Как поступают в организм питательные вещества, микроэлементы, витамины. Где питательные вещества поступают в кровь у человека

Большинство полезных веществ для поддержания жизнедеятельности человеческий организм получает через желудочно-кишечный тракт.

Однако обычные продукты, которые ест человек: хлеб, мясо, овощи – организм не может использовать напрямую для своих нужд. Для этого еду и напитки надо разделить на более мелкие составляющие – отдельные молекулы.

Эти молекулы переносятся кровью в клетки организма для строительства новых клеток и получения энергии.

Как пища переваривается?

Процесс пищеварения включает в себя смешивание пищи с желудочным соком и ее перемещение через желудочно-кишечный тракт. В ходе этого перемещения она разбирается на составляющие, которые используются на нужды организма.

Пищеварение начинается во рту – при пережевывании и глотании пищи. А заканчивается в тонком кишечнике.

Как пища движется по желудочно-кишечному тракту?

Большие полые органы желудочно-кишечного тракта – желудок и кишечник – имеют слой мышц, который приводит их стенки в движение. Это движение позволяет пище и жидкости продвигаться через пищеварительную систему и перемешиваться.

Сокращение органов желудочно-кишечного тракта называется перистальтика . Она похожа на волну, которая при помощи мышц движется вдоль всего пищеварительного тракта.

Мышцы кишечника создают суженный участок, который медленно движется вперед, проталкивая перед собой пищу и жидкость.

Как происходит пищеварение?

Пищеварение начинается еще в полости рта, когда пережевываемая пища обильно смачивается слюной. Слюна содержит в себе ферменты, начинающие расщепление крахмала.

Проглоченная пища попадает в пищевод , который соединяет между собой глотку и желудок . На стыке пищевода и желудка располагаются кольцевые мышцы. Это нижний сфинктер пищевода, который открывается при давлении проглоченной пищи и пропускает ее в желудок.

У желудка есть три основные задачи :

1. Хранение . Чтобы принять большой объем пищи или жидкости, мышцы верхней части желудка расслабляются. Это позволяет стенкам органа растягиваться.

2. Смешивание . Нижняя часть желудка сокращается, чтобы пища и жидкость смешивались с желудочным соком. Этот сок состоит из соляной кислоты и пищеварительных ферментов, которые помогают в расщеплении белков. Стенки желудка выделяют большое количество слизи, которая защищает их от воздействия соляной кислоты.

3. Транспортировка . Перемешанная пища поступает из желудка в тонкий кишечник.

Из желудка пища попадает в верхний отдел тонкого кишечника – двенадцатиперстную кишку . Здесь пища подвергается воздействию сока поджелудочной железы и ферментов тонкого кишечника , который способствует перевариванию жиров, белков и углеводов.

Здесь же пища обрабатывается желчью, которую производит печень. Между приемами пищи желчь хранится в желчном пузыре . Во время еды она выталкивается в двенадцатиперстно кишку, где смешивается с пищей.

Желчные кислоты растворяют жир в содержимом кишечника примерно так же, как моющие средства – жир со сковороды: они разбивают его на крошечные капельки. После того, как жир измельчен, он легко расщепляется ферментами на составляющие.

Вещества, которые получены из расщепленной ферментами пищи, всасываются через стенки тонкого кишечника.

Слизистая оболочка тонкого кишечника покрыта крошечными ворсинками, которые создают поверхность огромной площади, позволяющую поглощать большое количество питательных веществ.

Через специальные клетки эти вещества из кишечника попадают в кровь и с ней разносятся по всему организму – для хранения или использования.

Непереваренные части пищи поступают в толстый кишечник , в котором происходит всасывание воды и некоторых витаминов. После отходы пищеварения формируются в каловые массы и удаляются через прямую кишку .

Что нарушает работу желудочно-кишечного тракта?

Самое важное

Желудочно-кишечный тракт позволяет организму расщепить пищу до простейших соединений, из которых могут строиться новые ткани и получаться энергия.

Пищеварение происходит во всех отделах желудочно-кишечного тракта – от полости рта до прямой кишки.

Вода поступает в организм по трем каналам:

  • потребление жидкости (60% общего потребления воды);
  • пища (30%);
  • процессы метаболизма (около 10%).

Выведение воды из организма

Вода выделяется из организма четырьмя способами:

  • С мочой 0,5-2,5 литров(50-60%)
  • С выдыхаемым воздухом около 20%
  • С потом 15-20%
  • С калом 5%

Сколько и когда следует пить

Потребляя воду, необходимо помнить, что вредно не только недостаточное, но и избыточное питье. При резком ограничении количества вводимой в организм жидкости уменьшается выделение с мочой продуктов распада, появляется жажда, ухудшается самочувствие, снижается работоспособность и интенсивность процессов пищеварения. Несомненный вред приносит и излишнее питье, особенно большими порциями: усиливается потоотделение, «разведенная» кровь хуже справляется с ролью переносчика кислорода, а увеличенный ее объем создает добавочную нагрузку на сердце, сосуды, почки.

Регулируя свой питьевой режим, можно добиться изменения функции некоторых органов. Так, выпивая натощак воду, особенно холодую, газированную, а также сладкие соки усиливают перистальтику кишечника и тем самым оказывают послабляющее действие. Очень горячие напитки, наоборот, пить натощак не следует, они неблагоприятно действуют на слизистую оболочку желудка. Вредно пить холодную воду после обильной жирной пищи. Такая пища дольше задерживается в желудке, и если выпить много воды, он еще больше переполнится и будет растягиваться, появится неприятное чувство дискомфорта, распирания. Кроме того, переполненный желудок рефлекторно усиливает перистальтику кишечника, вызывая диарею. После жирной пищи лучше выпить небольшое количество горячего чая.

Не следует пить сразу после того, как поели фрукты или ягоды - это может вызвать сильное вздутие кишечника. Запивать рекомендуется только сухую пищу: бутерброды, пироги, сухари, сухое печенье, то есть все, что трудно проглотить всухомятку.

Объем выпиваемой жидкости вместе с той водой, которая поступает с продуктами питания, должен составлять в сутки в среднем 2000-2400 мл.

Избыточное потребление жидкости нежелательно и даже вредно: это способствует вымыванию из организма пищевых веществ, в том числе минеральных солей и витаминов. Кроме того, обильное питье создает неблагоприятные условия для работы сердечно - сосудистой системы и органов пищеварения.

Необходимо иметь в виду, что горячие и теплые напитки всасываются и утоляют жажду быстрее, чем холодные. Если часто хочется пить, например в жару, лучше выпить немного горячего чая, притом зеленого. Не следует выпивать много жидкости за один прием: жажду не утолите, а большая часть выпитого выведется в течение двух часов. К тому же массивные нагрузки жидкостью вызывают неприятные субъективные ощущения. Но и резкое ограничение воды без особых к тому причин тоже не желательно.

Спортсмены или обычные люди не должны полагаться только на чувство жажды, чтобы восполнить дефицит жидкости в организме.

Чувство жажды возникает в клетках головного мозга скорее в ответ на концентрацию солей в организме, чем на количество воды. Хотя пот содержит много соли, тем не менее, концентрация солей в крови снижается заметно медленнее, чем уменьшаются запасы жидкости. В результате адаптации к повышенной температуре окружающей среды концентрация солей в поте снижается.

Таким образом, чувство жажды появляется заметно позднее, чем возникает существенная потеря жидкости. Поэтому спортсмены или обычные люди должны пить даже, когда еще не испытывают жажды, как перед, так и во время тренировок и соревнований.

Признаки, указывающие на недостаток воды в организме человека:

  • 1-5% --жажда, плохое самочувствие, замедление движений, сонливость, покраснение в некоторых местах кожи, повышение температуры тела, тошнота, расстройство желудка.
  • 6-10% -- одышка, головная боль, покалывание в ногах и руках, отсутствие слюноотделения, потеря способности двигаться и нарушение логики речи.
  • 11-20% -- бред, спазмы мышц, распухание языка, притупление слуха и зрения, охлаждение тела.

БЕЛКИ - полимеры, состоящие из аминокислот, связанных между собой пептидной связью.

В пищеварительном тракте белки расщепляются до аминокислот и простейших полипептидов, из которых в дальнейшем клетками различных тканей и органов, в частности печени, синтезируются специфические для них белки. Синтезированные белки используются для восстановления разрушенных и роста новых клеток, синтеза ферментов и гормонов.

Функции белков:

1. Основной строительный материал в организме.
2. Являются переносчиками витаминов, гормонов, жирных кислот и др. веществ.
3. Обеспечивают нормальное функционировании иммунной системы.
4. Обеспечивают состояние "аппарата наследственности".
5. Являются катализаторами всех биохимических метаболических реакций организма.

Организм человека в нормальных условиях (в условиях, когда нет необходимости пополнения дефицита аминокислот за счет распада сывороточных и клеточных белков) практически лишен резервов белка (резерв - 45 г : 40 г в мыщцах, 5 г в крови и печени), поэтому единственным источником пополнения фонда аминокислот, из которых синтезируются белки организма, могут служить только белки пищи.

Вне зависимости от видоспецифичности все многообразные белковые структуры содержат в своем составе всего 20 аминокислот.

Различают заменимые аминокислоты (синтезируются в организме) и незаменимые аминокислоты (не могут синтезироваться в организме, а поэтому должны поступать в организм в пищей). К незаменимым аминокислотам относятся: валин, изолейцин, лейцин, лизин, метионин, треонин, триптофан, фенилаланин.

Недостаток незаменимых аминокислот в пище приводит к нарушениям белкового обмена.

Незаменимыми аминокислотами являются валин, лейцин, изолейцин, треонин, метионин, фенилаланин, триптофан, цистеин, незаменимыми условно — аргинин и гистидин. Все эти аминокислоты человек получает только с пищей.

Заменимые аминокислоты также необходимы для жизнедеятельности человека, но они могут синтезироваться и в самом организме из продуктов обмена углеводов и липидов. К ним относятся гликокол, аланин, цистеин, глутаминовая и аспарагиновая кислоты, тирозин, пролин, серин, глицин; условно заменимые — аргинин и гистидин.

Белки, в которых нет хотя бы одной незаменимой аминокислоты или если они содержатся в недостаточных количествах называются неполноценными (растительные белки). В связи с этим для удовлетворения потребности в аминокислотах наиболее рациональной является разнообразная пища с преобладанием белков животного происхождения.

Кроме основной функции белков - белки как пластический материал, он может использоваться и как источник энергии при недостатке других веществ (углеводов и жиров). При окислении 1 г белка освобождается около 4,1 ккал.

При избыточном поступлении белков в организм, превышающем потребность, они могут превращаться в углеводы и жиры. Избыточное потребление белка вызывают перегрузку работы печени и почек, участвующих в обезвреживании и элиминации их метаболитов. Повышается риск формирования аллергических реакций. Усиливаются процессы гниения в кишечнике - расстройство пищеварения в кишечнике.

Дефицит белка в пище приводит к явлениям белкового голодания - истощению, дистрофии внутренних органов, голодные отеки, апатия, снижению резистентности организма к действию повреждающих факторов внешней среды, мышечной слабости, нарушении функции центральной и периферической нервной системы, нару- шению ОМЦ, нарушение развития у детей.

Суточная потребность в белках - 1 г/кг веса при условии достаточного содержания незаменимых аминокислот (например, при приеме около 30 г животного белка), старики и дети - 1,2-1,5 г/кг , при тяжелой работе, росте мышц - 2 г/кг .

ЖИРЫ (липиды) - органические соединения, состоящие из глицерина и жирных кислот.

Функции жиров в организме:

Являются важнейшим источником энергии. При окислении 1 г вещества выделяется максимальное по сравнению с окислением белков и углеводов количество энергии. За счёт окисления нейтральных жиров образуется 50% всей энергии в организме;

Являются компонентом структурных элементов клетки — ядра, цитоплазмы, мембраны;

Депонированные в подкожной клетчатке, предохраняют организм от потерь тепла, а окружающие внутренние органы — от механических повреждений.

Различают нейтральные жиры (триацилглицеролы), фосфолипиды , стероиды (холестерин).

Поступившие с пищей нейтральные жиры в кишечнике расщепляются до глицерина и жирных кислот. Эти вещества всасываются - проходят через стенку тонкого кишечника, вновь превращаются в жир и поступают в лимфу и кровь. Кровь транспортирует жиры в ткани, где они используются в качестве энергетического и пластического материала. Липиды входят в состав клеточных структур.

Уровень жирных кислот в организме регулируется как отложением (депонированием) их в жировой ткани, так и высвобождением из нее. По мере увеличения уровня глюкозы в крови жирные кислоты под влиянием инсулина, депонируются в жировой ткани.

Высвобождение жирных кислот из жировой ткани стимулируется адреналином, глюкагоном и соматотропым гармоном, тормозится — инсулином.

Жиры, как энергетический материал используется главным образом при выполнении длительной физической работы умеренной и средней интенсивности (работа в режиме аэробной производительности организма). В начале мышечной деятельности используются преимущественно углеводы, но по мере уменьшения их запасов начинается окисление жиров.

Обмен липидов тесно связан с обменом белков и углеводов. Поступающие в избытке в организм углеводы и белки превращаются в жир. При голодании жиры, расщепляясь, служат источником углеводов.

Суточная потребность в жирах - 25-30% от общего числа калорий. Суточная потребность незаменимых жирных кислот около 10 г .

Жирные кислоты являются основными продуктами гидролиза липидов в кишечнике. Большую роль в процессе всасывание жирных кислот играют желчь и характер питания.

К незаменимым жирным кислотам , которые не синтезируются организмом, относятся олеиновая, линолевая, линоленовая и арахидовая кислоты (суточная потребность 10-12 г ).

Линолевая и лоноленовая кислоты содержатся в растительных жирах, арахидовая — только в животных.

Недостаток незаменимых жирных кислот приводит к нарушению функций почек, кожным нарушениям, повреждениям клеток, метаболическим расстройствам. Избыток незаменимых жирных кислот приводит к повышенной потребности токоферола (витамина Е).

УГЛЕВОДЫ - органические соединения, содержащиеся во всех тканях организма в свободном виде в соединениях с липидами и белками и являющиеся основным источникам энергии.

Функции углеводов в организме:

Являются непосредственным источником энергии для организма.

Участвуют в пластических процессах метаболизма.

Входят в состав протоплазмы, субклеточных и клеточных структур, выполняют опорную функцию для клеток.

Углеводы делят на 3 основных класса: моносахариды, дисахариды и полисахариды.

Моносахариды - углеводы, которые не могут быть расщеплены до более простых форм (глюкоза, фруктоза).

Дисахариды - углеводы, которые пригидролизе дают две молекулы моносахаров (сахароза, лактоза).

Полисахариды - углеводы, которые при гидролизе дают более шести молекул моносахаридов (крахмал, гликоген, клетчатка).

На углеводы должно приходиться до 50 - 60% энергоценности пищевого рациона.

В пищеварительном тракте полисахариды (крахмал, гликоген; клетчатка и пектин в кишечнике не перевариваются) и дисахариды под влиянием ферментов подвергаются расщеплению до моносахаридов (глюкоза и фруктоза) которые в тонком кишечнике всасываются в кровь. Значительная часть моносахаридов поступает в печень и в мышцы и служат материалом для образования гликогена.

В печени и мышцах гликоген откладывается в резерв. По мере необходимости гликоген мобилизуется из депо и превращается в глюкозу, которая поступает к тканям и используется ими в процессе жизнедеятельности.

Продукты распада белков и жиров могут частично в печени превращаться в гликоген. Избыточное количество углеводов превращается в жир и откладывается в жировом "депо".

Около 70% углеводов пищи окисляется в тканях до воды и двуокиси углерода.

Углеводы используются организмом либо как прямой источник тепла (глюкозо-6-фосфат), либо как энергетический резерв (гликоген);
Основные углеводы - сахара, крахмал, клетчатка - содержатся в растительной пище, суточная потребность в которой у человека составляет около 500 г (минимальная потребность 100-150 г/сут ).

При недостаточности углеводов развивается похудание, снижение трудоспособности, обменные нарушения, интоксикация организма.
Избыток потребления углеводов может привести к ожирению, развитию бродильных процессов в кишечнике, повышенной аллергизации организма, сахарному диабету.

Материал подготовлен на основе информации из открытых источников

До середины XX в. природные источники ионизирующих излу­чений были единственными в облучении человека, создавая есте­ственный радиационный фон (ЕРФ). Основным дозообразующим компонентом ЕРФ является земное излучение от естественных ра­дионуклидов, существующих на протяжении всей истории Земли. Космическое излучение и излучение природных радионуклидов, содержащихся в почве, воде и воздухе, составляют естественный фон излучения, к которому адаптирована современная биота. Наименьший уровень природной радиоактивности у поверхности моря и в его верхних слоях, а наибольший - в горах с гранитными породами. Он колеблется от 8-12 до 20-50мкР/ч. Космическое излучение на большей части территории России составляет 28- О мрад/год с максимальными величинами в горах. В среднем доза облучения от всех естественных источников ионизирующего излу­чения составляет в год около 200 мР, хотя это значение может ко­лебаться в разных регионах земного шара от 50 до 1000 мР/год и более.

Естественная радиоактивность определяется содержанием ра­дионуклидов в почвах. За год суммарное количество естественных продуктов их деления на Земле эквивалентно количеству продук­тов деления от взрыва одной атомной бомбы небольшой мощнос­ти. Естественная радиоактивность атмосферы определяется в ос­новном содержанием радона, гидросферы - содержанием урана, радия, радона. От этих источников человек подвергается воздей­ствию как внешнего (в результате излучения радионуклидов, нахо­дящихся в окружающей среде), так и внутреннего облучения (за счет радионуклидов, попадающих внутрь организма с воздухом, водой и продуктами питания). Большинство исследователей счи­тают, что наибольшее значение имеют источники внутреннего об­лучения, которые обусловливают, по данным разных авторов, примерно от 50 до 68 % ЕРФ.

Основное значение во внутреннем облучении имеют поступаю­щие с воздухом, водой и продуктами питания радионуклиды се­мейств урана-238 и тория-232, их многочисленные дочерние продукты, а также изотоп калия - калий-40. Средняя величина эф­фективной эквивалентной дозы внутреннего облучения при неиз­менном фоне составляет 0,72 мЗв/год, из которых основная часть приходится на долю семейства урана (56 %), калия-40 (25 %) и то­рия (16%).

Основным источником природных радиоактивных элементов, поступающих в организм человека, являются пищевые продукты. Удельная активность изотопов свинца 2|0РЬ и полония 210Ро в рас­тительной пище составляет от 0,02 до 0,37 Бк/кг. Особенно вы­сокая активность 210РЬ и 210Ро обнаружена в чае (до 30,5 Бк/кг). В продуктах животного происхождения (молоке) удельная актив­ность 2*°РЬ колеблется в пределах от 0,013 до 0,18 Бк/кг, а 210Ро -от 0,13 до 3,3 Бк/кг. Таким образом, суммарная радиоактивность растений в 10 раз выше, чем тканей животных. Поверхностные водоисточники могут также содержать повышенное количество радионуклидов.

В настоящее время естественный радиационный фон в резуль­тате деятельности человека качественно и количественно изме­нился. Повышение ЕРФ под влиянием новых видов технологи­ческой деятельности человека получило название техногенно-усиленного фона. Примерами такой деятельности являются широкое применение минеральных удобрений, содержащих примеси урана (например, фосфорных); увеличение добычи урановых руд; массо­вое увеличение числа авиационных перевозок, при которых кос­мическое облучение растет.

Среднегодовая эквивалентная доза облучения всего тела чело­века естественными источниками ионизирующих излучений при­мерно была равна 1 мЗв (100 мбэр). Однако с учетом техногенно-усиленного фона, поданным ООН, значение эффективной эк­вивалентной дозы облучения увеличилось в 2 раза-до 2 мЗв (200 мбэр) в год (1982). В наиболее развитых странах уровень фо­новой радиации достигает 3-4 мЗв в год.

Радиоактивное загрязнение биосферы связано с антропоген­ным воздействием, к основным источникам которого относятся производство и испытание ядерного оружия, строительство атом­ных электростанций (АЭС) и ядерных научно-исследовательских учреждений, сжигание угля. За 15 лет (с 1971 по 1986 г.) в 14 стра­нах мира на предприятиях атомной промышленности произошло 152 аварии разной степени сложности, с разными последствиями для населения и окружающей среды. Крупные аварии произошли в Великобритании, США и СССР. Серьезную опасность загряз­нений представляют аварийные выбросы радиоактивных матери­алов на названных объектах. Крупнейшие аварийные выбросы радиоактивных материалов произошли в 1957 г. на Южном Урале (Челябинская обл., окрестности г. Кыштыма) и в апреле 1986 г. в Чернобыле. Общая загрязненная площадь в результате черно­быльской аварии составила в первые дни около 200 тыс. км2. Радиоактивные осадки достигли Западной Европы, Кольского полу­острова, Кавказа. Выбросы в атмосферу при аварии на ЧАЭС име­ли специфический состав - в первые недели после взрыва основ­ным был радиоактивный йод, затем - радиоизотопы цезия- 137, стронция-90.

При густом растительном покрове травянистой растительнос­тью сорбируется около 80 % выпавших радионуклидов, при ред­ком - 40%, остальная часть радионуклидов попадает в почву. Миграция значительной части выпавших радионуклидов происхо­дит с водой по гидрологической сети.

По радиоэкологической значимости наибольший вклад в ради­ационную нагрузку вносят следующие элементы: 3 Н, 14 С, 137 Cs, 238 U, 234J, 226 Ra, 222 Rn, 2 l 0 Po, 239 Ru, 90 Sr (Клюев, 1993).

Практика обезвреживания радиоактивных отходов заключается в их разбавлении, рассеянии и длительном хранении путем остекловывания, цементирования, захоронения в слабопроницаемые участки литосферы. Отходы, разбавленные и рассеянные челове­ком, накапливаются в элементах биосферы, передаются по пище­вым цепям и в конечных их звеньях достигают величин, намного превышающих установленные нормативы. Радиоактивные выб­росы и отходы становятся безопасными для окружающей среды в течение промежутка времени, равного 20 периодам полурас­пада входящих в их состав радиоактивных элементов, основу которых составляют l 37 Cs, 90 Sr. Период полураспада стронция-90 равен 28,5 года, цезия- 1 37 - 30,2 года, и для их естественной дезактивации потребуется соответственно 570 и 604 года, что сопоставимо с продолжительностью исторических эпох. Техно­генный пресс за счет 90 Sr на порядок, a ^Cs в тысячу раз и бо­лее превышает их естественное содержание. Зона максималь­ной аккумуляции этих радионуклидов за счет их глобальных выпадений сформировалась в Северном полушарии между 20" и 60° с. ш., с наибольшей активностью в лесных заболоченных ландшафтах.

Для случаев возникновения радиационных аварий были разра­ботаны временно допустимые уровни (ВДУ) и допустимые уровни (ДУ) поступления радионуклидов внутрь организма с учетом ин­тегральных поглощенных доз за ряд последующих лет. ВДУ актив­ности радиоактивных веществ в продуктах питания в этих услови­ях рассчитывают, исходя из того, что интегральные дозы облуче­ния тела человека не должны превышать 0,1 3 в/год, а дозы облучения щитовидной железы - 0,3 Зв/грд.

Принятые комиссией Codex Alimentarius ФАО/ВОЗ допусти­мые уровни радиоактивных веществ в загрязненных пищевых продуктах, реализуемых на международном рынке и предназна­ченных для всеобщего потребления, составляют: для цезия и йода- 1000 Бк/кг, для стронция - 100, для плутония и амери­ция - 1 Бк/кг.

Для молока и продуктов детского питания допустимые уров­ни активности составляют: для цезия - 1000 Бк/кг, для строн­ция и йода- 100, для плутония и америция - 1 Бк/кг. По мне­нию ВОЗ, предлагаемые уровни основаны на критериях, обеспе­чивающих охрану здоровья и безопасность населения.

У человека в процессе эволюции не выработались специальные защитные механизмы от ионизирующих излучений, и с целью предотвращения неблагоприятных последствий для населения по рекомендации Международной комиссии по радиационной защи­те ожидаемая эффективная эквивалентная доза не должна превы­шать 5 мЗв за любой год радиоактивного воздействия.

Различают поверхностное (воздушное, аэральное) и структур­ное (корневое, почвенное) загрязнение пищевых продуктов ра­дионуклидами. При поверхностном загрязнении радиоактивные ве­щества, переносимые воздушной средой, оседают на поверхности продуктов, частично проникая внутрь растительной ткани. Более эффективно радиоактивные вещества удерживаются на растениях с опушенными листьями и стеблями, в складках листьев и соцве­тиях. При этом задерживаются не только растворимые формы ра­диоактивных соединений, но и нерастворимые. Аэральное радио­активное загрязнение растений происходит в результате выпаде­ния радиоактивных осадков из атмосферы при ядерных взрывах, авариях на АЭС. Выпадая на вегетирующие посевы, часть их осе­дает на поверхности почвы. Радионуклиды проникают в ткани на­земных органов растений при мокрых выпадениях - с дождем, а при сухих - после дождя. При высокой влажности воздуха радио­нуклиды проникают в ткани растений эффективнее, чем при низ­кой. Поверхностное загрязнение радионуклидами относительно легко удаляется даже через несколько недель.

Структурное загрязнение радионуклидами обусловлено физико-химическими свойствами радиоактивных веществ, составом почвы, физиологическими особенностями растений. Попадающие в ат­мосферу радиоактивные вещества в конечном счете концентри­руются в почве. Радионуклиды, выпавшие на поверхности почвы, на протяжении многих лет остаются в ее верхнем слое, постоянно мигрируя на несколько сантиметров в год в более глубокие слои. Это в дальнейшем приводит к их накоплению в большинстве рас­тений с хорошо развитой и глубоко проникающей корневой систе­мой. Через несколько лет после радиоактивных выпадений на зем­ную поверхность поступление радионуклидов в растения из почвы становится основным путем попадания их в пищу человека и в корм животных. Радиоактивные вещества, попадающие в почву, могут частично вымываться из нее и попадать в грунтовые воды.

Наиболее высокие уровни перехода 90 Sr и 137 Cs из почвы в рас­тения наблюдаются на дерново-подзолистых почвах легкого гра­нулометрического состава, меньше - на серых лесных почвах и самые низкие - на черноземах. Из кислых почв радионуклиды

поступают в растения в значительно больших количествах, чем из слабокислых, нейтральных или слабощелочных почв. Отношение содержания радионуклидов в единице растительной массы к со­держанию их в единице массы почвы или в единице объема ра­створа называется коэффициентом накопления. Радионуклиды, по­ступившие в надземную часть растений, в основном концентриру­ются в соломе (листья, стебли), меньше - в мякине (колосья, метелки без зерна) и в небольших количествах - в зерне. С возра­стом растений увеличивается абсолютное количество радионукли­дов в надземных органах и снижается их содержание на единицу массы сухого вещества.

Содержание радионуклидов в единице массы уменьшается по мере увеличения урожая. В товарной части растениеводческой продукции (зерно, корнеплоды, клубни) боль­ше всего 90 Sr и 137 Cs на единицу массы урожая содержат корнепло­ды (свекла, морковь) и бобовые (горох, соя, вика), за ними следу­ют картофель и зерновые злаки. Озимые зерновые культуры (пше­ница, рожь) накапливают в 2-2,5 раза меньше 90 Sr и 137 Cs, чем яровые (пшеница, ячмень, овес). Больше всего 90 Sr накапливается в корнеплодах столовой свеклы и меньше всего - в плодах тома­тов и клубнях картофеля.

По степени накопления радиоактивных веществ растения рас­полагаются в следующем порядке: табак (листья) > свекла (кор­неплоды) > бобовые > картофель (клубнеплоды) > пшеница (зер­но) >, естественная травянистая растительность (листья и стебли). Быстрее всего из почвы в растения поступает стронций-90, строн-ций-89, йод-131 барий-140 и цезий-137. Уменьшению поступле­ния в растения 90 Sr способствует внесение известковых, a 137 Cs - калийных удобрений. Внсение органических удобрений уменьша­ет поступление в растения цезия и стронция в 2-3 раза. Внесение минеральных азотных удобрений либо не оказывает существенно­го влияния на усвоение растениями радионуклидов, либо увели­чивает его. Орошение резко увеличивает интенсивность перехода радионуклидов из почвы в растения, особенно при дождевании.

В Беларуси в результате аварии на Чернобыльской АЭС основ­ным загрязнителем пахотного слоя почв и растениеводческой продукции является цезий-137. В большинстве обрабатываемых угодий он равномерно распределился в пределах пахотного слоя, а на необрабатываемых землях находится в пределах дернины. Стронций-90 более подвижен в почвенной среде и перемещается по почвенному профилю в пределах метрового слоя. К основным факторам, определяющим степень загрязнения продукции расте­ниеводства радионуклидами, относятся:

« агрохимические и агрофизические свойства почвы;

» распределение радионуклидов по почвенному профилю и водный режим почвы.

Чем меньше доля радионуклида в общей концентрации радио­нуклид + элемент-аналог, тем меньше поступает его в растение. Чем больше влажность корнеобитаемого слоя и концентрация ра­дионуклида, тем больше его поглощение. Для снижения поступле­ния в растения радионуклидов необходимо:

Поддержание уровня грунтовых вод на глубине не менее 75-
100 см от поверхности;

Внесение повышенных доз Са и К;

Внесение минеральных удобрений в подпахотный слой по­
чвы, запашка верхнего загрязненного слоя на глубину 60-80 см
с внесением в него Са и К (Афанасик и др., 2001).

При загрязнении радионуклидами содержание марганца в золе мать-и-мачехи, крапивы двудомной, хвоща лесного, щитовника мужского, мхов уменьшается на промплощадке до 0,03-0,05 %, в лесу до 0,12-0,19% при норме 0,25-0,60%. Марганец играет важную роль в процессах фотосинтеза и в азотном обмене. Погло­щение растениями радионуклидов ведет к перестройке механизма фотосинтеза и азотного обмена, роль марганца начинают выпол­нять радионуклиды. При загрязнении радионуклидами частота хромосомных аберраций в мужских половых клетках в пыльниках растений возрастает в 2 раза.

Радиоактивность большинства источников пресной воды неве­лика и определяется присутствием в основном ^К и 226 Ra. Радио­активное загрязнение пресных вод носит локальный характер и связано с попаданием в них урана и отходов атомной промыш­ленности. При эксплуатации АЭС в биосферный цикл посту­пают 3 Н, 14 С.

Пути поступления радионуклидов в организм человека с пи­щей достаточно сложны и разнообразны. Подавляющая часть радионуклидов поступает в организм человека по пищевым це­пям. Основным каналом вовлечения радионуклидов в пищевые цепи является сельское хозяйство. Растения могут загрязняться в процессе выпадения радионуклидов из воздуха (аэральный путь загрязнения). В то же время выпавшие радионуклиды по­падают в почву, из почвы - в корни растений и снова через ра­стения - в организм животного и человека.

Значительная часть радионуклидов поступает в организм чело­века по пищевой цепи: почва - сельскохозяйственные живот­ные - продукция животноводства - человек. Радионуклиды по­ступают в организм животных через органы дыхания, желудочно-кишечный тракт с пищей и через поверхность кожи. Жвачные животные потребляют много грубых и сочных кормов. С травой в их организм попадает большое количество радионуклидов, выпав­ших на пастбище. Продукты животноводства (особенно молоко и молочные продукты) - основной источник радионуклидов для человека. В некоторых случаях с растительной пищей в организм человека может поступать до 40-60 % 137 Cs и 90 Sr/

Наиболее интенсивно радионуклиды накапливаются у молодых животных. Отложение 90 Sr в организме животных зависит от уров­ня кальциевого питания. Насыщение кальцием рациона, содержа­щего относительно мало этого элемента, позволяет снизить на­копление радиостронция в скелете в 2-4 раза. Мягкие органы и ткани накапливают небольшое количество 90 Sr. Более высокие концентрации радионуклида отмечаются у мелких животных (овцы, козы), а сравнительно низкие - у крупного рогатого скота, свиней, лошадей. Концентрация 90 Sr в сале и внутреннем жире обычно в несколько раз ниже, чем в мышечной ткани. Закономер­ности накопления 137 Cs в организме животных имеют много об­щего с особенностями отложения 90 Sr. Цезий выводится из орга­низма животных быстрее, чем 90 Sr. Радиоактивные продукты деле­ния выводятся в основном через желудочно-кишечный тракт. Исключение составляют радиоактивные изотопы йода, которые экскретируются из организма в основном через почки. Чем выше молочная продуктивность, тем большее количество радионукли­дов выделяется с суточным удоем. В конце лактации концент­рация 90 Sr и 131 1 в расчете на 1 л молока возрастает примерно в 1,5 раза. Поступление этих радионуклидов в молоко снижается при добавлении в рацион коров йодистого натрия и карбоната кальция. После выпадения продуктов ядерного деления на мест­ности возможно интенсивное загрязнение куриных яиц радиоак­тивными веществами, особенно если куры значительную часть времени находятся вне помещения.

Можно выделить следующие пути поступления радионуклидов в организм человека: растение - человек; растение - животное - молоко - человек; растение - животное - мясо - человек; ат­мосфера - осадки - водоемы - рыба - человек; вода - человек; вода - гидробионты - рыба - человек.

Кроме пищевого радионуклиды поступают в организм воздуш­ным и кожным путями. Воздушный путь наиболее опасен в пери­од рассеивания радионуклидов после аварии или выброса в атмо­сферу из-за большого объема легочной вентиляции и высокого ко­эффициента захвата и усвоения организмом изотопов из воздуха.

В зависимости от природы и химических соединений радио­нуклида процент его всасывания в пищеварительном тракте ко­леблется от нескольких сотых (цирконий, ниобий, редкоземель­ные элементы, включая лантаниды) до нескольких единиц (вис­мут, барий, полоний), десятков (железо, кобальт, стронций, радий) и до сотен (тритий, натрий, калий) процентов. Всасывание через неповрежденную кожу, как правило, незначительно. Только тритий легко всасывается в кровь через кожу.

Радиоактивные изотопы (I) накапливаются в организме так же, как и нерадиоактивные формы. Некоторые радионуклиды об­ладают химическим сродством с биогенными элементами, необхо­димыми организму. Установлено, что 90 Sr включается в круговорот подобно кальцию, 137 Cs - подобно калию. Основные природ­ные радионуклиды в наземной биоте- 14 С, 40 К, 210 РЬ, 210 Ро. Два последних радионуклида концентрируются в костных тканях.

В окружающей среде радионуклиды рассеиваются и могут кон­центрироваться живыми организмами при прохождении по пище­вым цепям. Радионуклиды активно концентрируются микроорга­низмами. Их концентрации в микроорганизмах могут в 300 раз превышать содержание радионуклидов в окружающей среде.

6.4.3. УСТОЙЧИВОСТЬ ЖИВЫХ ОРГАНИЗМОВ К ВОЗДЕЙСТВИЮ РАДИАЦИИ

Среди растений наиболее высокой радиационной устойчивос­тью обладают водоросли, лишайники, мхи. Их жизнедеятельность наблюдается при уровнях радиации 10-100 кР. Среди семенных растений наиболее радиочувствительные хвойные породы. Листвен­ные породы в 5-8 раз устойчивее хвойных. Уровень радиации, вызывающий гибель половины растений (LD 50), составляет для хвойных пород 380-1200 Р, а для лиственных -2000-100000 Р. Травы примерно в 10 раз устойчивее древесных растений. Среди культурных растений люпин, эспарцет, люцерна, клевер при малых и более высоких дозах испытывают радиостимуляцию. Пшеница, ячмень, просо, лен, горох проявляют радиостимуляцию при малых и угнетение развития при более высоких концентрациях радионук­лидов в почве.

Сравнительно высокие показатели радиоустойчивости харак­терны для почвенных простейших, бактерий. LD 50 / 30 (доза, после получения которой половина организмов гибнет за 30 дней) со­ставляет у них 100-500 кР. Радиоустойчивость многоклеточных животных в среднем тем ниже, чем выше уровень их организации. В частности, ^Ао/зо составляет у круглых червей 10-400 кР, кольча­тых червей 50-160, паукообразных 8-150, ракообразных (мокрицы) 8-100, многоножек 15-180, имаго насекомых 80-200, личинок младших возрастов и куколок насекомых 2 -25, млекопитающих 0,2-1,3, человека 0,5кР (Криволуцкий, 1983). У всех организмов особенно чувствительны к воздействию излучений клетки, нахо­дящиеся в состоянии быстрого роста и размножения. Повышен­ные уровни излучения легче переносят партеногенетические фор­мы и гермафродиты, чем обоеполые.

Через 2,5 мес после аварии в Чернобыле в 3 км от АЭС почвен­ная мезофауна в верхнем 3-сантиметровом слое почвы в сосняках на песчаных почвах была представлена лишь небольшим количе­ством личинок двукрылых. В результате аварийного выброса радио­активных элементов она была практически уничтожена. Числен­ность панцирных клещей снизилась в 30-40 раз, ногохвосток - в 9-10 раз. В пахотных почвах влияние радиации было менее губительным, численность почвенных насекомых в них снизилась в 2 раза. Через 2,5 года после аварии общая численность почвен­ной мезофауны практически полностью восстановилась. Наибо­лее уязвимым для радиации оказались яйца и ранние стадии по­стэмбрионального развития беспозвоночных. Наибольшую роль в перераспределении радиоактивных элементов по почвенному профилю играли дождевые черви.

В полевых экспериментах при внесении в черноземную почву плутония-239 через три года численность дождевых червей и ли­чинок насекомых сократилась в 2 раза, клещей - в 5-6, ногохвос­ток - в 7-8 раз; количество видов панцирных клещей уменьши­лось почти вдвое. Восстановление общей численности и видового разнообразия почвенной фауны произошло лишь через 18 лет (Биоиндикаторы и биомониторинг. - Загорск, 1991).

6.4.4. БИОЛОГИЧЕСКОЕ ДЕЙСТВИЕ ИОНИЗИРУЮЩИХ ИЗЛУЧЕНИЙ НА ОРГАНИЗМ ЧЕЛОВЕКА

В зависимости от распределения в тканях организма различают остеотропные радионуклиды, накапливающиеся преимуществен­но в костях, - радиоизотопы стронция, кальция, бария, радия, иттрия, циркония, плутония; концентрирующиеся в печени (до 60 %) и частично в костях (до 25 %) - церий, лантан, прометий; равномерно распределяющиеся в тканях организма - тритий, уг­лерод, железо, полоний; накапливающиеся в мышцах - калий, рубидий, цезий; в селезенке и лимфатических узлах - ниобий, ру­тений. Радиоизотопы йода избирательно накапливаются в щито­видной железе, где их концентрация может быть в 100-200 раз выше, чем в других органах и тканях.

Механизм воздействия ионизирующего излучения на биологи­ческие объекты, в том числе и на человека, подразделяют на три этапа.

Первый этап. На этом физико-химическом этапе, который про­должается тысячные и миллионные доли секунды, в результате поглощения большого количества энергии излучения образуются ионизированные, активные в химическом отношении атомы и молекулы. Происходит множество радиационно-химических ре­акций, приводящих к разрыву химических связей. Вследствие первичной ионизации в воде образуются свободные радикалы (Н + , ОН - НО 2 - и др.). Обладая высокой химической активнос­тью, они реагируют с ферментами и тканевыми белками, окисляя или восстанавливая их, что приводит к разрушению молекул бел­ка, изменению ферментных систем, расстройству тканевого дыха­ния, т. е. к глубокому нарушению биохимических и обменных процессов в органах и тканях и накоплению токсичных для орга­низма соединений.

Второй этап. Он связан с воздействием ионизирующего излуче­ния на клетки организма и продолжается от нескольких секунд до нескольких часов. Поражаются различные структурные элементы ядер клеток, в первую очередь ДНК. Происходит повреждение хромосом, которые являются ответственными за передачу наслед­ственной информации. При этом возникают хромосомные абер­рации - поломки, перестройка и фрагментация хромосом, обус­ловливающие отдаленные онкогенные и генетические послед­ствия.

Третий этап. Этот этап характеризуется воздействием излуче­ния на организм в целом. Его первые проявления могут возникать уже через несколько минут (в зависимости от полученной дозы), усиливаться в течение нескольких месяцев и реализовываться че­рез многие годы.

Чувствительность различных органов и тканей человека к ионизирующему излучению неодинакова. Для одних тканей и клеток характерна большая радиочувствительность, для других - наоборот, большая радиоустойчивость. Наиболее чувствительны к облучению кроветворная ткань, незрелые форменные элементы крови, лимфоциты, железистый аппарат кишок, половые железы, эпителий кожи и хрусталик глаза; менее чувствительны - хряще­вая и фиброзная ткани, паренхима внутренних органов, мышцы и нервные клетки.

Радиочувствительность различных клеток варьирует в широких пределах, достигая десятикратных различий между наибольшими и наименьшими значениями повреждающих доз. Молодые клетки соединительной ткани полностью лишаются способности к вос­становлению при облучении в дозе около 40 Гр, кроветворные клетки костного мозга полностью погибают уже при дозе 6 Гр.

Поражающее действие ионизирующего излучения. Это действие зависит от целого ряда факторов. Во-первых, оно носит строго ко­личественный характер, т. е. зависит от дозы. Во-вторых, существен­ную роль играет и характеристика мощности дозы радиационного воздействия: одно и то же количество энергии излучения, поглощен­ной клеткой, вызывает тем большее повреждение биологических структур, чем короче срок облучения. Большие дозы воздействия, растянутые во времени, вызывают существенно меньшие повреж­дения, чем те же дозы, поглощенные за короткий срок.

Таким образом, эффект облучения зависит от величины погло­щенной дозы и временного распределения ее в организме. Облучение может вызвать повреждения от незначительных, не дающих кли­нической картины, до смертельных. Однократное острое, а так­же пролонгированное, дробное или хроническое облучение уве­личивают риск отдаленных эффектов - рака и генетических нару­шений.

Оценка риска появления злокачественных опухолей в значи­тельной мере основана на результатах обследования пострадавших

при атомных бомбардировках Хиросимы и Нагасаки и подтверж­дается результатами обследований пострадавших от аварии на Чернобыльской АЭС.

Острое облучение в дозе 0,25 Гр еще не приводит к заметным изменениям в организме. При дозе 0,25-0,50 Гр наблюдаются из­менения показателей крови и другие незначительные нарушения. Доза 0,5-1 Гр вызывает более значительные изменения показате­лей крови - снижение числа лейкоцитов и тромбоцитов, измене­ние показателей обмена, иммунитета, вегетативные нарушения. Пороговой дозой, вызывающей острую лучевую болезнь, принято счи­тать 1 Гр.

Опасность внутреннего облучения обусловлена попаданием и накоплением радионуклидов в организме через продукты пита­ния. Биологические эффекты воздействия таких радиоактивных веществ аналогичны возникающим при внешнем облучении.

Длительность внутреннего и внешнего облучения тканей зави­сит от периода полураспада радионуклида (фактического) Т ф и периода его полувыведения из организма (биологического) Т б. С учетом этих двух показателей вычисляется эффективный период Гдф, в течение которого активность радионуклида уменьшается вдвое: Т эф = ТфТ 6 /(Т ф + Т 6). У разных радионуклидов Т эф колеб­лется от нескольких часов и суток (например, " 31 1) до десятков лет (90 Sr, 137 Cs) и десятков тысяч лет (239 Ри). Биологическое действие радиоактивных веществ различных химических классов избира­тельно.

Йод (I). Радиоактивные изотопы йода (131 1) могут поступать в организм человека через органы пищеварения, дыхания, кожу, ра­невые и ожоговые поверхности. Поступающий в организм радио­активный йод быстро всасывается в кровь и лимфу. В течение пер­вого часа в верхнем отделе тонкого кишечника всасывается от 80 до 90 % йода. По накоплению йода органы и ткани образуют убы­вающий ряд: щитовидная железа > почки > печень > мышцы > ко­сти. Снижение уровня гормонов в организме под воздействием радиоактивного йода, их неполноценность, а также возрастающая при этом потребность в них приводят к нарушению нейроэндок-ринных коррелятивных связей в звене гипофиз - щитовидная же­леза с последующим вовлечением в процесс и других эндокринных органов. Основным путем выведения йода из организма являются почки. Из организма в целом, щитовидной железы, печени, почек, селезенки, скелета йод выводится с Т 6 , равным 138, 138, 7, 7, 7 и 12 сут соответственно. Меры профилактики и помощи при поступ­лении радиоактивного йода в организм заключаются в ежесуточном потреблении солей нерадиоактивного йода, г: йодида калия - 0,2, йодида натрия - 0,2, сайодина - 0,5 или тереостатиков (мерказо-лил 0,01, 6-метилтиоурацил 0,25, перхлорат калия 0,25).

Цезий (Cs). Природный цезий состоит из одного стабильного изотопа - 133 Cs - и 23 радиоактивных изотопов с массовыми числами от 123 до 132 и от 134 до 144. Наибольшее значение имеет ра­диоактивный изотоп 137 Cs. В 2000 г. от АЭС всех стран мира в ат­мосферу было выброшено около 22,2 10 19 Бк 137 Cs. Этот изотоп поступает в организм человека преимущественно с пищевыми продуктами (через органы дыхания попадает примерно 0,25 % его количества) и практически полностью всасывается в пищевари­тельном тракте. Примерно 80 % его откладывается в мышечной ткани, 8 % - в костях. По степени концентрирования 137 Cs все ткани и органы распределяются следующим образом: мышцы > > почки > печень > кости > мозг > эритроциты > плазма крови. Около 10 % 137 Cs быстро экскретируется из организма, 90 % его выводится более медленными темпами. Биологический период полувыведения этого радионуклида у взрослых колеблется от 10 до 200 сут, составляя в среднем 100 сут, поэтому содержа­ние его в организме человека практически полностью опреде­ляется его поступлением с пищевыми продуктами в течение года и, следовательно, зависит от степени загрязненности про­дуктов 137 Cs. В Российской Федерации радиационная безопас­ность пищевой продукции определяется ее соответствием допу­стимым уровням удельной активности 137 Cs. Допустимые уров­ни этого изотопа составляют в грибах 500 Бк/кг, поваренной соли - 300, сливочном масле, шоколаде, рыбе, овощах, сахаре, мясе -100-160, хлебе, крупах, зерне, сырах- 40-80 Бк/кг, растительном масле, молоке 40-80 Бк/л, питьевой воде - 8 Бк/л (приложение 2).

При увеличении содержания в пищевом рационе солей калия, натрия, а также воды, пищевых волокон происходит ускорение выведения 137 Cs и замедление его всасывания. Эта особенность обмена позволила разработать высокоэффективные адсорбенты-протекторы, такие, как берлинская лазурь, пектиновые вещества и др., связывающие 137 Cs в пищеварительном тракте и тем самым ускоряющие его выделение из организма.

Стронций (Sr). Природный стронций, как и другие радионукли­ды, состоит из смеси стабильных и нестабильных изотопов. Как аналог кальция стронций активно участвует в обмене веществ рас­тений. Относительно большое количество радиоактивного изотопа 90 Sr накапливают бобовые культуры, корне- и клубнеплоды, злаки.

Радионуклид 90 Sr поступает в организм через желудочно-ки­шечный тракт, легкие и кожу. Уровни всасывания стронция из желудочно-кишечного тракта колеблются от 5 до 100 %. Стронций быстро всасывается в кровь и лимфу из легких.

Важное значение при выведении стронция из желудочно-ки­шечного тракта имеет диета. Его всасывание уменьшается с повы­шением содержания в пище солей кальция и фосфора, а также при введении высоких доз тироксина.

Независимо от пути поступления в организм растворимые соеди­нения радиоктивного стронция в основном накапливается в скелете В мягких тканях задерживается менее 1 %, остальное количе­ство откладывается в костной ткани. Со временем в костях кон­центрируется большое количество стронция, располагающегося в различных слоях костной ткани, а также в зонах ее роста, что при­водит к формированию в организме участков с высокой радиоак­тивностью. Биологический период полувыведения 90 Sr из орга­низма составляет от 90 до 154 сут.

Именно 90 Sr в первую очередь вызывает лейкемию. В организм человека он попадает преимущественно с растительной пищей, мо­лочными продуктами и яйцами. Радиационное поражение организ­ма 90 Sr увеличивается за счет его дочернего продукта иттрия - 90 Y. Уже через месяц активность 90 Y практически достигает равновес­ного значения и становится равной активности 90 Sr. В дальнейшем она определяется периодом полураспада 90 Sr. Наличие в организме пары ^Sr/^Y может вызвать поражение половых желез, гипофиза и поджелудочной железы. Допустимые уровни 90 Sr в пищевых про­дуктах в соответствии с требованиями СанПиН 2.3.2.1078-01 со­ставляют в зерне, сырах, рыбе, крупах, муке, сахаре, соли 100- 140 Бк/кг, мясе, овощах, фруктах, сливочном масле, хлебе, мака­ронных изделиях - 50-80 Бк/кг, растительном масле 50-80 Бк/л, молоке - 25, питьевой воде - 8 Бк/л (см. приложение 2).

6.4.5. ТЕХНОЛОГИЧЕСКИЕ СПОСОБЫ СНИЖЕНИЯ СОДЕРЖАНИЯ РАДИОНУКЛИДОВ В ПИЩЕВОЙ ПРОДУКЦИИ

Уменьшения поступления радионуклидов в организм с пищей можно достичь путем снижения их содержания в продуктах с по­мощью различных приемов, а также использования рационов, со­держащих их в минимальном количестве.

За счет обработки пищевого сырья (тщательного мытья, чистки продуктов, отделения малоценных частей) можно удалить от 20 до 60 % радионуклидов. Так, перед мытьем некоторых овощей целе­сообразно удалять верхние, наиболее загрязненные листья (капус­та, лук репчатый и др.). Картофель и корнеплоды обязательно моют дважды: перед очисткой от кожуры и после.

Наиболее предпочтительным способом кулинарной обработки пищевого сырья в условиях повышенного загрязнения окружаю­щей среды радиоактивными веществами является варка. При от­варивании значительная часть радионуклидов переходит в отвар. Использовать отвары в пищу нецелесообразно. Для получения от­вара нужно варить продукт в воде 10 мин, а затем слить воду и продолжать варку в новой порции воды. Такой отвар уже можно использовать в пищу: например, он приемлем при приготовлении первых блюд.

Мясо перед приготовлением в течение 2 ч следует замочить в холодной воде, порезав его небольшими кусками, затем снова за- лить холодной водой и варить при слабом кипении в течение 10 мин, слить воду и в новой порции воды варить до готовности. При жарении мяса и рыбы происходит их обезвоживание и на по­верхности образуется корочка, препятствующая выведению ра­дионуклидов и других вредных веществ. Поэтому при вероятности загрязнения пищевых продуктов радиоизотопами следует отдавать предпочтение отварным мясным и рыбным блюдам, а также блю­дам, приготовленным на пару.

На выведение радионуклидов из продукта в бульон влияют со­левой состав и реакция воды. Так, выход 90 Sr в бульон из кости составляет (в процентах от активности сырого продукта): при вар­ке в дистиллированной воде - 0,02; в водопроводной - 0,06; в во­допроводной с лактатом кальция - 0,18.

Питьевая вода из централизованного водопровода обычно не требует какой-либо дополнительной обработки. Необходимость дополнительной обработки питьевой воды из шахтных колодцев состоит в ее кипячении в течение 15-20 мин. Затем следует ее ох­ладить, отстоять и осторожно, не взмучивая осадка, перелить про­зрачный слой в другую посуду.

Существенного снижения содержания радионуклидов в молоч­ных продуктах можно достичь путем получения из молока жиро­вых и белковых концентратов. При переработке молока в сливках остается не более 9 % цезия и 5 % стронция, в твороге - соответ­ственно 21 и 27, в сырах - 10 и 45. В сливочном масле всего около 2 % цезия от его содержания в цельном молоке.

Для выведения уже попавших в организм радионуклидов необ­ходима высокобелковая диета. Употребление белка должно быть увеличено не менее чем на 10 % от суточной нормы, для восполне­ния носителей SH-групп, окисляемых активными радикалами, образуемыми радионуклидами. Источниками белковых веществ кроме мяса и молочных продуктов являются продукты из семян бобовых растений, морская рыба, а также крабы, креветки и каль­мары.

В настоящее время под питанием понимается сложный процесс поступления, переваривания, всасывания и усвоения в организме веществ (нутриентов), необходимых для удовлетворения энергетических и пластических потребностей организма, в том числе регенерации клеток и тканей, регуляции различных функций организма. Пищеварением называется совокупность физико-химических и физиологических процессов, обеспечивающих расщепление поступающих в организм сложных пищевых веществ на простые химические соединения, способные всасываться и усваиваться в организме.

Не вызывает сомнений тот факт, что поступающая в организм извне пища, обычно состоящая из нативного полимерного материала (белки, жиры, углеводы), должна быть деструктурирована и гидролизована до таких элементов, как аминокислоты, гексозы, жирные кислоты и т. д., которые непосредственно участвуют в процессах метаболизма. Превращение исходных веществ в резорбируемые субстраты происходит поэтапно в результате гидролитических процессов, проходящих с участием различных ферментов.

Последние достижения в области фундаментальных исследований работы пищеварительной системы существенно изменили традиционные представления о деятельности "пищеварительного конвейера". В соответствии с современной концепцией под пищеварением понимаются процессы ассимиляции пищи от ее поступления в желудочно-кишечный тракт до включения во внутриклеточные метаболические процессы.

Многокомпонентная система пищеварительного конвейера состоит из следующих этапов:

1. Поступление пищи в ротовую полость, ее измельчение, смачивание пищевого комка и начало полостного гидролиза. Преодоление глоточного сфинктера и выход в пищевод.

2. Поступление пищи из пищевода через кардиальный сфинктер в желудок и временное ее депонирование. Активное перемешивание пищи, ее перетирание и измельчение. Гидролиз полимеров желудочными ферментами.

3. Поступление пищевой смеси через антральный сфинктер в двенадцатиперстную кишку. Перемешивание пищи с желчными кислотами и ферментами поджелудочной железы. Гомеостазирование и формирование химуса с участием кишечной секреции. Гидролиз в полости кишки.

4. Транспорт полимеров, олиго- и мономеров через пристеночный слой тонкой кишки. Гидролиз в пристеночном слое, осуществляемый панкреатическими и энтероцитарными ферментами. Транспорт нутриентов в зону гликокаликса, сорбция - десорбция на гликокаликсе, связывание с акцепторными гликопротеидами и активными центрами панкреатических и энтероцитарных ферментов. Гидролиз нутриентов в щеточной кайме энтероцитов (мембранное пищеварение). Доставка продуктов гидролиза к основанию микроворсинок энтероцитов в зону образования эндоцитозных инвагинаций (с возможным участием сил полостного давления и капиллярных сил).

5. Перенос нутриентов в кровеносные и лимфатические капилляры путем микропиноцитоза, а также диффузии через фенестры эндотелиальных клеток капилляров и по межклеточному пространству. Поступление нутриентов через портальную систему в печень. Доставка пищевых веществ лимфо- и кровотоком в ткани и органы. Транспорт нутриентов через мембраны клеток и их включение в пластические и энергетические процессы.

Какова же роль различных отделов пищеварительного тракта и органов в обеспечении процессов переваривания и всасывания нутриентов?

В полости рта происходит механическое размельчение пищи, смачивание слюной и подготовка ее к дальнейшему транспорту, который обеспечивается тем, что пищевые нутриенты превращаются в более или менее однородную массу. Движениями, в основном, нижней челюсти и языка формируется пищевой комок, который затем проглатывается и, в большинстве случаев, очень быстро достигает полости желудка. Химическая обработка пищевых веществ в ротовой полости, как правило, не имеет большого значения. Хотя слюна содержит целый ряд ферментов, их концентрация очень невелика. Лишь амилаза может играть определенную роль в предварительном расщеплении полисахаридов.

В полости желудка пища задерживается и затем медленно, небольшими порциями перемещается в тонкую кишку. По-видимому, основная функция желудка - депонирующая. Пища быстро накапливается в желудке и затем постепенно утилизируется организмом. Это подтверждается большим числом наблюдений над больными с удаленным желудком. Основным нарушением, характерным для этих больных, является не выключение собственно пищеварительной деятельности желудка, а нарушение депонирующей функции, то есть постепенной эвакуации пищевых веществ в кишечник, что проявляется в виде так называемого "демпинг-синдрома". Пребывание пищи в желудке сопровождается ферментативной обработкой, при этом желудочный сок содержит ферменты, осуществляющие начальные стадии расщепления белков.

Желудок рассматривается как орган пепсинно-кислотного пищеварения, так как это единственный отдел пищеварительного канала, где ферментативные реакции проходят в резко кислой среде. Железы желудка выделяют несколько протеолитических ферментов. Наиболее важными из них являются пепсины и, кроме того, химозин и парапепсин, которые осуществляют дезагрегацию белковой молекулы и лишь в небольшой степени расщепление пептидных связей. Большое значение имеет, по-видимому, действие соляной кислоты на пищу. Во всяком случае, кислая среда желудочного содержимого не только создает оптимальные условия для действия пепсинов, но и способствует денатурации белков, вызывает набухание пищевой массы, увеличивает проницаемость клеточных структур, тем самым благоприятствуя последующей пищеварительной обработке.

Таким образом, слюнные железы и желудок играют весьма ограниченную роль в переваривании и расщеплении пищи. Каждая из упомянутых желез по сути осуществляет воздействие на один из видов пищевых веществ (слюнные железы - на полисахариды, желудочные - на белки), причем в ограниченных пределах. В то же время поджелудочная железа выделяет самые разнообразные ферменты, которые осуществляют гидролиз всех пищевых веществ. Поджелудочная железа воздействует с помощью вырабатываемых ею ферментов на все виды нутриентов (белки, жиры, углеводы).

Ферментативное действие секрета поджелудочной железы реализуется в полости тонкой кишки, и уже один этот факт заставляет считать, что кишечное пищеварение является наиболее существенным этапом в переработке пищевых веществ. Сюда же, в полость тонкой кишки, попадает и желчь, которая вместе с панкреатическим соком осуществляет нейтрализацию кислого желудочного химуса. Ферментативная активность желчи невелика и, в общем, не превышает ту, что обнаруживается в крови, моче и других непищеварительных жидкостях. Вместе с тем желчь и, в особенности, ее кислоты (холевая и дезоксихолевая) выполняют ряд важных пищеварительных функций. Известно, в частности, что желчные кислоты стимулируют деятельность некоторых панкреатических ферментов. Наиболее отчетливо это доказано в отношении панкреатической липазы, в меньшей степени это касается амилазы и протеаз. Кроме того, желчь стимулирует перистальтику кишечника и, по-видимому, обладает бактериостатическим действием. Но наиболее важно участие желчи во всасывании нутриентов. Желчные кислоты необходимы для эмульгирования жиров и для всасывания нейтральных жиров, жирных кислот и, возможно, других липидов.

Принято считать, что кишечное полостное пищеварение - это процесс, который осуществляется в просвете тонкой кишки под влиянием, главным образом, секрета поджелудочной железы, желчи и кишечного сока. Внутрикишечное пищеварение осуществляется за счет слияния части транспортных везикул с лизосомами, цистернами эндоплазматической сети и комплекса Гольджи. Предполагается участие нутриентов во внутриклеточном метаболизме. Происходит слияние транспортных везикул с базолатеральной мембраной энтероцитов и выход содержимого везикул в межклеточное пространство. Тем самым достигается временное депонирование нутриентов и их диффузия по градиенту концентрации через базальную мембрану энтероцитов в собственную пластинку слизистой оболочки тонкой кишки.

Интенсивное изучение процессов мембранного пищеварения позволило достаточно полно охарактеризовать деятельность пище-варительно-транспортного конвейера в тонкой кишке. Согласно сложившимся на сегодня представлениям, ферментативный гидролиз пищевых субстратов последовательно осуществляется в полости тонкой кишки (полостное пищеварение), в надэпителиальном слое слизистых наложений (пристеночное пищеварение), на мембранах щеточной каймы энтероцитов (мембранное пищеварение) и после проникновения не полностью расщепленных субстратов внутрь энтероцитов (внутриклеточное пищеварение).

Начальные стадии гидролиза биополимеров осуществляются в полости тонкой кишки. При этом пищевые субстраты, не подвергшиеся гидролизу в кишечной полости, и продукты их начального и промежуточного гидролиза диффундируют сквозь неперемешивае-мый слой жидкой фазы химуса (автономный примембранный слой) в зону щеточной каймы, где осуществляется мембранное пищеварение. Крупномолекулярные субстраты гидролизуются панкреатическими эндогидролазами, адсорбированными преимущественно на поверхности гликокаликса, а продукты промежуточного гидролиза - экзогидролазами, транслоцированными на внешней поверхности мембран микроворсинок щеточной каймы. Благодаря сопряженности механизмов, осуществляющих заключительные стадии гидролиза и начальные этапы транспорта через мембрану, продукты гидролиза, образующиеся в зоне мембранного пищеварения, всасываются и поступают во внутреннюю среду организма.

Переваривание и всасывание основных нутриентов осуществляется следующим образом.

Переваривание белков в желудке происходит при превращении в кислой среде пепсиногенов в пепсины (оптимальный рН 1,5-3,5). Пепсины расщепляют связи между ароматическими аминокислотами, соседствующими с карбоксильными аминокислотами. Они инактивируются в щелочной среде, расщепление пептидов пепсинами прекращается после поступления химуса в тонкую кишку.

В тонкой кишке полипептиды подвергаются дальнейшему расщеплению протеазами. В основном расщепление пептидов осуществляется панкреатическими ферментами: трипсином, химотрипсином, эластазой и карбоксипептидазами А и В. Энтерокиназа переводит трипсиноген в трипсин, который затем активирует и другие протеазы. Трипсин расщепляет полипептидные цепочки в местах соединений основных аминокислот (лизина и аргинина), в то время как химотрипсин разрушает связи ароматических аминокислот (фенилала-нина, тирозина, триптофана). Эластаза расщепляет связи алифатических пептидов. Эти три фермента являются эндопептидазами, поскольку гидролизуют внутренние связи пептидов. Карбоксипеп-тидазы А и В представляют собой экзопептидазы, так как отщепляют только концевые карбоксильные группы преимущественно нейтральных и основных аминокислот соответственно. При протеолизе, осуществляемом панкреатическими ферментами, происходит отщепление олигопептидов и некоторых свободных аминокислот. Микроворсинки энтероцитов имеют на своей поверхности эндопептидазы и экзопептидазы, которые расщепляют олигопептиды до аминокислот, ди- и трипептидов. Всасывание ди- и трипептидов осуществляется с помощью вторичного активного транспорта. Эти продукты затем расщепляются до аминокислот внутриклеточными пептидазами энтероцитов. Аминокислоты абсорбируются по принципу механизма ко-транспорта с натрием на апикальном участке мембраны. Последующая диффузия через базолатеральную мембрану энтероцитов происходит против градиента концентрации, и аминокислоты попадают в капиллярное сплетение кишечных ворсинок. По типам переносимых аминокислот различают: нейтральный транспортер (переносящий нейтральные аминокислоты), основной (переносящий аргинин, лизин, гистидин), дикарбоксильный (транспортирующий глутамат и аспартат), гидрофобный (транспортирующий фенилаланин и метионин), иминотранспортер (переносящий пролин и гидроксипролин).

В кишечнике расщепляются и всасываются только те углеводы, на которые действуют соответствующие ферменты. Непереваривае-мые углеводы (или пищевые волокна) не могут быть ассимилированы, поскольку для этого нет специальных ферментов. Однако возможен их катаболизм бактериями толстой кишки. Углеводы пищи состоят из дисахаридов: сахарозы (обычный сахар) и лактозы (молочный сахар); моносахаридов - глюкозы и фруктозы; растительных крахмалов - амилозы и амилопектина. Еще один углевод пищи - гликоген - является полимером глюкозы.

Энтероциты не способны транспортировать углеводы размером больше, чем моносахариды. Поэтому большая часть углеводов должна расщепляться перед всасыванием. Под действием амилазы слюны образуются ди- и триполимеры глюкозы (соответственно мальтоза и мальтотриоза). Амилаза слюны инактивируется в желудке, так как оптимальный рН для ее активности составляет 6,7. Панкреатическая амилаза продолжает гидролиз углеводов до мальтозы, мальтотриозы и концевых декстранов в полости тонкой кишки. Микроворсинки энтероцитов содержат ферменты, расщепляющие олиго- и дисахариды до моносахаридов для их абсорбции. Глюкоамилаза расщепляет связи на нерасщепленных концах олигосахаридов, которые образовались при расщеплении амилопектина амилазой. В результате этого образуются наиболее легко расщепляемые тетрасахариды. Сахаразно-изомальтазный комплекс имеет два каталитических участка: один с сахаразной активностью, другой - с изомальтазной. Изомальтазный участок переводит тетрасахариды в мальтотриозу. Изомальтаза и сахараза отщепляют глюкозу от нередуцированных концов мальтозы, мальтотриозы и концевых декстранов. При этом сахараза расщепляет дисахарид сахарозу до фруктозы и глюкозы. Кроме того, на микроворсинках энтероцитов также имеется лактаза, которая расщепляет лактозу до галактозы и глюкозы.

После образования моносахаридов начинается их абсорбция. Глюкоза и галактоза транспортируются в энтероциты вместе с натрием посредством транспортера "натрий-глюкоза", при этом всасывание глюкозы значительно возрастает в присутствии натрия и нарушается в его отсутствие. Фруктоза же поступает в клетку через апикальный участок мембраны путем диффузии. Галактоза и глюкоза проходят через базолатеральный участок мембраны с помощью переносчиков, механизм выхода фруктозы из энтероцитов менее изучен. Моносахариды поступают через капиллярное сплетение ворсинок в воротную вену и далее в кровоток.

Жиры в пище представлены в основном триглицеридами, фосфолипидами (лецитином) и холестерином (в виде его эфиров). Для полноценного переваривания и всасывания жиров необходимо сочетание нескольких факторов: нормальной работы печени и желчевыводящих путей, наличия панкреатических ферментов и щелочного рН, нормального состояния энтероцитов, лимфатической системы кишечника и регионарной кишечно-печеночной циркуляции. Отсутствие любого из этих компонентов приводит к нарушению всасывания жиров и стеаторее.

В основном переваривание жиров происходит в тонкой кишке. Однако начальный процесс липолиза может проходить в желудке под действием желудочной липазы при оптимальном значении рН 4-5. Липаза желудка расщепляет триглицериды до жирных кислот и диглицеридов. Она устойчива к воздействию пепсина, однако разрушается под действием протсаз поджелудочной железы в щелочной среде двенадцатиперстной кишки, ее активность снижается также под действием солей желчных кислот. Желудочная липаза имеет небольшое значение по сравнению с панкреатической липазой, хотя обладает некоторой активностью, особенно в антральном отделе, где при механическом перемешивании химуса образуются мельчайшие жировые капли, что повышает площадь поверхности переваривания жиров.

После попадания химуса в двенадцатиперстную кишку происходит дальнейший липолиз, включающий несколько последовательных стадий. Сначала триглицериды, холестерин, фосфолипиды и продукты расщепления липидов желудочной липазой сливаются в мицеллы под действием желчных кислот, мицеллы стабилизируются фосфолипидами и моноглицеридами в щелочной среде. Затем колипаза, секретируемая поджелудочной железой, воздействует на мицеллы и служит точкой приложения действия панкреатической липазы. В отсутствие колипазы панкреатическая липаза обладает слабой липолитической активностью. Связывание колипазы с мицеллой улучшается в результате воздействия панкреатической фосфолипазы А на лецитин мицелл. В свою очередь, для активации фосфолипазы А и образования лизолецитина и жирных кислот необходимо наличие солей желчных кислот и кальция. После гидролиза лецитина триглицериды мицелл становятся доступными для переваривания. Затем панкреатическая липаза прикрепляется к соединению "колипаза-мицелла" и гидролизует 1- и 3-связи триглицеридов, образуя моноглицерид и жирную кислоту. Оптимальный рН для панкреатической липазы составляет 6,0-6,5. Другой фермент - панкреатическая эстераза - гидролизует связи холестерина и жирорастворимых витаминов с эфирами жирной кислоты. Основными продуктами расщепления липидов под действием панкреатической липазы и эстеразы являются жирные кислоты, моноглицериды, лизолецитин и холестерин (неэстерифицированный). Скорость поступления гидрофобных веществ в микроворсинки зависит от их солюбилизации в мицеллах в просвете кишки.

Жирные кислоты, холестерин и моноглицериды поступают в энтероциты из мицелл путем пассивной диффузии; хотя жирные кислоты с длинной цепью могут переноситься и с помощью поверхностного связывающего протеина. Поскольку эти компоненты жирорастворимы и гораздо мельче, чем непереваренные триглицериды и эфиры холестерина, они легко проходят через мембрану энтероцита. В клетке жирные кислоты с длинной цепью (более 12 атомов углерода) и холестерин переносятся связывающими протеинами в гидрофильной цитоплазме к эндоплазматическому ретикулуму. Холестерин и жирорастворимые витамины переносятся стерольным белком-переносчиком к гладкому эндоплазматическому ретикулуму, где холестерин реэстерифицируется. Жирные кислоты с длинной цепью транспортируются через цитоплазму специальным белком, степень их поступления в шероховатый эндоплазматический ретикулум зависит от количества жиров в пище.

После ресинтеза эфиров холестерина, триглицеридов и лецитина в эндоплазматическом ретикулуме они образуют липопротеины, соединяясь с аполипопротеинами. Липопротеины делят по размеру, по содержанию в них липидов и по типу апопротеинов, входящих в их состав. Хиломикроны и липопротеины очень низкой плотности имеют больший размер и состоят, в основном, из триглицеридов и жирорастворимых витаминов, тогда как липопротеины низкой плотности имеют меньший размер и содержат преимущественно эсте-рифицированный холестерин. Липопротеины высокой плотности - самые маленькие по размеру и содержат, главным образом, фосфолипиды (лецитин). Сформированные липопротеины выходят через базолатеральную мембрану энтероцитов в везикулах, далее они поступают в лимфатические капилляры. Жирные кислоты со средней и короткой цепью (содержащие менее 12 атомов углерода) могут прямо поступать в систему воротной вены из энтероцитов без образования триглицеридов. Кроме того, жирные кислоты с короткой цепью (бутират, пропионат и др.) образуются в толстой кишке из непереваренных углеводов под действием микроорганизмов и являются важным источником энергии для клеток слизистой оболочки толстой кишки (колоноцитов).

Подытоживая представленные сведения, следует признать, что знания физиологии и биохимии пищеварения позволяют оптимизировать условия проведения искусственного (энтерального и перорального) питания, опираясь на основные принципы деятельности пищеварительного конвейера.

Читайте также: