Белковый обмен в организме человека. Что происходит с белком в организме человека: особенности метаболизма. Углеводно-жировой обмен: особенности метаболизма

Метаболизм организма – сложная и многоуровневая система, он базируется на потреблении с пищей и трансформации в организме белков, а также углеводов и жиров, а также витаминов, минералов и многих других компонентов. Если питание не сбалансировано по определенным компонентам, до определенного уровня организм выравнивает этот дисбаланс за счет использования иных компонентов. Так, тесно взаимосвязаны жировой белковый обмен , при дефиците жиров для энергетических нужд могут использовать белки тела. Не менее значим и углеводно-жировой обмен, при избыточном потреблении углеводов, в теле они переходят в жировые молекулы, откладываясь про запас. Почему же нельзя длительно потреблять несбалансированную пищу?

Жировой белковый обмен: особенности

Белки являются основным строительным материалом в организме для клеток, белковых молекул, ферментов, антител и многих иных необходимых веществ. Жиры также выполняют строительные функции, но наряду с этим они также еще и основной источник энергии для тела. Жировой и белковый обмен тесно связаны между собой, дефицит тех или иных компонентов приводит к сбоям метаболизма. Если в организме имеется избыток белка, он не может трансформироваться в жиры с виллу особенностей молекул. Белковая нагрузка ложится на почки и печень, при этом жиры выполняют основные энергетические функции. Если же в организме существует дефицит жиров для получения энергии, тогда в ход могут идти белки для получения энергии. В этом случае жировой, белковый обмен становится несовершенным, так как белки не самое лучшее топливо для тела. Прежде всего, при сгорании одного грамма белка получается в несколько раз меньше энергии, чем такого же количества жира. Кроме того, использование белков в качестве топлива приводит к образованию достаточно большого количества промежуточных и токсичных соединений, отравляющих организм. Поэтому важно, чтобы в организм поступало достаточное количество и белков, и жировых молекул.

Углеводно-жировой обмен: особенности метаболизма

Не менее важен и полноценный углеводно-жировой обмен , так как углеводы также дают достаточно энергии для тела и тесно связаны с образованием и расщеплением жиров. Избыточное поступление в организм глюкозы с превышением ее концентрации в плазме крови, приводит к усилению синтеза из нее жиров с отложением их про запас. Поэтому у людей, которые потребляют много сладостей, нарушается углеводно-жировой обмен с формированием избыточного веса, страдают эндокринные функции и обмен веществ. Если же глюкозы в организме критически мало, запускаются процессы липолиза, жировые молекулы претерпевают целый ряд процессов, при которых организм синтезирует глюкозу для расходования на нужды тела.

Однако, процесс расщепления жиров с образованием из них глюкозы также не лишен недостатков. В процессе метаболизма образуются промежуточные продукты, которые при недостаточной активности пени и ферментных систем могут приводить к расстройству обменных процессов и страданию самочувствия. Поэтому, углеводно-жировой обмен должен поддерживаться на оптимальном уровне за счет равномерного поступления и углеводных компонентов пищи и жировых. Совершенно недопустимо в питании ограничивать одни вещества за счет повышения количества других. Не стоит ограничивать потребление жиров за счет усиления белкового питания, равно как нельзя и ограничивать количество углеводов ниже физиологических норм.

Для того, чтобы поддерживать метаболические процессы на физиологическом уровне, необходимо придерживаться суточных норм по потреблению как белков, углеводных компонентов и жировых, так и по калорийности. В этом случае всех поступающих с пищей веществ хватит для осуществления полноценного метаболизма и не будет происходить перекосов в синтезе и расщеплении тех или иных необходимых телу компонентов.

Белки - одна из важнейших групп макромолекул в организме человека, представленных в целом разнообразии форм: клеточные рецепторы, сигнальные молекулы, структурные элементы, ферменты, переносчики кислорода и углекислого газа (гемоглобин) - и это далеко не полный список. Белок является составной частью костей, мышц, связок, служит для роста и восстановления тканей организма.

Помимо этих функций, белки также могут использоваться в качестве источника энергии. Важной особенностью метаболизма белков является неспособность организма хранить их про запас, потому очень важно постоянно употреблять белки с пищей.

Описание метаболизма белков в организме человека

Метаболизм белков начинается в желудке. Когда богатая белком пища попадает в желудок, ее «встречает» фермент пепсин и соляная кислота (HCl, 05%), которая обеспечивает уровень рН 1,5 - 3,5, в котором белки денатурируются. Под воздействием пепсина белки распадаются на полипептиды и составляющие их аминокислоты.

Когда химус (пищевая кашица) попадает в тонкий кишечник, поджелудочная железа выделяет сок с содержанием бикарбоната натрия (соды), который нейтрализует соляную кислоту. Это помогает защитить оболочку кишечника.

Организм синтезирует нужные ему белки из аминокислот, которые мы получаем из продуктов питания, а ненужные белки превращаются в глюкозу или триглицериды и используются для поддержания энергии или увеличения энергетического резерва организма.

Также в тонком кишечнике выделяются пищеварительные гормоны, в том числе секретин и холецистокинин, которые стимулируют дальнейшее расщепление белков. Секретин также стимулирует секрецию сока поджелудочной железы, которая также вырабатывает большинство пищеварительных ферментов, в т.ч. протеазу, трипсин, химотрипсин и эластазу, которые способствуют перевариванию белков.

Вместе эти ферменты «разбивают» сложные белки на отдельные аминоксилоты, которые транспортируются через слизистую кишечника и используются для синтеза новых белков или конвертации в жиры или ацетил-коэнзим А и используются в цикле Кребса .

Роль пищеварительных ферментов и гормонов в метаболизме белков

Ферменты в желудке и тонком кишечнике расщепляют белки на аминокислоты. НСl в желудке способствует протеолизу, а секретируемые клетками кишечника гормоны регулируют процесс пищеварения.

Чтобы белки поджелудочной железы и тонкого кишечника не расщеплялись, поджелудочная железа также вырабатывает неактивные проферменты, которые активируются только в тонком кишечнике. В поджелудочной железе внутри везикул содержится трипсин, химитрипсин в форме трипсиногена и химотрипсиногена.

После попадания в тонкий кишечник фермент, находящийся в стенках тонкого кишечника (энтерокиназа), связывается с трипсиногеном и превращает его в активную форму - трипсин. После этого трипсин связывается с химотрипсиногеном и конвертирует его в активную форму - химотрипсин.

Трипсин и химиотрипсин расщепляют большие белки на меньшие пептиды в процессе протеолиза. Эти небольшие пептиды расщепляются на составляющие аминокислоты, которые транспортируются через апикальную поверхность слизистой кишечника при помощи транпортеров аминокислот.

Эти транспортеры связывают натрий и аминокислоту, после чего переносят ее через оболочку. На базальной поверхности клеток слизистой оболочки натрий и аминокислота высвобождаются. Натрий может повторно использоваться в качестве транспортера, а аминокислоты проникают в кровоток и транспортируются к печени и во все клетки организма для синтеза белков.

Свободные аминокислоты используются для синтеза новых белков. В случае избытка аминокислот организм, не имея механизма их хранения, конвертирует их в глюкозу или кетоны или же расщепляет. В результате расщепления аминокислот образуются углеводороды и азотистые шлаки. Однако азот в высоких концентрациях токсичен, потому в ходе орнитинового цикла он обрабатывается, что способствует выведению азота из организма.

Свободные аминокислоты используются для синтеза новых белков. В случае избытка аминокислот организм, не имея механизма их хранения, конвертирует их в глюкозу или кетоны или же расщепляет.

Орнитиновый цикл - цикл образования мочевины

Орнитиновый цикл - это комплекс биохимический реакций, в результате которого из ионов аммония образуется мочевина с целью предотвращения повышения концентрации аммония в организме до критического уровня. Цикл в большей степени протекает в печени, и в меньшей - в почках.

До начала орнитинового цикла ионы аммония образуются в результате расщепления аминокислот вследствие переноса аминогруппы с аминокислоты на кетокислоту.

В результате такого трансаминирования образуется молекула, необходимая для цикла Кребса, и ион аммония, который входит в орнитиновый цикл и выводится из организма, объединяясь с СО 2 , в результате чего образуется мочевина и вода. В свою очередь, мочевина выводится почками в составе мочи.

Аминокислоты также могут использоваться в качестве источника энергии, в особенности в период голодания. Поскольку в процессе обработки аминокислот образуются промежуточные продукты метаболизма, в том числе пировиноградная кислота, ацетил-коэнзим А, ацетоацетил-КоА, оксалоацетат и альфа-кетоглутарат, аминокислоты могут служить источником энергии, выделяемой в ходе цикла Кребса.

Таким образом, образующиеся в результате метаболизма белков аминокислоты используются либо для синтеза необходимых организму белков, либо используются для получения энергии, либо выводятся за ненадобностью, но не хранятся в организме. Поэтому достаточное количество белков в рационе питания очень важно для роста, восстановления тканей и поддержания состояния здоровья.

1. В отличие от углеводов и липидов белки в организме не откладываются про запас. Исключение составляет небольшой запас белков плазмы крови в печени, который является аварийным запасом и выбрасывается в кровь при острой кровопотере.

2. Постоянное самообновление тканей и постоянная продукция в организме ферментов, гормонов и БАВ требует регулярного поступления полноценных белков с пищей. При их дефиците в организме нарушается синтез гормонов, ферментов, БАВ. Если белки с пищей не поступают, то на обновление белков используются белки жизненно-важных органов (мозг, сердце, почки, печень) и белки менее важных органов (мышцы).

3. Белки выполняют уникальные функции: регуляторную, транспортную, структурную, каталитическую и др., (см. занятие «белки»), эти функции не выполняют жиры и углеводы. Недостаток белка в пище ведет к тяжелым последствиям, особенно у растущего организма, при беременности.

2. Какова суточная потребность в белке взрослого человека? Чем определяется ценность белка? Понятие об азотистом балансе.

Потребность в белке зависит от возраста, от энергозатрат:

Для здорового человека с пищей должно вводиться 0,8 г/кг веса в сутки;

Для новорожденного - 2,0 г/кг веса;

Для пятилетнего – 1,0 г/кг веса.

Биологическая ценность белков зависит от их аминокислотного состава. Организму требуются полноценные белки, которые содержат все 8 незаменимых аминокислот. Имеется международный «условный образец» состава бел­ков, в котором содержание незаменимых аминокислот состав­ляет 31,4% (сочетание белков молока и хлеба, белки яиц).

Надо иметь в виду, что потребность в белках зависит и от энергозатрат. При затрате 10500 кДж (умственный труд, механизированный труд) требуется 106-120 г белков. При увеличении энергозатрат на каждые 2100 кДж следует добав­лять 10 г белка.

Для того чтобы судить о достаточности поступления белков с пищей, введено понятие «азотистого баланса». Азотистый баланс – это соотношение количества поступившего азота к количеству азота, экскретируемого с мочой и фекалиями.

Положительный азотистый баланс наблюдается, когда азота белков пищи больше чем количество экскретируемого азота. Наблюдается в растущем организме, при беременности.

Отрицательный азотистый баланс возникает, если азота пищи меньше азота мочи и кала. Наблюдается у пожилых людей, грудных детей при недостаточном поступлении белков, при распаде опухоли, голодании, травмах, ожогах при нарушении их усвоения, усиленном распаде собственных белков. У здорового взрослого человека, вне отмеченных выше состояний, наблюдается нулевой азотистый баланс.

3.Какие ферменты участвуют в переваривании белков в желудочно-кишечном тракте?

Переваривание белков вначале идет в желудке, а затем в просвете тонкого кишечника (полостное переваривание), а затем происходит пристеночное пищеварение в пристеночном слое и клетках кишечного эпителия.

В ротовой полости нет ферментов пептидгидролаз, в желудке эндопептидазы – пепсин и гастриксин, гидролизуют белки до полипептидов в присутствии HCL, которая активирует эти ферменты. В кишечнике под действием эндопептидаз (пептидазы поджелудочного сока- трипсин, химотрипсин, эластаза) белки распадаются до полипептидов, а с участием экзопептидаз кишечного сока (аминопептидазы, ди- и трипептидазы), экзопептидазы панкреатического сока – карбоксипептидаза- полипептиды разрушаются до отдельных аминокислот, которые начинают всасываться.

4. Что такое проферменты? В чем биологический смысл выработки ферментов желудочно-кишечного тракта в неактивном состоянии? Механизм превращения трипсиногена в трипсин.

Ферменты ЖКТ вырабатываются в виде проферментов - неактивные формы ферментов, которые под влиянием различных факторов превращаются в активные ферменты тогда, когда пища поступает в ЖКТ и появляется необходимость в переваривании белков. Например, трипсиноген (неактивный) под влиянием энтеропептидазы теряет гексапептид, формируется третичная структура фермента, его активный центр, и трипсиноген превращается в активный фермент – трипсин.

Биологический смысл синтеза проферментов – предотвращение разрушения клеток органов, где образуются эти проферменты

На основе чего стояться практически все планы питания? На белке! Хочешь похудеть – ешь больше белка. Хочешь набрать мышечную массу – ешь больше белка. Как работает этот универсальный ? Давайте попробуем разобраться в таком вопросе, как обмен белков в организме человека.

Общие сведения

Как и в случае с другими нутриентами, процесс белкового обмена осложнен тем, что это – не конечный продукт , а, значит, он должен пройти первичную трансформацию, благодаря которой приобретет нормальный вид для организма. Все дело в структуре молекулы белка. В первую очередь – это сложная структура с большим количеством внутренних связей. Как ни странно, но практически все органические соединения состоят из белковых тканей, или связаны теми или иными видами .

Аминокислота – это базовая единица. Для простейшего сравнения мы можем проводить аналогии с глюкозой или ненасыщенными жирными кислотами, до которых распадается наша пища. Если все углеводы распадаются на одинаковые элементы, как и жиры, то, на какие аминокислоты распадется белок, зависит от его изначального состава и способа приготовления.

Так, изначально белок находиться в своей завершенной сложной структуре. И в этом виде, наш организм не способен его усваивать вовсе. Пробовали ли вы есть сырое мясо или яйца? Сколько всего вы можете съесть такого продукта в граммах, чтобы вам не стало плохо? Обычно, для нормального человека – это ограничивается 100-150 граммами, а то и меньше. Поэтому традиционно белок готовят на огне. В этот момент, под воздействием температуры, происходит его денатурация. Разрушение связей, которые удерживают молекулу в стабильном состоянии, называют денатурацией. Только в сильно денатурированном виде, наш организм способен справиться с дальнейшим разложением белка на аминокислоты. И даже в этом случае он прилагает значительные усилия для разрыва связей, чтобы не повредить сами аминокислоты, так как в случае повреждения, аминокислоты пережигаются до уровня простых углеводов.

Этапы распада белков в организме

Естественно, что первичный процесс переваривания, как и синтез новых тканей, происходит не одномоментно. Есть определенные ограничения, как в скоростном, так и в объемном метаболизме белков в клетках организма. Постараемся рассмотреть подробнее.

В первую очередь, идет процесс первичного переваривания. В отличие от метаболизма жиров или карбогидратов. Даже этот этап можно разделить на 2: первичное денатурирование белков до более простых кислот и дальнейшее всасывание в кишечнике.

Запомните: именно кишечник, а не желудок, отвечают за преобразование белков в аминокислоты и их дальнейшее всасывание.

Дальше у белка есть 2 пути. Первый путь – это когда в организме имеется недостаток в калориях. В этом случае, все аминокислоты, попавшие в кровь, закрывают дыры в разрушенных тканях, а оставшиеся пережигаются на энергию. В случае, если баланс калорийности и трат положительный, или организм имеет достаточно разогнанный метаболизм, то здесь ситуация другая. В этом случае аминокислоты проделают сложный путь и трансформируются во все необходимые для поддержание нормального функционирования сегменты, а из остатка будет синтезирован избыток мышечной ткани.

Факторы, влияющие на скорость и объем синтеза белка из внешних аминокислот

Рассматривая белковый обмен, как комплексный процесс, нужно учесть все факторы, которые влияют на синтез новых белковых структур из стандартных аминокислот. Так как при нарушении любого из них, все полученные путем сложной ферментации и денатурации аминокислоты просто уйдут в качестве энергии.

  1. Тестостерон. Он отвечает за потребность синтеза тканей, отвечающих за качество мышечной массы.
  2. Холестерин. Отвечает за синтез из белковых структур коллагена, косвенно влияет на уровень половых гормонов.
  3. Протеаза. От количества этого фермента зависит, как долго будет перевариваться белок и денатурировать. Если имеется недостаток протеазы, белок может выйти из кишечника так до конца и не переварившись.
  4. Уровень . От этого зависит базовая потребность и расход внутренних запасов белка в течение дня. Для людей с большим уровнем базального метаболизма нужно больше белка в день для поддержания всех функций.
  5. Скорость метаболических процессов. От этого зависит базовая потребность и расход внутренних запасов белка в течение дня. Для людей с большим уровнем базального метаболизма нужно больше белка в день для поддержания всех функций
  6. Дефицит/избыток энергии. Если имеется избыток калорийности, то белок будет заполнять и создавать новые структуры. В случае дефицита – он будет просто закрывать дыры. А в случае экстремального дефицита калорийности, белок просто будет пережжен до уровня простейшей энергии.

Виды белков

Несмотря на кажущуюся простоту, структура белковой ткани настолько сложна, что характеризуют их исключительно по аминокислотному составу. В то же время, существуют упрощенные классификации:

  1. По типу. Здесь находятся растительные и животные белки. На самом деле, их различие в наличии полного или неполного аминокислотного состава.
  2. По источнику белка. В этом случае, классификация использует политику полезных нутриентов, которые содержаться в тканях помимо аминокислот.
  3. По скорости восприятия.

Рассмотрим полную классификацию белковых продуктов для того, чтобы понять, как те или

иные изделия метаболизируются в нашем организме.

Тип белка Источник белковой ткани Скорость усвоения Аминокислотный состав Входящие аминокислоты
Сывороточный Сыворотка, и классический сывороточный протеин. Относительно высокая Полный
Молочный Любые молочные продукты. Начиная от молока и заканчивая сыром. Относительно высокая Полный Изолейцин, лейцин, валин, гистидин, аргинин, фенилаланин, триптофан, лизин.
Мясной Мышечные ткани животного происхождения. Относительно высокая Полный Изолейцин, лейцин, валин,триптофан, лизин.
Яичный Яйца различных животный. Относительно невысокая Полный Изолейцин, лейцин, валин.
Соевый Синтезируется или добывается из растительной сои. Относительно невысокая Неполный Изолейцин, лейцин, валин, триптофан, лизин.
Растительный В основном, это тот белок, который мы получаем с крупами, макаронами и выпечкой. Предельно низкая Неполный Изолейцин, гистидин, аргинин, лейцин, валин.
Другие источники белка В основном, это орехи или продукты синтезированного белка. Вариативно Зависит от самого источника белка Изолейцин, лейцин, валин. Остальное зависит от самого источника белка.

Белок и спорт

Для поддержания нормального уровня белкового метаболизма обычному человеку нужно употреблять порядка 1-го грамма чистого белка полного аминокислотным составом на килограмм тела. В то же время, спортсменам белок более важен. Поэтому они не только употребляют значительно большее количество белка, но и делят его на разные типы и употребляют в разное время. Так, в частности из-за возможности белковых тканей полностью останавливать катаболизм в мышечных тканях, очень часто быстрым источником белка является сыворотка или синтетический белок с предельной скоростью усваивания. В то же время, для замедления ночного катаболизма, спортсмены используют белок с низкой скоростью усваивания, которая помогает в ночное время поддерживать нормальный аминокислотный баланс в организме. Традиционно для этого используют творог или его субстраты.

Однако для чего спортсменам белок? Все очень просто. Для спортсмена обмен белков – это:

  1. Возможность замедлить катаболические реакции.
  2. Естественный строительный материал.
  3. Способ увеличить энергоемкость мышечных структур.
  4. Возможность ускорить восстановление.
  5. Возможность увеличить силовые показатели.
  6. Предшественник саркоплазматической и миофибриллярной гипертрофии.


Нарушение обмена белковых тканей

Очень часто, рассматривая хронические и клинические нарушения обмена метаболизма у человека, люди не затрагивают процессы нарушения обмена белков. А ведь его намного легче получить, чем нарушение метаболизма в целом. Нарушение обмена белков получается в виду следующих причин:

  1. Нарушение кислотной среды желудка и кишечника. В этом случае происходит распад не всех белков на аминокислоты, в виду чего возникает вздутие и проблемы со стулом.
  2. Дисферментация в желудке. Белки не усваиваются организмом в целом. Для решения проблемы нужно обратиться к гастроэнтерологу, в качестве временной меры может выступить прием ферментов. Однако дисферментация – серьезная проблема человека, которая может привести к более сложным для лечения последствиям.
  3. Нарушение синтеза белковых тканей. Это связано с гормональными нарушениями. При этом синтез белковых тканей внутренних органов обычно не затрагивается. Затрагивается синтез мышечной ткани. Обычно свидетельствует о недостатке гормона тестостерона или проблем, связанных с расщеплением белков и транспортировкой некоторых видов аминокислот.
  4. Нарушение выделения гормонов. Внешние проявления проявляются в виде чрезмерного синтеза мышечной ткани или недостаточного. Однако стоит помнить, что, если это нарушение не было вызвано искусственно, то такое нарушение может привести к образованию опухолей и раковых новообразований
  5. Нарушение уровня холестерина. При переизбытке холестерина, белки связывают его, тем самым используясь не по назначению. Кроме того переизбыток холестерина является нарушением в планировании питания, и может привести к таким осложнениям как инфаркт и инсульт.

В зависимости от причины, нарушение обмена белков может привести к разным последствиям. Однако в отличие от нарушения жирового обмена, он приведет не только к тому, что вы наберете лишние килограммы, но и может полностью вывести ваш организм из строя. Некоторые болезни, связанные с нарушением белкового обмена – панкреатит и панкреонекроз, могут и вовсе привести к смертельному исходу. Поэтому не стоит пренебрегать качественной белковой пищей в вашем рационе.

Ведущее место среди органических элементов организма занимают белки. Они поступают в организм с пищей. На их долю приходится более 50% сухой массы клетки или 15-20% сырой массы тканей.

Функции белков

Белки выполняют ряд важнейших биологических функций:

1. Пластическая или структурная . Белки входят в состав всех клеточных и межклеточных структур. Особенно велика потребность в белке в периоды роста, беременности, выздоровления после тяжелых заболеваний. В пищеварительном тракте белки расщепляются до аминокислот и простейших полипептидов. В дальнейшем из них клетками различных тканей и органов (в частности печени), синтезируются специфические белки, которые используются для восстановления разрушенных и роста новых клеток.

В организме постоянно происходит распад и синтез веществ, поэтому белки организма не находятся в статическом состоянии. Процессы обновления белков в различных тканях имеют неодинаковую скорость. С наибольшей скоростью обновляются белки печени, слизистой оболочки кишечника, а также других внутренних органов и плазмы крови. Медленнее обновляются белки, входящие в состав клеток мозга, сердца, половых желез и еще медленнее – белки мышц, кожи и особенно опорных тканей (сухожилий, костей и хрящей).

2. Двигательная . Все движения обеспечиваются взаимодействием сократительных белков актина и миозина.

3. Ферментативная . Белки регулируют скорость биохимических реакций в процессе дыхания, пищеварения, выделения и т.д.

4. Защитная . Иммунные белки плазмы крови (γ-глобулины) и факторы гемостаза участвуют в важнейших защитных реакциях организма.

5. Энергетическая . При окислении 1 грамма белка аккумулируется 16,7 кДж энергии. Однако в качестве энергетического материала белки используются в крайнем случае. Эта функция белков особенно возрастает во время стрессорных реакций.

6. Обеспечивают онкотическое давление за счет чего, принимают участие в регуляции вводно-солевого баланса организма.

7. Входят в состав буферных систем .

8. Транспортная . Белки транспортируют газы (гемоглобин) гормоны (тиреоидные, тироксин и др.), минеральные вещества (железо, медь, водород), липиды, лекарственные вещества, токсины и др.

Биологическая ценность аминокислот.

Белки это полимерами основными структурными компонентами которых являются аминокислоты. Известно около 80 аминокислот из которых только 20 являются основными. Аминокислоты организма делятся на заменимые и незаменимые . К заменимым аминокислотам, которые синтезируются в организме, относится: аланин, цистеин, глутаминовая и аспарагиновая кислота, кислоты тирозин, пролин, серин, глицин условно аргинин и гистидин. Аминокислоты, которые не могут синтезироваться, но обязательно должны поступать с пищей называются незаменимыми. К ним относятся: лейцин, изойлецин, валин, метионин, лизин, треонин, финилаланин, триптофан; условно – аргинин и гистидин. Для нормального обмена белков эти аминокислоты должны обязательно присутствовать в пище.

В связи с этим белки пищи, содержащие весь необходимый набор аминокислот, в соотношениях обеспечивающих нормальные процессы синтеза называются полноценными . К ним относят преимущественно животные белки, т.к. они способы полностью превращаться в собственные белки организма. Наибольшей биологической ценностью обладают белки яиц, мяса, рыбы, молока. Биологическая ценность растительных белков ниже т.к. часто они не содержат одну или несколько незаменимых аминокислот. Так, неполноценными белками являются желатина , в которой имеются лишь следы цистина и отсутствует триптофан и тирозин; зеин (белок, находящийся в кукурузе), содержащий мало триптофана и лизина; глиадин (белок пшеницы) и гордеин (белок ячменя), содержащие мало лизина.

Отсутствие хотя бы одной из незаменимых аминокислоты в пище приводит к задержке роста ребенка, к ослаблению организма, тяжелым расстройствам в обмене веществ, снижению иммунитета, нарушению функции желез внутренней секреции и другим заболеваниям. Например, недостаток валина – вызывает расстройство равновесия. Многие аминокислоты являются источником медиаторов ЦНС (гамма-аминомасляная кислота выполняет важную роль в процессах торможения и сна).

При смешанном питании, когда в пище есть продукты животного и растительного происхождения в организм поступает необходимый для синтеза белков набор аминокислот это особенно важно для растущего организма.

В сутки в организм взрослого человека должно поступать около 80-100 г белка и обязательно иметь в своем составе не менее 30% белков животного происхождения.

Потребность организма в белке зависит от пола, возраста, климатического региона и национальности. При физической нагрузке взрослый человек должен получать 100-120 г белка, при тяжелом труде – до 150 г.

В случае употребления в пищу только продуктов растительного происхождения (вегетарианство) необходимо, чтобы два неполноценных белка, один из которых не содержит одних аминокислот, а другой – других, в сумме могли обеспечить потребности организма.

Однообразное питание продуктами растительного происхождения у людей вызывает заболевание «квашиоркор». Оно встречается среди населения стран тропического и субтропического пояса Африки, Латинской Америки и Юго-Восточной Азии. Этим заболеванием страдают преимущественно дети в возрасте от 1 года до 5 лет.

Читайте также: