМР и др.

Для получения карты распределения мощности в определенном спектральном диапазоне производят вычисление спектров мощности для каждого из отведений, а затем все значения, лежащие пространственно между электродами, вычисляют методом множественной интерполяции; спектральная мощность в определенной полосе кодируется для каждой точки интенсивностью цвета в заданной цветовой шкале на цветном дисплее. На экране получается изображение головы исследуемого (вид сверху), на котором вариации цвета соответствуют мощности спектральной полосы в соответствующей области (Veno S., Matsuoka S., 1976 ; Ellingson R.J.; Peters J.F., 1981; Buchsbaum M.S. et al., 1982; Matsuoka S., Nedermeyer E., Lopes de Silva F., 1982 ; Ashida H. et al.,1984). K. Nagata и др., (1982), используя систему представления спектральной мощности в основных спектральных полосах ЭЭГ в виде цветных карт, пришли к выводу о возможности получения дополнительной полезной информации с помощью этого метода при исследовании больных с ишемическими нарушениями мозгового кровообращения с афазией.

Те же авторы при исследовании больных, перенесших транзиторные ишемические атаки, установили, что топографические карты дают информацию о наличии остаточных изменений на ЭЭГ даже длительное время спустя после ишемической атаки и представляют некоторое преимущество по сравнению с обычным визуальным анализом ЭЭГ. Авторы отмечают, что субъективно патологические асимметрии в топографических картах воспринимались более убедительно, чем на обычной ЭЭГ, причем диагностические значения имели изменения в полосе альфа - ритма, которые, как известно, наименее опорны при обычном анализе ЭЭГ (Nagata K. et. al., 1984).

Амплитудные топографические карты целесообразны только при исследовании связанных с событиями потенциалов мозга, поскольку эти потенциалы обладают достаточно стабильными фазовыми, амплитудными и пространственными характеристиками, которые могут быть адекватно отражены на топографической карте. Поскольку спонтанная ЭЭГ в любой точке регистрации представляет собой стохастический процесс, то любое мгновенное распределение потенциалов, фиксируемое топографической картой, оказывается нерепрезентативным. Поэтому построение амплитудных карт по заданным полосам спектра более адекватно соответствует задачам клинической диагностики (Зенков Л.Р., 1991).

Медианный режим нормировки включает соответствие цветовой шкалы по средним значениям амплитуды по 16 каналам (с размахом 50 мкВ).

Нормирование по минимуму окрашивает минимальные значения амплитуд наиболее холодным цветом шкалы, а остальные с тем же шагом цветовой шкалы.

Нормирование по максимуму включает окрашивание наиболее теплым цветом участков с максимальными значениями амплитуды, и окрашивание остальных участков более холодными тонами с шагом 50 мкВ.

Шкалы градации частотных карт строятся соответственно.

В режиме картирования возможна мультипликация топографических карт по частотным диапазонам альфа-, бета-, тета-, дельта-; медианной частоте спектра и ее отклонению. Возможность просмотра последовательных топографических карт позволяет определить локализацию источника пароксизмальной активности и пути ее распространения при визуальном и временном (с помощью автоматического таймера) сопоставлении с традиционными ЭЭГ - кривыми. При записи электоэнцефалограммы по заданному протоколу исследования просмотр суммарных карт, соответствующих каждой пробе по четырем частотным диапазонам, дает возможность быстрой и образной оценки динамики электрической активности головного мозга при функциональных нагрузках, выявлению постоянной, но не всегда ярко выраженной асимметрии.

Секторные диаграммы наглядно показывают с отображением цифровых характеристик процентный вклад каждого частотного диапазона в суммарную электрическую активность по каждому из шестнадцати каналов ЭЭГ. Этот режим позволяет объективно оценить преобладание какого-либо из частотных диапазонов и уровень межполушарной асимметрии.

Представление ЭЭГ в виде двухмерного дифференциального закона распределения медианной частоты и амплитуды сигнала. Данные анализа Фурье представляются на плоскости, по горизонтальной оси которой откладывается медианная частота спектра в Гц, а по вертикальной оси - амплитуда в мкВ. Градация цвета характеризует вероятность появления сигнала на выбранной частоте с выбранной амплитудой. Та же информация может быть представлена в виде трехмерной фигуры, по оси Z которой откладывается вероятность. Рядом указывается площадь, занимаемая фигурой в процентах от общей площади. Двумерный дифференциальный закон распределения медианной частоты и амплитуды сигнала строится также для каждого полушария в отдельности. Для сравнения этих изображений вычисляется абсолютная разность этих двух законов распределения и выводится на частотную плоскость. Этот режим позволяет оценить суммарную электрическую активность и грубую межполушарную асимметрию.

Представление ЭЭГ в виде цифровых значений. Представление электроэнцефалограммы в цифровой форме позволяет получить следующую информацию об исследовании: эквивалентные значения средней амплитуды волны каждого частотного диапазона, соответствующие его спектральной плотности мощности (это оценки математического ожидания спектрального состава сигнала на основании Фурье реализаций, эпоха анализа 640 мсек, перекрытие 50%); значения медианной (среднеэффективнодействующей) частоты спектра, вычисленные по усреднённой Фурье реализации, выраженной в Гц; отклонение медианной частоты спектра в каждом канале от его среднего значения, т.е. от математического ожидания (выражается в Гц); среднеквадратичное отклонение эквивалентных значений средней амплитуды поканально в текущем диапазоне от математического ожидания (значения в усреднённой Фурье-реализации, выраженное в мкВ).

Гистограммы. Одним из наиболее распространённых и наглядных способов представления данных анализа Фурье-реализаций являются гистограммы распределения эквивалентных значений средней амплитуды волны каждого частотного диапазона и гистограммы медианной частоты всех каналов. При этом эквивалентные значения средней амплитуды волны каждого частотного диапазона табулируются в 70-ти интервалах шириной 1,82 в промежутке от 0 до 128 мкВ. Иными словами, подсчитывается число значений (соответственно реализаций), принадлежащих каждому интервалу (частота попадания). Этот массив чисел сглаживается фильтром Хэмминга и нормируется относительно максимального значения (после этого максимум в каждом канале есть 1,0). При определении среднеэффективнодействующей (медианной) частоты спектральной плотности мощности значения для Фурье-реализаций табулируются в 70-ти интервалах шириной 0,2 Гц в промежутке от 2 до 15 Гц. Значения сглаживаются фильтром Хэмминга и нормируются относительно максимума. В этом же режиме имеется возможность построения полушарных гистограмм и общей гистограммы. Для полушарных гистограмм берётся 70 интервалов шириной 1,82 мкВ для диапазонов и 0,2 Гц для среднеэффективнодействующей частоты спектра; для общей гистограммы используются значения во всех каналах, а для построения полушарных гистограмм - только значения в каналах одного полушария (каналы Сz и Оz не учитываются ни для одного полушария). На гистограммах отмечается интервал с максимальным значением частоты и указывается, что ему соответствует в мкВ или Гц.

Сжатые спектральные области. Сжатые спектральные области представляют один из традиционных методов обработки ЭЭГ. Суть его заключается в том, что исходная электроэнцефалограмма после перевода ее в дискретную форму разбивается на последовательные сегменты, каждый из которых используется для построения соответствующего количества периодических сигналов, которые затем подвергаются гармоническому анализу. На выходе получаются кривые спектральной мощности, где по оси X отложены частоты ЭЭГ, а по Y - мощность, выделенная на данной частоте за анализируемый отрезок времени. Эпохи длительности составляют 1 секунду, На дисплей выводятся последовательно спектры мощности ЭЭГ, вычерчиваемые один под другим с окрашиванием теплыми цветами максимальных значений. В результате строится на дисплее псевдотрехмерный ландшафт последовательных спектров, которые позволяют наглядно видеть изменения спектрального состава ЭЭГ во времени. Наиболее часто метод оценки спектральной мощности ЭЭГ используется для общей характеристики ЭЭГ в случаях неспецифических диффузных поражений мозга, таких как пороки развития, различного рода энцефалопатии, нарушения сознания, некоторые психиатрические заболевания.
Вторая область применения этого метода - длительное наблюдение за больными в коматозном состоянии или при лечебных воздействиях (Федин А.И., 1981).

Биспектральный анализ с нормированием является одним из специальных режимов обработки электроэнцефалограммы методом быстрого преобразования Фурье и представляет собой повторный спектральный анализ результатов спектрального анализа ЭЭГ в заданном диапазоне по всем каналам. Результаты спектрального анализа ЭЭГ представлены на временных гистограммах спектральной плотности мощности (СПМ) по выбранному частотному диапазону. Этот режим предназначен для изучения спектра колебаний СПМ и его динамики. Биспектральный анализ производится для частот от 0,03 до 0,540 Гц с шагом 0,08 Гц на всем массиве СПМ. Поскольку СПМ - положительная величина, исходные данные для повторного спектрального анализа содержат некоторую постоянную составляющую, которая проявляется в его результатах на низких частотах. Зачастую там находится максимум. Для устранения постоянной составляющей необходимо производить центрирование данных. Для этого предназначен режим биспектрального анализа с центрированием. Суть метода заключается в том, что из исходных данных по каждому каналу вычитается их среднее значение.

Корреляционный анализ. Выполняется построение матрицы коэффициента корреляции значений спектральной плотности мощности в заданном диапазоне для всех пар каналов и на ее основе - вектора средних коэффициентов корреляции каждого канала с остальными. Матрица имеет верхнетреугольный вид. Разметка ее строк и столбцов дает все возможные пары для 16-ти каналов. Коэффициенты для заданного канала находятся в строке и в столбце с его номером. Значения коэффициентов корреляции лежит в диапазоне от -1000 до +1000. Знак коэффициента записывается в клетке матрицы над значениями. Корреляционная связь каналов i, j оценивается по абсолютной величине коэффициента корреляции Rij , и клетка матрицы кодируется соответствующим цветом: белым цветом кодируется клетка коэффициента с максимальным абсолютным значением, а черным - с минимальным. На основе матрицы для каждого канала вычисляется средний коэффициент корреляции с остальными 15-ю каналами. Полученный вектор из 16-ти значений выводится ниже матрицы по тем же принципам.

ВВЕДЕНИЕ В КЛИНИЧЕСКУЮ ЭЛЕКТРОЭНЦЕФАЛОГРАФИЮ

Лаборатория для ЭЭГ-исследований
должна состоять из звукоизолированной, экранированной от электромагнитных волн, светоизолированной комнаты для пациента (камеры) и аппаратной, где размещаются электроэнцефалограф, стимулирующая и анализирующая аппаратура
помещение для ЭЭГ-лаборатории необходимо выбрать в наиболее тихой части здания, подальше от проезжей части улиц, рентгеновских установок, физиотерапевтических аппаратов и других источников электромагнитных помех.

Общие правила проведения ЭЭГ-исследования
Исследования проводятся в утреннее время не ранее чем через два часа после приема пищи, курения.
В день исследования не рекомендуется принимать медикаменты, за три дня надо отменить барбитураты, транквилизаторы, бромиды и другие препараты, изменяющие функциональное состояние ЦНС.
При невозможности отмены лекарственной терапии должна быть сделана запись с названием лекарственного препарата, указаны его доза, время и способ применения.
В помещении, где находится обследуемый, необходимо поддерживать температуру 20-22 Со.
При исследовании обследуемый может лежать или сидеть.
Необходимо присутствие врача, так как применение функциональных нагрузок может в некоторых случаях вызывать развернутый эпилептический припадок, коллаптоидное состояние и т. п., и иметь соответственно набор медикаментов для купирования возникших нарушений.

Количество электродов , наложенных на конвекситальную поверхность черепа должно быть не менее 21. Кроме того, для монополярной регистрации необходимо накладывать щечный электрод, расположенный между круглой мышцей рта и жевательной мышцей. Накладывают также 2 электрода на края глазниц для регистрации движений глаз и электрод заземления. Расположение электродов на голове осуществляют по схеме "десять-двадцать" .

Применяют 6 видов электродов, которые различаются как по форме, так и по способу их фиксации на голове:
1) контактные накладные неприклеивающися электроды, которые прилегают к голове при помощи тяжей шлема-сетки;
2) приклеивающиеся электроды;
3) базальные электроды;
4) игольчатые электроды;
5) пиальные электроды;
6) многоэлектродные иглы.

Электроды не должны иметь собственного потенциала.

Электроэнцефалографическая установка состоит из электродов, соединительных проводов, электродной распределительной коробки с пронумерованными гнездами, коммутационного устройства и некоторого количества каналов регистрации, позволяющих определенное количество независимых друг от друга процессов. При этом необходимо иметь в виду, что
4-канальные электроэнцефалографы непригодны для диагностических целей, так как позволяют выявить только грубые изменения, генерализованные по всей конвекситальной поверхности,
8-12-канальные-пригодны только для общих диагностических целей - оценки общего функционального состояния и выявления грубой очаговой патологии.
Только наличие 16 и более каналов позволяет регистрировать биоэлектрическую активность всей конвекситальной поверхности мозга одновременно, что дает возможность проводить самые тонкие исследования.

Отведение биопотенциалов обязательно осуществляют двумя электродами, так как для их регистрации необходима замкнутая электрическая цепь: первый электрод-усилитель-регистрирующий прибор-усилитель-второй электрод. Источником колебаний потенциала является участок мозговой ткани, лежащий между этими двумя электродами. В зависимости от способа расположения этих двух электродов различают биполярное и монополярное отведения.

Для топической диагностики необходимо большое количество отведений, которые регистрируются в различных комбинациях. С целью экономии времени (так как набор этих комбинаций на селекторе является очень трудоемким процессом) в современных электроэнцефалографах используют заранее фиксированные схемы отведений (монтажные схемы, рутинные программы и т. п.).

Наиболее рациональным для осуществления топического анализа с использованием электроэнцефалографии являются следующие принципы построения монтажных схем:
первая монтажная схема - биполярные отведения с большими межэлектродными расстояниями, схема "десять-двадцать"), соединения электродов в пары по сагиттальным и фронтальным линиям;
вторая - биполярные отведения с малыми межэлектродными расстояниями с соединением электродов в пары по сагиттальным линиям;
третья - биполярные отведения с малыми межэлектродными расстояниями с соединением электродов в пары по фронтальным линиям;
четвертая - монополярные отведения с индифферентными электродами на щеке и по методу Гольдмана;
пятая - биполярные отведения с малыми межэлектродными расстояниями с соединением электродов в пары по сагиттальным линиям и регистрации движений глаз, ЭКГ или кожно-гальванической реакции при проведении нагрузок.

Канал электроэнцефалографа включает в себя усилитель биопотенциалов с большим коэффициентом усиления, позволяющим усиливать биоэлектрическую активность от единицы микровольт до десятков вольт, и большим коэффициентом дискриминации, позволяющим противодействовать электрическим помехам в виде электромагнитных наводок. Усилительный тракт электроэнцефалографа к регистрирующему устройству, имеющему различные варианты. В настоящее время чаще применяют электромагнитные вибраторы с различными методами регистрации (чернильная, штифтовая, струйная, игольчатая), которые позволяют регистрировать колебания в зависимости от параметров регистрирующего устройства до 300Гц.

Так как в ЭЭГ покоя не всегда выявляются признаки патологии, то, как и при других методах функциональной диагностики, в клинической электроэнцефалографии применяются физические нагрузки, некоторые из которых являются обязательными:
нагрузка для оценки ориентировочной реакции
нагрузка для оценки устойчивости к внешним ритмам (ритмическая фотостимуляция).
Обязательной также является нагрузка, эффективная для выявления латентной (компенсированной) патологии, триггерная фотостимуляция - стимуляция в ритмах биоэлектрической активности самого мозга с помощью триггера-преобразователя волновых компонентов электроэнцефалограммы во вспышке света. С целью возбуждения основных ритмов мозга дельта, тета и т. д. (используется метод "задержки" светового стимула.

При расшифровке ЭЭГ необходимо отличать артефакты, а при регистрации ЭЭГ устранять их причины.

Артефакт в электроэнцефолографии - это сигнал экстрацеребрального происхождения, искажающий запись биотоков мозга.

К артефактам физического происхождения относятся
наводка 50 Гц от сетевого тока
шумы ламп или транзисторов
неустойчивость нулевой линии
"микрофонный эффект"
помехи, возникающие из-за движений на голове испытуемого
резкие апериодические движения перьев (штрифов, игл и т. п.), возникающие при загрязнении или окислении контактов переключателей селекторов
появление амплитудной асимметрии, если при отведении от симметричных участков черепа межэлектродные расстояния неодинаковы
фазовые искажения и ошибки при отсутствии выведения перьев (штрифов и пр.) на одну линию

К артефактам биологического происхождения относятся:
мигание
нистагм
дрожание век
зажмуривание
мышечные потенциалы
электрокардиограмма
регистрация дыхания
регистрация медленной биоэлектрической активности у лиц с металлическими зубными протезами
кожно-гальваническая реакция, возникающая при обильном потоотделении на голове

Общие принципы электроэнцефалографии

Достоинствами клинической электроэнцефалографии являются
объективность
возможность непосредственной регистрации показателей функционального состояния мозга количественной оценки получаемых результатов
наблюдения в динамике, что необходимо для прогноза заболевания
большое преимущество этого метода состоит в том, что он не связан с вмешательством в организм обследуемого.

При назначении ЭЭГ-исследования врач-эксперт должен:

1) четко поставить диагностическую задачу с указанием предполагаемой локализации патологического очага и характера патологического процесса;

2) детально знать методику исследования, ее возможности и ограничения;

3) провести психотерапевтическую подготовку больного - разъяснить безвредность исследования, объяснить общий его ход;

4) отменить все препараты, которые изменяют функциональное состояние мозга (транквилизаторы, нейролептики и пр.), если позволяет функциональное состояние больного;

5) требовать максимально полного описания полученных результатов, а не только заключения по исследованию. Для этого врач-эксперт должен понимать терминологию клинической электроэнцефалографии. Описание полученных результатов должно быть стандартизировано;

6) врач, назначивший исследование, должен быть уверен, что исследование ЭЭГ проходило в соответствии со "Стандартным методом исследования в электроэнцефалографии для использования в клинической практике и врачебно-трудовой экспертизе".

Проведение ЭЭГ-исследований повторно, в динамике дает возможность следить за ходом лечения, осуществлять динамическое наблюдение за характером течения заболевания - прогрессированием или стабилизацией его, определить степень компенсации патологического процесса, определить прогноз и трудовые возможности инвалида.

Алгоритм описания электроэнцефалограммы

1. Паспортная часть: номер ЭЭГ, дата исследования, фамилия, имя, отчество, возраст, клинический диагноз.

2. Описание ЭЭГ покоя.
2.1. Описание альфа-ритма.
2.1.1. Выраженность альфа-ритма: отсутствует, выражена вспышками (указать длительность вспышки и длительность интервалов между вспышками), выражена регулярной компонентой.
2.1.2. Распределение альфа-ритма.
2.1.2.1. Для суждения о правильности распределения альфа-ритма используют только биполярные отведения с малыми межэлектродными расстояниями с отведениями по сагиттальным линиям. За правильное распределение альфа-ритма принимают его отсутствие при отведениях с лобно-полюсных-лобных электродов.
2.1.2.2. Область доминирования альфа-ритма указывают на основании сопоставления использованных методов отведения биоэлектрической активности. (Должны быть использованы следующие методы: биполярные отведения с осуществлением связи между электродами по сагиттальным и фронтальным линиям по методу обратных фаз по большим и малым межэлектродным расстояниям, монополярные отведения с усредненным электродом по Голдману и с распределением индифферентного электрода на щеке).
2.1.3. Симметрия альфа-ритма. Определяют симметрию альфа-ритма по амплитуде и частоте в симметричных участках мозга на монополярных монтажных схемах регистрации ЭЭГ с применением усредненного электрода по Голдману или с расположением индифферентного электрода на щеке.
2.1.4. Образ альфа-ритма веретенообразный с хорошо выраженными веретенами, т. е. модулированный по амплитуде (на стыках веретен альфа-ритма нет); веретенообразный с плохо выраженными веретенами, т. е. недостаточно модулированный по амплитуде (на стыках веретен наблюдаются волны с амплитудами более 30% от максимальной амплитуды альфа-ритма); машиноподобный или пилообразный, т. е. не модулированный по амплитуде; пароксизмальный - веретено альфа-ритма начинается с максимальной амплитуды; аркообразный - большая разница в полупериодах.
2.1.5. Форма альфа-ритма: не искажена, искажена медленной активностью, искажена электромиограммой.
2.1.6. Наличие гиперсинхронизации волн альфа-ритма (синфазных биений в различных областях мозга и их количество на единицу времени (за эпоху анализа принимают 10 с.))
2.1.7. Частота альфа-ритма, ее стабильность.
2.1.7.1. Частоту альфа-ритма определяют на случайных односекундных отрезках ЭЭГ на протяжении всего времени регистрации и выражают в виде средней величины (при наличии смены частоты при сохранении стабильности периодов указывают на смену частот доминирующего ритма).
2.1.7.2. Стабильность часто оценивают на основании крайних значений периодов и выражают в виде отклонений от основной средней частоты. Например, (10ё2) колеб./с. или (10ё0, 5)колеб./с.
2.1.8. Амплитуда альфа-ритма. Амплитуду ритма определяют на монополярных схемах записи ЭЭГ с использованием усредненного электрода по Голдману или при отведении с большими межэлектродными расстояниями в центрально-затылочных отведениях. Амплитуду волн измеряют от пика до пика без учета наличия изоэлектрической линии.2.1.9. Индекс альфа-ритма определяют в отведениях с наибольшей выраженностью этого ритма независимо от способа отведения биоэлектрической активности (эпохой анализа индекса ритма является 10 с.).
2.1.9.1. Если альфа-ритм выражен регулярной компонентой, то его индекс определяют на 10 полных кадрах ЭЭГ и вычисляют среднюю величину.
2.1.9.2. При неравномерном распределении альфа-ритма его индекс определяют за время всей записи ЭЭГ-покоя.
2.1.10. Отсутствие альфа-ритма отмечают всегда на первом месте (см. 2.1.1).
2.2. Описание доминирующих и субдоминмрующих ритмов.
2.2.1. Доминирующую активность описывают по правилам описания альфа-ритма (см. 2.1).
2.2.2. Если альфа-ритм имеется, но есть и другая частотная компонента, представленная в меньшей степени, то после описания альфа-ритма (см. 2.1.) ее описывают по тем же правилам как субдоминирующую.
При этом необходимо иметь в виду, что полоса регистрации ЭЭГ делится на ряд диапазонов: до 4 Гц (дельта-ритм), от 4 до 8 Гц (тета-ритм), от 8 до 13 Гц (альфа-ритм), от 13 до 25 Гц (низкочастотный бета-ритм или бета-1-ритм), от 25 до 35 Гц (высокочастотный бета-ритм или бета-2-ритм), от 35 до 50 Гц (гамма-ритм или бета-3-ритм). При наличии низкоамплитудной активности также необходимо указывать на наличие апериодичной (полиритмичной) активности. Для простоты словесного описания следует выделять плоскую ЭЭГ, низкоамплитудную медленную полиморфную активность (НПМА), полиритмичную активность и высокочастотную низкоамплитудную ("махристую") активность.
2.3. Описание бета-активности (бета-ритма).
2.3.1. При наличии бета-активности, только в лобных отделах мозга или на стыках веретен альфа-ритма, при условии симметричных амплитуд, асинхронного апериодического образа, при амплитуде не выше 2-5 мкВ бета-активность не описывают или характеризуют как норму.
2.3.2. При наличии следующих явлений: распределении бета-активности по всей конвекситальной поверхности, появлении очагового распределения бета-активности или бета-ритма, асимметрии более 50% амплитуды, появлении альфа-подобного образа бета-ритма, увеличении амплитуды более 5 мкВ - бета-ритм или бета-активность описывают по соответствующим правилам (см. 2.1, 2.4, 2.5).
2.4. Описание генерализованной (диффузной) активности.
2.4.1. Частотная характеристика вспышек и пароксизмов.
2.4.2. Амплитуда.
2.4.3. Длительность вспышек и пароксизмов во времени и частота их следования.
2.4.4. Образ генерализованной активности.
2.4.5. Каким ритмом (активностью) вспышки или пароксизмы искажены.
2.4.6. Топическая диагностика фокуса или основного очага генерализованной активности.
2.5. Описание очаговых изменений ЭЭГ.
2.5.1. Топическая диагностика очага поражения.
2.5.2. Ритм (активность) локальных изменений.
2.5.3. Образ локальных изменений: альфа-подобный образ, регулярная компонента, пароксизмы.
2.5.4. Чем искажены локальные изменения ЭЭГ.
2.5.5. Количественная характеристика изменений: частота, амплитуда, индекс.

3. Описание реактивной (активационной) ЭЭГ. 3.1. Одиночная вспышка света (ориентировочная нагрузка).
3.1.1. Характер изменений биоэлектрической активности: депрессия альфа-ритма, экзальтация альфа-ритма, другие изменения частоты и амплитуды (см. раздел Учебного пособия).
3.1.2. Топическое распределение изменений биоэлектрической активности.
3.1.3. Длительность изменений биоэлектрической активности.
3.1.4. Скорость угашения ориентировочной реакции при применении повторных раздражителей.
3.1.5. Наличие и характер вызванных ответов: отрицательные медленные волны, появление бета-ритма.
3.2. Ритмическая фотостимуляция (РФС).
3.2.1. Диапазон усвоения ритма.
3.2.2. Характер реакции усвоения ритма (РУР).
3.2.3. Амплитуда усвоенного ритма по отношению к фоновой активности: выше фона (отчетливая), ниже фона (неотчетливая).
3.2.2.2. Длительность РУР по отношению ко времени стимуляции: кратковременная, длительная, длительная с последствием.
3.2.2.3. Симметричность по полушариям.
3.2.3. Топическое распределение РУР.
3.2.4. Возникновение гармоник и их частная характеристика.
3.2.5. Возникновение субгармоник и их частотная характеристика.
3.2.6. Возникновение ритмов, некратных частоте световых мельканий.
3.3. Триггерная фотостимуляция (ТФС).
3.3.1. Частотный диапазон, возбуждаемый ТФС.
3.3.2. Топика появившихся изменений.
3.3.3. Количественная характеристика изменений: частота, амплитуда.
3.3.4. Характер возбуждаемой активности: спонтанные волны, вызванные ответы.
3.4. Гипервентиляция (ГВ).
3.4.1. Время от начала нагрузки до появления изменений биоэлектрической активности.
3.4.2. Топика изменений.
3.4.3. Количественная характеристика изменений биоэлектрической активности: частота, амплитуда.
3.4.4. Время возврата к фоновой активности.
3.5. Фармакологические нагрузки.
3.5.1. Концентрация воздействия (в мг на 1 кг массы тела больного).
3.5.2. Время от начала воздействия до появления изменений биоэлектрической активности.
3.5.3. Характер изменений биоэлектрической активности.
3.5.4. Количественная характеристика изменений: частота, амплитуда, длительность.

4. Заключение.
4.1. Оценка тяжести изменений ЭЭГ. Изменения ЭЭГ в пределах нормы, умеренные, средней тяжести, значительные изменения, тяжелые изменения ЭЭГ.
4.2. Локализация изменений.
4.3. Клиническая интерпретация.
4.4. Оценка общего функционального состояния мозга.

Безболезненный и достаточно эффективный метод исследования головного мозга – электроэнцефалография (ЭЭГ). Впервые он был применён ещё в 1928 году Гансом Бергером, но его до сих пор используют в клинике. Направляют на него пациентов при определённых показаниях, для того чтобы диагностировать различные патологии головного мозга. ЭЭГ практически не имеет противопоказаний. Благодаря тщательно разработанной методике проведения, компьютерной расшифровке полученных данных, она помогает клиницисту вовремя распознать болезнь и назначить эффективное лечение.

Показания и противопоказания к проведению ЭЭГ

Электроэнцефалография позволяет диагностировать заболевание головного мозга, оценить его течение в динамике и реакцию на лечение.

Биоэлектрическая активность мозга отражает состояние бодрствования, метаболизм, гемо- и ликвородинамику. Она имеет свои возрастные особенности, но при патологических процессах она значительно отличается от нормы, поэтому с помощью ЭЭГ можно выявить наличие поражения головного мозга.

Этот метод исследования безопасен, его применяют для выявления различных заболеваний головного мозга даже у новорожденных. Эффективна ЭЭГ для диагностики патологий у пациентов, находящихся без сознания или в коме. С помощью современных аппаратов, компьютерной обработки данных электроэнцефалография отображает:

  • функциональное состояние головного мозга;
  • наличие поражения головного мозга;
  • локализацию патологического процесса;
  • динамику состояния мозга;
  • характер патологических процессов.

Эти данные помогают клиницисту провести дифференциальную диагностику и назначить оптимальный терапевтический курс. В дальнейшем с помощью ЭЭГ наблюдают, как протекает лечение. Наиболее эффективна электроэнцефалография для диагностики таких патологий:

  • эпилепсия;
  • сосудистые поражения;
  • воспалительные заболевания.

При подозрении на патологию клиницист с помощью ЭЭГ выявляет:

  • диффузное это поражение мозга или очаговое;
  • сторону и локализацию патологического очага;
  • поверхностное это изменение или глубинное.

Кроме того, ЭЭГ используют при мониторном наблюдении за развитием заболевания, эффективностью лечения. Во время нейрохирургических операций прибегают к особому методу записи биопотенциалов головного мозга – электрокортикографии. В этом случае запись ведётся с помощью погружённых в мозг электродов.

Электроэнцефалография относится к наиболее безопасным и неинвазивным методам изучения функционального состояния головного мозга. Её используют для регистрации биопотенциалов головного мозга при разных уровнях сознания у пациента. Если нет биоэлектрической активности, это свидетельствует о смерти мозга.

ЭЭГ является эффективным диагностическим инструментом, когда нет возможности проверить рефлексы, расспросить больного. Её основные достоинства:

  • безвредность;
  • неинвазивность;
  • безболезненность.

Противопоказаний к проведению процедуры нет. Нельзя самостоятельно пытаться расшифровать электроэнцефалограмму. Это должен делать только специалист. Даже неврологу и нейрохирургу необходима подробная расшифровка. Неверная интерпретация данных приведёт к тому, что лечение будет неэффективным.

Если пациент определит у себя более тяжёлое заболевание, чем есть на самом деле, то нервное перенапряжение значительно усугубит состояние его здоровья.

Проводить процедуру должен врач-нейрофизиолог. Поскольку слишком много внешних факторов могут повлиять на полученные данные, разработана специальная методика проведения.

Как проводят ЭЭГ


Для проведения ЭЭГ на голову обследуемого надевают специальную шапочку с электродами.

Чтобы избежать влияния внешних раздражителей, ЭЭГ делают в свето-, звукоизолированном помещении. Перед процедурой нельзя:

  • принимать успокоительное;
  • быть голодным;
  • находиться в состоянии нервного возбуждения.

Для регистрации биопотенциалов используют сверхчувствительный прибор – электроэнцелограф. На голову пациента по общепринятой схеме прикрепляют электроды. Они могут быть:

  • пластинчатые;
  • чашечные;
  • игольчатые.

Для начала записывают фоновую активность. В это время пациент находится в удобном кресле в положении полулёжа, с закрытыми глазами. Потом для расширенного определения функционального состояния мозга делают провокационные пробы:

  1. Гипервентиляция. Пациент делает глубокие дыхательные движения 20 раз в минуту. Это приводит к алкалозу, сужению кровеносных сосудов головного мозга.
  2. Фотостимуляция. Проба со световым раздражителем проводится с помощью стробоскопа. Если реакция отсутствует, то нарушена проводимость зрительных импульсов. Наличие на ЭЭГ патологических волн свидетельствует о повышенной возбудимости корковых структур, а длительное раздражение светом провоцирует возникновение истинных судорожных разрядов, может возникнуть фотопароксизмальная реакция, характерная для эпилепсии.
  3. Проба со звуковым раздражителем. Она, как и световая проба, необходима для дифференциации истинных, истерических или симуляционных зрительных и слуховых расстройств.

Проведение процедуры детям до 3-летнего возраста затруднено из-за их неспокойного состояния, невыполнения инструкций. Вот поэтому методика проведения электроэнцефалографии у них имеет свои особенности:

  1. Грудничков исследуют на пеленальном столике. Если ребёнок бодрствует, то он должен находиться на руках у взрослого с приподнятой головкой или же сидя (после 6 месяцев).
  2. Для выявления альфа-подобного ритма необходимо привлечь внимание ребёнка с помощью игрушки. Он должен зафиксировать на ней взгляд.
  3. В крайнем случае ЭЭГ делают при выходе грудничка из медикаментозного сна.
  4. Пробу с гипервентиляций проводят детям старше 1 года в игровой форме, предлагают подуть на горячий чай или просят надуть воздушный шарик.

Полученные данные электроэнцефалографист анализирует, и расшифровку передаёт клиницисту. Невролог или нейрохирург перед тем как поставить окончательный диагноз смотрят не только на результаты ЭЭГ, но и назначают другие исследования ( , ликвора), оценивают рефлексы. При подозрении на опухоль рекомендуют или КТ. Визуализирующие методы диагностики более точно определяют локализацию органического поражения мозга.

Заключение

Показаниями к проведению электроэнцефалографии является подозрение на эпилепсию, опухоль, диффузные поражения мозга. Она отражает функциональное состояние центральной нервной системы, тем самым помогает неврологу или нейрохирургу в постановке точного диагноза, мониторинге эффективности. Проводит обследование и интерпретирует полученные данные с учётом возрастных особенностей пациента электроэнцефалографист.

Медицинский обучающий фильм «Электроэнцефалография»:

Врач функциональной диагностики Ю. Крупнова рассказывает об ЭЭГ:

Загадок в человеческом организме много, и не все пока подвластны медикам. Самая сложная и запутанная из них, пожалуй, головной мозг. Приоткрыть завесу тайны помогают врачам различные методы исследования мозга, например электроэнцефалография. Что это такое и чего ждать от процедуры пациенту?

Кому назначается обследование методом электроэнцефалографии

Электроэнцефалография (ЭЭГ) позволяет уточнить многие диагнозы, связанные с инфекциями, травмами и нарушениями работы головного мозга.

Врач может направить на обследование, если:

  1. Есть вероятность эпилепсии. Мозговые волны в этом случае показывают особую эпилептиформную активность, которая выражается в измененной форме графиков.
  2. Требуется установить точное местонахождение травмированного участка мозга или опухоли.
  3. Имеются некоторые генетические заболевания.
  4. Есть серьезные нарушения режима сна и бодрствования.
  5. Нарушена работа сосудов головного мозга.
  6. Нужна оценка эффективности проводимого лечения.

Метод электроэнцефалографии применим как у взрослых, так и у детей, он нетравматичный и безболезненный. А четкая картина работы нейронов мозга в разных его участках дает возможность прояснить характер и причины неврологических нарушений.

Метод исследования мозга электроэнцефалография - что это?

Такое обследование базируется на регистрации биоэлектрических волн, испускаемых нейронами коры головного мозга. При помощи электродов активность нервных клеток улавливается, усиливается и прибором переводится в графический вид.

Полученная кривая характеризует процесс работы разных участков мозга, его функциональное состояние. В нормальном состоянии она имеет определенную форму, а отклонения диагностируются с учетом изменения внешнего вида графика.

ЭЭГ может выполняться в различных вариантах. Помещение для него изолировано от посторонних звуков и света. Обычно процедура занимает 2-4 часа и проводится в поликлинике или лаборатории. В некоторых случаях проведение электроэнцефалографии с депривацией сна требует большего времени.

Метод позволяет врачам получить объективные данные о состоянии головного мозга, даже когда пациент находится в бессознательном состоянии.

Как проводится ЭЭГ головного мозга

Если врачом назначена электроэнцефалография, что это такое для пациента? Ему предложат сесть в удобном положении или прилечь, наденут на голову фиксирующий электроды шлем из эластичного материала. Если запись предполагается длительная, то в местах соприкосновения электродов с кожей наносится специальная проводящая паста или коллодий. Электроды не доставляют каких-либо неприятных ощущений.

ЭЭГ не предполагает каких-либо нарушений целостности кожи либо введения лекарственных средств (премедикации).

Рутинная запись мозговой активности происходит для пациента в состоянии пассивного бодрствования, когда он спокойно лежит или сидит с закрытыми глазами. Это довольно сложно, время тянется медленно и нужно бороться со сном. Лаборант периодически проверяет состояние пациента, просит открывать глаза и выполнять определенные задания.

Во время исследования пациент должен свести к минимуму любую двигательную активность, которая создавала бы помехи. Хорошо, если в лаборатории удается зафиксировать интересующие медиков неврологические проявления (судороги, тики, эпилептический припадок). Иногда приступ у эпилептиков провоцируется целенаправленно, чтобы понять его тип и происхождение.

Подготовка к проведению ЭЭГ

Накануне исследования стоит вымыть голову. Волосы лучше не заплетать и не использовать какие-либо средства для укладки. Заколки и зажимы оставить дома, а длинные волосы собрать в хвост, если требуется.

Дома стоит оставить и металлические украшения: серьги, цепочки, пирсинг с губ и бровей. Перед тем как войти в кабинет, отключить мобильный телефон (не только звук, а совсем), чтобы не создавать помех чувствительным датчикам.

Перед обследованием нужно поесть, чтобы не испытывать чувства голода. Желательно избегать любых волнений и сильных переживаний, но принимать какие-либо успокоительные препараты не следует.

Может понадобиться салфетка или полотенце, чтобы стереть остатки фиксирующего геля.

Пробы во время ЭЭГ

Для того чтобы отследить реакцию нейронов головного мозга в различных ситуация, и расширить показательные возможности метода, обследование электроэнцефалография включает несколько тестов:

1. Проба на открывание-закрывание глаз. Лаборант убеждается, что пациент в сознании, слышит его, выполняет инструкции. Отсутствие паттернов на графике в момент открывания глаз говорит о патологии.

2. Проба с фотостимуляцией, когда во время записи в глаза пациенту направляют вспышки яркого света. Таким образом выявляется эпилептиморфная активность.

3. Проба с гипервентиляцией, когда испытуемый в течение нескольких минут произвольно глубоко дышит. Частота дыхательных движений в это время немного снижается, но повышается содержание кислорода в крови и, соответственно, увеличивается подача оксигенированной крови в мозг.

4. Депривация сна, когда пациент погружается в непродолжительный сон с помощью седативных препаратов или остается в стационаре для суточного наблюдения. Это позволяет получить важные данные об активности нейронов в момент пробуждения и засыпания.

5. Стимуляция умственной активности заключается в решении несложных задач.

6. Стимуляция мануальной активности, когда пациенту предлагают выполнить задание с предметом в руках.

Все это дает более полную картину функционального состояния головного мозга и заметить нарушения, которые имеют незначительное внешнее проявление.

Продолжительность проведения электроэнцефалограммы

Время процедуры может быть разным в зависимости от целей, поставленных врачом, и условий конкретной лаборатории:

  • 30 минут и более, если удается быстро зарегистрировать искомую активность;
  • 2-4 часа в стандартном варианте, когда пациент обследуется полулежа в кресле;
  • 6 и более часов при ЭЭГ с депривацией дневного сна;
  • 12-24 часа, когда исследуются все фазы ночного сна.

Запланированное время процедуры может быть изменено на усмотрение врача и лаборанта в любую сторону, ведь если отсутствуют характерные паттерны, соответствующие диагнозу, ЭЭГ придется повторять, потратив лишнее время и средства. А если все необходимые записи получены, нет смысла мучить пациента вынужденным бездействием.

Для чего нужен видеомониторинг во время ЭЭГ

Иногда электроэнцефалография головного мозга дублируется видеозаписью, на которой фиксируется все, что происходит во время исследования с пациентом.

Видеомониторинг назначается больным эпилепсией, чтобы соотнести, как поведение во время приступа соотносится с мозговой активностью. Сопоставление по таймеру характерных волн с картинкой может прояснить пробелы в диагнозе и помочь врачу разобраться в состоянии испытуемого для более точного лечения.

Результат электроэнцефалографии

Когда пациенту проведена электроэнцефалография, заключение выдается на руки вместе с распечатками всех графиков волновой активности различных участков головного мозга. Кроме этого, если проводился и видеомониторинг, запись сохраняется на диске или флеш-накопителе.

На консультации у невролога лучше показать все результаты, чтобы врач мог оценить особенности состояния пациента. Электроэнцефалография головного мозга не является основанием для диагноза, но значительно проясняет картину заболевания.

Чтобы на графиках четко были видны все мельчайшие зубцы, рекомендуется хранить распечатки в расправленном виде в твердой папке.

Шифровка от мозга: виды ритмов

Когда пройдена электроэнцефалография, что показывает каждый график - понять самостоятельно крайне сложно. Врач поставит диагноз на основе изучения изменений активности участков мозга во время исследования. Но если ЭЭГ была назначена, то причины были вескими, и осознанно подойти к своим результатам не помешает.

Итак, у нас на руках распечатка таеого обследования, как электроэнцефалография. Что это такое - ритмы и частоты - и как определить границы нормы? Основные показатели, которые фигурируют в заключении:

1. Альфа-ритм. Частота в норме колеблется в пределах 8-14 Гц. Между большими полушариями может наблюдаться разница до 100 мкВ. Патологию альфа-ритма характеризуют асимметрия между полушариями, превышающая 30 %, показатель амплитуды выше 90 мкВ и ниже 20.

2. Бета-ритм. В основном фиксируется на передних отведениях (в лобных долях). Для большинства людей типична частота 18-25 Гц с амплитудой не выше 10 мкВ. О патологии говорит увеличение амплитуды свыше 25 мкВ и стойкое распространение бета-активности на задние отведения.

3. Дельта-ритм и Тета-ритм. Фиксируются только во время сна. Появление данных активностей в период бодрствования сигнализирует о нарушении питания тканей мозга.

5. Биоэлектрическая активность (БЭА). Нормальный показатель демонстрирует синхронность, ритмичность, отсутствие пароксизмов. Отклонения проявляются при эпилепсии раннего детского возраста, предрасположенности к судорогам и депрессии.

Чтобы результаты исследования были показательными и информативными, важно соблюдать в точности назначенную схему лечения, не отменяя препараты перед исследованием. Исказить картину может принятый накануне алкоголь или энергетические напитки.

Для чего нужна электроэнцефалография

Для пациента преимущества проведения исследования очевидны. Врач может проверить корректность назначенной терапии и поменять ее в случае необходимости.

У страдающих эпилепсией, когда наблюдением установлен период ремиссии, ЭЭГ может показать ненаблюдаемые внешне приступы, которые все еще требуют медикаментозного вмешательства. Или избежать необоснованных социальных ограничений, уточнив особенности течения болезни.

Исследование также может содействовать ранней диагностике новообразований, сосудистых патологий, воспалений и дегенераций мозга.

Цель:

· Умение регистрации электроэнцефалограммы и принципы анализа.

· Изучении внешнего электрического поля мозга при помощи ЭЭГ.

· Значение для генеза ЭЭГ взаимосвязи электрической активности пирамидных нейронов.

Основные вопросы темы:

1.Какие методы используется для регистраций ЭЭГ?

2.Основные типы электрической активности пирамидных нейронов.

3.Какие современные модели используется в ЭЭГ?

4.Какое значение имеет взаимосвязь электрической активности пирамидных нейронов.

5.Какое важное условие генеза ЭЭГ?

Методы обучения и преподования: Работа группах

Краткое содержание по теме

Исследование рабочих свойств центральной нервной системы производится при помощи специальных нейрофизиологических методов. Одним из основных является электроэнцефалография , позволяющая регистрировать суммарную активность нейронов коры головного мозга, представляющую собой колебательный процесс в частотном диапазоне в основном от 1 до 30-40 колебаний в секунду и регулирующуюся глубинными мозговыми структурами. Таким образом, по картине активности коры головного мозга возможно оценить и ее самое, и степень подкорковых влияний на процесс ее формирования.

Электроэнцефалография (ЭЭГ) (электро- + др.-греч. ενκεφαλος - "головной мозг" + γραφω - "пишу", изображать) - раздел электрофизиологии, изучающий закономерности суммарной электрической активности мозга, отводимой с поверхности кожи головы, а также метод записи таких потенциалов. Электроэнцефалография дает возможность качественного и количественного анализа функционального состояния головного мозга и его реакций при действии раздражителей. Запись ЭЭГ широко применяется в диагностической и лечебной работе (особенно часто при эпилепсии), в анестезиологии, а также при изучении деятельности мозга, связанной с реализацией таких функций, как восприятие, память, адаптация и т. д. Регистрация ЭЭГ осуществляется с помощью новейшего 32-канального электроэнцефалографа «Нейрон-Спектр-5» (рис-1). Многоканальная запись ЭЭГ позволяет одновременно регистрировать электрическую активность всей поверхности мозга, что дает возможность проводить самые тонкие исследования.

Достоинствами метода электроэнцефалографии являются объективность, воз-можность непосредственной регистрации показателей функционального состояния мозга, количественной оценки получаемых результатов, наблюдения в динамике. Большое преимущество этого метода состоит в том, что он не связан с вмешатель-ством в организм обследуемого.

Метод ЭЭГ является наиболее адекватным для изучения нейрофизиологиче-ских основ психической деятельности, оценки зрелости центральной нервной системы и общего функционального состояния мозга. Когерентный анализ ЭЭГ позволяет оценить степень согласованности электрической активности в разных точках головного мозга, что даёт возможность исследования особенностей функционирования мозга как единого целого.

ЭЭГ является клиническим методом исследования, позволяющим диагности-ровать эпилепсию, выявить возможные дегенеративные, опухолевые поражения головного мозга, установить их локализацию (рис.2).

Начало изучению электрических процессов мозга было положено Д. Реймоном в 1849 году, который показал, что мозг, также как нерв и мышца, обладает электрогенными свойствами. Начало электроэнцефалографическим исследованиям положил В. В. Правдич-Неминский, опубликовав 1913 году первую электроэнцефалограмму записанную с мозга собаки. В своих исследованиях он использовал струнный гальванометр. Так же Правдич-Неминский вводит термин электроцереброграмма.

Рис. 1.

Первая запись ЭЭГ человека получена австрийским психиатром Гансом Бергером в 1928 году. Он же предложил запись биотоков мозга называть «электроэнцефалограмма». Работы Бергера, а также сам метод энцефалографии получили широкое признание лишь после того как в мае 1934 года Эдриан и Мэттьюс впервые убедительно продемонстрировали «ритм Бергера» на собрании Физиологического общества в Кембридже.

Регистрация ЭЭГ производится специальными электродами (наиболее распространенные мостиковые, чашечковые и игольчатые). В настоящее время чаще всего используется расположение электродов по международным системам «10-20 %» или «10-10 %». Каждый электрод подключен к усилителю. Для записи ЭЭГ может использоваться или бумажная лента или сигнал может преобразовываться с помощью АЦП и записываться в файл на компьютере. Наиболее распространена запись с частотой дискретизации 250 Гц. Запись потенциалов с каждого электрода осуществляется относительно нулевого потенциала референта, за который принимается мочка уха, или кончик носа. В настоящее время получают все большее распространение перерасчет потенциала относительно взвешенного среднего референта, за который принимается все каналы с определенными весовыми коэффициентами. При таком расчете возможные артефакты локализуются, а влияние соседних отведений друг на друга уменьшается.

Рис. 2.

Показания для ЭЭГ:

  • черепно-мозговые травмы - для оценки функционального состояния мозга и судорожной готовности;
  • проведение ЭЭГ в динамике для оценки эффективности противосудорожной терапии;
  • синдром вегетативной дисфункции с паническими вегетативными пароксизмами;
  • дифференциальная диагностика тсинкопальных состояний с целью исключения эпилептической активности.

В зависимости от частоты колебаний выделяется несколько ритмических рисунков электрической активности мозга – ритмов. Так, альфа–ритм, в большинстве случаев наиболее широко представленный в электроэнцефалограмме взрослого человека, имеет частотный диапазон от 8 до 13 колебаний в секунду и тесно связан в своем происхождении с системой зрительного восприятия. Поэтому он наиболее отчетлив он при закрытых глазах, то есть в состоянии ее максимального покоя, и лучше всего выражен в затылочных отделах, то есть там, где располагается высший отдел анализа зрительной информации. Наиболее высокочастотная часть электрической активности мозга, превышающая рамки альфа–ритма по частоте, именуется бета-активностью. Амплитуда ее, как правило, невысока и выражена она в противовес альфа-ритму, больше лобной и височной проекциях. Эта высокочастотная активность чаще всего рассматривается как признак активной работы многочисленных ансамблей нервных клеток. Альфа и бета активностью оканчивается ряд ритмических рисунков, характерных для взрослого человека в состоянии покоя, однако выделяются еще два варианта мозговой активности – тета и дельта. Тета-диапазон – более медленный в сравнении с альфа, от 7 до 5 колебаний в секунду. Дельта-волна еще медленнее, в секундном отрезке записи она может уместиться лишь 1-4 раза. Для такого рода медленной активности в состоянии бодрствования имеется в медицинской практике синоним – патологическая, то есть связанная с патологией, или – заболеванием, мозга. Ритмический рисунок мозговой активности существенно меняется с возрастом. Так, со второго полугодия сначала появляется, а затем постепенно начинает преобладать в картине активности альфа-ритм. Интересные метаморфозы происходят с медленной активностью. Патологической она считается только для взрослых в состоянии бодрствования. У детей наличие медленных волн в электроэнцефалограмме является нормальным, а вот представленность их отчетливо уменьшается с возрастомю. Большинство имеющихся экспериментальных данных говорит о том, что генез ЭЭГ определяется в основном электрической активностью коры больших полушарий головного мозга, а на уровне клеток – активностью ее пирамидных нейронов. У пирамидных нейронов выделяют два типа электрической активности. Импульсный разряд (потенциал действия) с длительностью около 1 мс и более медленное (градуальное ) колебание мембранного потенциала – тормозные и возбуждающие постсинаптические потенциалы (ПСП). Тормозные ПСП пирамидных клеток генерируются в основном в теле нейрона, а возбуждающие ПСП – преимущественно в дендритах. Правда, на теле нейрона имеется определенное количество возбуждающих синапсов, и соответственно этому тело пирамидных нейронов(сома) способно генерировать также и возбуждающие ПСП. Длительность ПСП пирамидных клеток по крайней мере на порядок больше продолжительности импульсного разряда.

Изменение мембранного потенциала обусловливают возникновение в пирамидных клетках двух токовых диполей, отличающихся по цитологической локализации (рис3).

Один из них – соматический диполь с дипольным моментом . Он формируется при изменении мембранного потенциала тела нейрона; ток в диполе и во внешней среде протекает между сомой и дендритным стволом. Вектор дипольного момента при импульсном разряде или генерации в теле нейрона возбуждающего ПСП направлен от сомы вдоль дендритного ствола, а тормозной ПСП создает соматический диполь с противоположным направлением дипольного момента. Другой диполь, называемый дендритным, возникает в результате генерации возбуждающих ПСП на ветвлении апикальных дендритов в первом, плексиморным слое коры; ток в этом дипооле течет между дендритным стволом и указанным ветвлением. Вектор дипольного момента дендритного диполя имеет направление в сторону сомы вдоль дендритного ствола.

Генерация возбуждающего ПСП в районе дендритного ствола без ветвления приводит к появлению квадруполя, поскольку при этом от частично деполяризованного участка ток внутри клетки распространяется в двух противоположных направлениях, в результате чего формируются два диполя с противоположным напрвлением дипольных моментов . Так как диполи малы по сравнению с расстояниями до точек отведения ЭЭГ, внешним полем квадрупольного генератора пирамидных клеток можно пренебречь.

На (рис 4) изображена полученная пространственная структура электрического поля вдоль дендритного ствола и вокруг на расстоянии около 0,01 мм от продольной оси этого ствола. Оказалось, что внешнее поле пирамидного нейрона при импульсном разряде очень резко уменьшается вдоль дендритного ствола: уже на расстоянии около 0,3 мм потенциал падает практически до нуля. В противоположность этому внеклеточное ПСП характеризуется гораздо большей протяженностью (примерно на порядок), и, следовательно, при этой активности пирамидные клетки имеют гораздо более высокий дипольный момент. Это различие находит обьяснение при рассмотрении пассивных электрических свойств дендритного ствола.

По отношению к потенциалу действия ввиду его кратковременности

Рис.3. мембрана дендрита ведет себя как емкость, обладающая низким сопротивлением току высокой частоты. Поэтому ток, обусловленный импульсной активностью, циркулирует на небольшом расстоянии от тела клетки; емкость мембраны шунтирует отдаленные участки ствола. Действительно, по данным микроэлектродных исследований, внешнее электрическое поле пирамидных нейронов, генерируемое потенциалом действия, не обнаруживается рис.4.

уже на расстояниях выше 0,1 мм. таким образом, ЭЭГ должна в основном создаваться «медленным» соматическим и дендритным диполями, возникающими при генерации тормозных и возбуждающих постсинаптических потенциалов.

При изучении внешнего электрического поля мозга регистрируют и интерпретируют переменный сигнал ЭЭГ, а постоянную составляющую, как правило, не принимают во внимание. Как видно на(рис. 5), ЭЭГ фоновой активности мозга представляет собой весьма сложную зависимость разнсти потенциалов от времени и выглядит как совокупность случайных колебаний разности потенциалов. Для характеристики таких хаотических колебаний («шумов») используют параметры, известные из теории вероятности: среднюю величину и стандартное отклонение от средней величины. Чтобы наити , выделяют

участок на ЭЭГ, который разбивают на небольшие равные интервалы времени, и в конце каждого интервала (t i , t j , t m на рис. 74) определяют напряжение U (U i , U j , U m на рис. 74). Стандартное отклонение рассчитывают по обычной формуле: , (1.1)

в которой - среднеарифметическое значение разности потенциалов; - число отсчетов . При отведении ЭЭГ от твердой мозговой оболочки величина для фоновой активности составляет 50-100 мкВ.

Аналогичная характеристика (стандартное

Рис.5. отклонение) используется и для описания градуальной активности отдельных нейронов . При изучении ритмических ЭЭГ, характеризующихся определенной амплитудой и частотой изменение разности потенциала, показателем величины ЭЭГ может служить амплитуда этих колебаний.

В настоящее время в исследованиях ЭЭГ для моделирования электрической активности коры головного мозга рассматривают поведение совокупности токовых электрических диполей отделных нейронов. Предложено несколько таких моделей, позволяющих объяснить отделные особенности ЭЭГ. Рассмотрим модель М. Н. Жадина, которая на примере генеза ЭЭГ при отведении с твердой мозговой оболочки позволяет выявить общие закономерности возникновения суммарного внешнего электрического поля коры.

Основные полежения модели: 1) внешнее поле головного мозга в некоторой точке регистрации – интегрированное поле, генерируемое токовыми диполями нейронов коры; 2) генез ЭЭГ обусловен градуальной электрической активностью пирамидных нейронов; 3) активность разных пирамидных нейронов в определенной степени взаимосвязана (скорелирована); 4) нейроны распределены по коре равномерно и их дипольные моменты перпендикулярны к поверхности коры; 5) кора плоская, имеет конечную толчину , а ее остальные размеры бесконечны; со стороны черепа мозг ограничен плоской бесконечной токонепроводящей средой. Обоснование первых двух положений расмотрено выше. Остановимся на друних положениях модели.

Очень большое значение для генеза ЭЭГ имеет взаимосвязь электрической активности пирамидных нейронов. Если бы градуальное изменение мембранного потенциала во времени происходило в каждом нейроне совершенно независимо от остальных клеток, переменная составляющая потенциала их суммарного внешнего электрического поля была бы неболшой, так как увеличение потенциала за счет усиления активности одного нейрона в значительной мере скомпенсировалось бы хаотическим снижением активности других нейронов. Сравнительно высокая величина регистрируемой в опыте ЭЭГ заставляет предположить, что между активностями пирамидных нейронов существует положительная кореляция . Количественно это явление характеризуют коэффициентом корреляции . Этот коэффициент равен нулю при отсутствии связи между активностями индвидуальных нейронов и был бы равен единице, если бы изменение мембранного потенциала (дипольных моментов) клеток происходили совершенно синхронно. Наблюдаемое в действительности промежуточное значение свидетельствует о том, что деятельность нейронов синхронизована лишь частично.

Интегрированное поле множества диполей-нейронов было бы очень слабым при высоком уровне синхронизации, если бы векторы дипольных моментов элементарных источников тока были ориентированы в коре хаотически. В этом случае наблюдалась бы значительная взаимная компенсация полей индивидуальных нейронов. В действительности же, согласно цитологическим данным, дендритные стволы пирамидных клеток в новой коре (эти клетки составляют 75% от всех клеток коры) ориентированы практически одинакова, перпендикулярно поверхности коры. Поля, создаваемые диполями таких одинакова ориентированных клеток, не компенсируются, а складываются. Расчеты, произведенные на оснований всех этих положений, показали, что для ЭЭГ, отводимой от твердой мозговой оболочки,

Читайте также: