Тема: Движение света в глазе. Глаз как оптическая система

Для начала.

Видимый свет это электромагнитные волны, на которые настроено наше зрение. Можно сравнить человеческий глаз с антенной радиоприемника, вот только чувствителен он будет не к радиоволнам, а к другой полосе частот. Как свет человек воспринимает электромагнитные волны с длиной примерно от 380 нм до 700 нм. (Нанометр равен одной миллиардной части метра). Волны именно этого диапазона называют видимым спектром; с одной стороны к нему примыкает ультрафиолетовое излучение (столь милое сердцу любителей загара), с другой - инфракрасный спектр (который мы сами способны генерировать в виде выделяемого телом тепла). Человеческий глаз и головной мозг (самый быстрый процессор из существующих) в режиме реального времени визуально восстанавливают видимый окружающий мир (часто не только видимый, но и воображаемый, но об этом - в статье про Гештальт).

Для фотографов и фотолюбителей сравнение с радиоприемником кажется бессмысленным: уж коль проводить аналогии, так с фототехникой - присутствует определенное сходство: глаза и объектива, мозга и процессора, ментальной картинки и изображения, сохраненного в файле. Зрение и фотографию часто сравнивают на форумах, мнения высказываются самые разные. Решил и я скомпилировать некоторую информацию и напроводить аналогий.

Попробуем найти аналогии в конструкции:

    Роговица работает как передний элемент объектива, преломляя поступающий свет и одновременно как «УФ-фильтр", защищающий поверхность "объектива",

    Радужная оболочка работает в качестве диафрагмы – расширяющейся или сужающейся в зависимости от требуемой экспозиции. На самом деле радужная оболочка, дающая глазам цвет, что вдохновляет на поэтические сравнения и попытки «утонуть в очах», это всего лишь мышца, которая расширяется или сжимается и таким образом определяет размер зрачка.

    Зрачок – объектив, а в нем – хрусталик – фокусирующая группа линз объектива, способная менять угол преломления света.

    Сетчатка, находящаяся на задней внутренней стенке глазного яблока, работает де-факто как матрица/пленка.

    Мозг – процессор, обрабатывающий данные/информацию.

    А шесть мышц, отвечающие за подвижность глазного яблока и крепящиеся к нему снаружи – с натяжкой – но сравнимы и с системой следящего автофокуса и с системой стабилизации изображения, да и с фотографом, наводящим объектив фотоаппарата на интересующую его сцену.

Изображение, фактически формируемое в глазу, перевернуто (как в камере обскуре); его коррекцией занимается особый отдел мозга, переворачивающий картинку «с головы на ноги». Новорожденные видят мир без такой коррекции, поэтому они иногда переводят взгляд или тянутся в направлении, противоположном движению, за которым следят. Эксперименты со взрослыми, которым надели очки, переворачивающие изображение в «неоткорректированный» вид, показали, что они легко приспосабливаются к обратной перспективе. Испытуемым, снявшим очки, требовалось аналогичное время, чтобы заново «приспособится».

То, что «видит» человек, на самом деле можно сравнить с постоянно обновляемым потоком информации, которая собирается в картинку мозгом. Глаза находятся в постоянном движении, собирая информацию – они сканируют поле зрения и обновляют изменившиеся детали, сохраняя статическую информацию.

Область изображения, на которой человек может сфокусироваться в каждый отдельный момент времени составляет лишь около полу градуса от поля зрения. Она соответствует «желтому пятну», а остальная часть изображения остается не в фокусе, все более размываясь к краям поля зрения.

Изображение формируется из данных, собранных светочувствительными рецепторами глаза: палочками и колбочками, расположенными на задней внутренней его поверхности – сетчатке. Палочек больше раз в 14 - около 110-125 миллионов палочек против 6-7 миллионов колбочек.

Колбочки в 100 раз менее чувствительны к свету, чем палочки, но воспринимают цвета и гораздо лучше палочек реагируют на движение. Палочки - клетки первого типа - чувствительны к интенсивности света и к тому, как мы воспринимаем формы и контуры. Поэтому колбочки в большей степени отвечают за дневное зрение, а палочки – за ночное. Существуют три подтипа колбочек, отличающиеся по восприимчивости к разным длинам волн или основным цветам, на которые они настроены: колбочки S-типа для коротких волн - синий, M-типа для средних - зеленый и L-типа для длинных – красный. Чувствительность соответствующих колбочек к цветам не одинакова. То есть, количество света, необходимого для того, чтобы произвести (одинаковое по интенсивности воздействие) такое же ощущение интенсивности различна для S, M и L колбочек. Вот вам и матрица цифрового фотоаппарата – даже фотодиодов зелёного цвета в каждой ячейке в два раза больше, чем фотодиодов других цветов, в результате разрешающая способность такой структуры максимальна в зелёной области спектра, что соответствует особенностям человеческого зрения.

Мы видим цвет преимущественно в центральной части поля зрения - именно там расположены почти все колбочки, чувствительные к цветам. В условиях недостатка освещения, колбочки теряют свою актуальность и информация начинает поступать от палочек, воспринимающих все в монохроме. Именно поэтому, многое из того, что мы видим ночью, выглядит черно-белым.

Но и при ярком свете, края поля зрения остаются монохромными. Когда Вы смотрите прямо вперед, и на краю вашего поля зрения появляется автомобиль, вы не сможете определить его цвет до тех пор пока глаз на мгновение не посмотрит в его сторону.

Палочки чрезвычайно светочувствительны – они способны зарегистрировать свет всего одного фотона. При стандартной освещенности глаз регистрирует около 3000 фотонов в секунду. А поскольку центральная часть поля зрения населена колбочками, ориентированными на дневной свет, глаз начинает видеть больше деталей изображения не по центру, как только солнце опускается ниже горизонта.

Это легко проверить наблюдая за звездами в ясную ночь. По мере адаптации глаза к недостатку освещения (полная адаптация занимает около 30 минут), если вы смотрите в одну точку, вы начинаете видеть группы слабых звезд в стороне от точки, куда вы смотрите. Если перевести на них взгляд, то они пропадут, а новые группы появятся в области, где ваш взгляд был сфокусирован до перемещения.

Многие животные (а птицы – так почти все) имеют гораздо большее число колбочек по сравнению со средним человеком, что позволяет им обнаружить мелких животных и другую добычу с большой высоты и расстояния. И наоборот, у ночных животных и существ, которые охотятся ночью больше палочек, что улучшает ночное зрение.

А теперь аналогии.

Каковы фокусные расстояния человеческого глаза?

Зрение – намного более динамичный и емкий процесс, чтобы без дополнительных сведений сравнивать его с объективом с переменным фокусным расстоянием.

Изображение, получаемое мозгом от двух глаз, имеет угол поля зрения в 120-140 градусов, иногда чуть меньше, редко - больше. (по вертикали до 125 градусов и по горизонтали - 150 градусов, резкое изображение обеспечивается только областью желтого пятна в пределах 60-80 градусов). Посему в абсолютных величинах глаза похожи на широкоугольный объектив, но общая перспектива и пространственные отношения между объектами в поле зрения схожи с картинкой, получаемой с «нормального» объектива. В отличие от традиционно принятого мнения, что фокусные «нормального» объектива лежат в пределах 50 – 55 мм, фактическое фокусное расстояние нормального объектива составляет 43мм.

Приведя общий угол поля зрения в систему 24*36 мм, получаем – с учетом множества факторов, таких как условия освещения, расстояние до предмета, возраст и здоровье человека – фокусное расстояние от 22 до 24 мм (фокусное 22.3 мм получило наибольшее число голосов как ближайшее к картинке человеческого зрения).

Иногда встречаются цифры в 17 мм фокусного (или точнее в 16,7 мм). Такое фокусное получается при отталкивании от формируемого внутри глаза изображения. Входящий угол дает эквивалентное фокусное в 22-24 мм, исходящий - 17 мм. Это как посмотреть в бинокль с обратной стороны – объект окажется не ближе, а дальше. Отсюда и расхождение в цифрах.

Главное - сколько мегапикселей?

Вопрос несколько некорректный, ведь картинка, собираемая мозгом, содержит куски информации, собранные не одновременно, это потоковая обработка. Да и по вопросу методов и алгоритмов обработки пока ясности нет. А нужно еще учитывать возрастные изменения и состояние здоровья.

Обычно упоминается 324 мегапикселя – цифра, основанная на поле зрения 24 мм объектива на 35 мм фотоаппарате (90 градусов) и разрешающей способности глаза. Если постараться найти некую абсолютную цифру, приняв каждую палочку с колбочкой за полноценный пиксель, то получим около 130 мегапикселей. Цифры кажутся некорректными: фотография стремиться к детализации «от края и до края», а человеческий глаз в отдельно взятый момент времени «резко и детализировано» видит лишь малую толику сцены. Да и объем информации (цвет, контраст, детализация) значительно меняется в зависимости от условий освещения. Мне больше по душе оценка в 20 Мп: ведь «желтое пятно» оценивается где-то в 4 – 5 мегапикселей, остальная площадь – размыта и недетализирована (на периферии сетчатки находятся в основном палочки, объединенные в группы до нескольких тысяч вокруг ганглиозных клеток – своеобразных усилителей сигнала).

Где тогда предел разрешения?

По одной из оценок, 74-мегапиксельный файл, распечатанный в полноцветную фотографию с разрешением 530 ppi и размером 35 на 50 см (13*20 дюймов), при просмотре с расстояния в 50 см соответствует максимальной детализации, к которой способен человеческий глаз.

Глаз и ISO

Еще один вопрос, на который практически невозможно однозначно ответить. Дело в том, что в отличие от пленки и матриц цифровых фотоаппаратов, у глаза нет естественной (или базовой) чувствительности, а его способность приспосабливаться к условиям освещения просто удивительна – мы видим и на залитом солнце пляже и в тенистой аллее в сумерках.

Так или иначе, упоминается, что при ярком солнечном свете ISO человеческого глаза равно единице, а при низкой освещенности - порядка ISO 800.

Динамический диапазон

Сразу ответим и на вопрос о контрастности/динамическом диапазоне: при ярком свете контрастность человеческого глаза превышает 10 000 к 1 – величина недостижимая ни для пленки, ни для матриц. Ночной динамический диапазон (рассчитанный по видимым глазу - при полной луне в поле зрения - звездам) достигает миллиона к одному.

Диафрагма и выдержка

Если отталкиваться от полностью расширенного зрачка, максимальная диафрагма человеческого глаза составляет около f/2.4; по другим оценкам от f/2.1 до f/3.8. Многое зависит от возраста человека и его состояния здоровья. Минимальная диафрагма – насколько наш глаз способен «прикрыть диафрагму», когда смотрит на яркую снежную картинку или под солнцем наблюдает за игроками в пляжный волейбол - составляет от f/8.3 до f/11. (Максимальные изменения размера зрачка для здорового человека - от 1,8 мм до 7,5 мм).

Что касается выдержки, то человеческий глаз легко обнаруживает вспышки света длительностью в 1/100 секунды, а в экспериментальных условиях – до 1/200 секунды и короче в зависимости от окружающего освещения.

Битые и горячие пиксели

В каждом глазу существует слепое пятно. Точка, в которую сходится информация от колбочек и палочек, прежде чем отправиться в мозг для пакетной обработки, называется верхушкой зрительного нерва. На этой «верхушке» палочек и колбочек нет – получается немаленькое слепое пятно – группа битых пикселей.

Если интересно, проведите небольшой эксперимент: закройте левый глаз и смотрите правым прямо на значок «+» на рисунке снизу, постепенно приближаясь к монитору. На определенном расстоянии – где-то 30-40 сантиметров от изображения – вы перестанете видеть значок «*». Также можно заставить исчезнуть «плюс», если смотреть на «звездочку» левым глазом, закрыв правый. На зрение эти слепые пятна особо не влияют – мозг заполняет пробелы данными – очень напоминает процесс избавления от битых и горячих пикселей на матрице в реальном времени.

Сетка Амслера

Не хочется о недугах, но необходимость включения в статью хоть одной тестовой мишени заставляет. Да и вдруг кому-нибудь поможет вовремя распознать начинающиеся проблемы со зрением. Итак, возрастная макулодистрофия (ВМД) поражает желтое пятно, отвечающее за остроту центрального зрения – в середине поля появляется слепое пятно. Проверку зрения легко осуществить самостоятельно при помощи «сетки Амслера» - листа бумаги в клетку, размером 10*10 см с черной точкой посередине. Посмотрите на точку в центре "сетки Амслера". Справа на рисунке показан пример того, как должна выглядеть сетка Амслера в здоровом зрении. Если линии рядом с точкой выглядят нечеткими, есть вероятность наличия ВМД и стоит обратиться к окулисту.

Про глаукомы и скотомы промолчим – хватит страшилок.

Сетка Амслера с возможными проблемами

Если на сетке Амслера появляются затемнения или искажения линий - проверьтесь у окулиста.

Датчики фокусировки или желтое пятно.

Место наилучшей остроты зрения в сетчатке – называемое по присутствующему в клетках желтому пигменту «желтым пятном» - расположено напротив зрачка и имеет форму овала с диаметром около 5 мм. Будем считать, что «желтое пятно» - аналог крестообразного датчика автофокуса, отличающегося большей точностью, по сравнению с обычными датчиками.

Близорукость

Юстировка – близорукость и дальнозоркость

Или в более «фотографических» терминах: фронт-фокус и бэк-фокус – изображение сформировано до или после сетчатки. Для юстировки либо идут в сервис-центр (к врачам-офтальмологам) или используют микроподстройку: при помощи очков вогнутыми линзами при фронт-фокусе (близорукости, ака миопия) и очков с выпуклыми линзами при бек-фокусе (дальнозоркости, ака гиперметропии).

Дальнозоркость

Напоследок

А каким глазом смотрим в видоискатель? В среде фотолюбителей редко упоминают про ведущий и ведомый глаз. Проверяется очень просто: возьмите непрозрачный экран с небольшим отверстием (лист бумаги с отверстием размером с монету) и посмотрите на отдаленный предмет через отверстие с расстояния 20-30 сантиметров. После этого – не смещая голову – поочередно смотрите правым и левым глазом, закрывая второй. Для ведущего глаза изображение не сместится. Работая с фотоаппаратом и смотря в него ведущим глазом, другой глаз можно не щурить.

И еще чуть интересных самостоятельных тестов от А. Р. Лурия:

    Скрестите руки на груди в «позе Наполеона». Ведущая рука окажется сверху.

    Переплетите несколько раз подряд пальцы рук. Большой палец, какой руки окажется сверху, та и является ведущей при выполнении мелких движений.

    Возьмите карандаш. «Прицельтесь», выбрав мишень и глядя на нее обоими глазами через кончик карандаша. Зажмурьте один глаз, затем другой. Если мишень сильно смещается при зажмуренном левом глазе, то левый глаз – ведущий, и наоборот.

    Ведущей ногой является та, которой вы отталкиваетесь при прыжке.

Кандидат физико-математических наук А. ХАЗЕН (Нью-Джерси).

Механизмы зрения, казалось бы давно и хорошо изученные, таят в себе множество противоречий. Так, диаметры торцов палочек и колбочек (рецепторов ночного и дневного зрения соответственно) раз в десять больше размера минимальной точки изображения, воспринимаемой глазом; по законам физики на ярком свету человек должен хуже видеть мелкие детали, а реально все наоборот… Объясение этим и многим другим парадоксам зрения нашел доктор физико-математических наук Александр Моисеевич Хазен, более тридцати лет руководивший научно-исследовательской лабораторией в МГУ им. М. В. Ломоносова.

Наука и жизнь // Иллюстрации

Наука и жизнь // Иллюстрации

Наука и жизнь // Иллюстрации

Наука и жизнь // Иллюстрации

Наука и жизнь // Иллюстрации

Наука и жизнь // Иллюстрации

Неправильная стрелка

Нас всех учили в школе, в институтах, в научных и популярных статьях и книгах, что глаз человека устроен подобно фотоаппарату. "Объектив" глаза - хрусталик - проецирует изображение на чувствительные элементы сетчатки - торцы палочек и колбочек, которые образуют "экран-фотопластинку". Сигналы от них не исследованными до конца путями попадают в мозг по глазному нерву, жгуту из множества нервных волокон, число которых на порядки меньше числа палочек и колбочек. Удавалось даже найти в областях мозга, ответственных за зрение, что-то похожее на нерезкую проекцию изображения, попадающего в глаз.

Однако откройте физический, биологический, медицинский учебники, где обычно приводится сечение сетчатки глаза. Она представляет собой прозрачный, слегка мутноватый "листок" толщиной около 0,1 мм. На его поперечном разрезе видны слои клеток, получившие названия от первооткрывателей. На рисунках обычно приводится стрелка, показывающая направление падения света на сетчатку. Вопреки всем объяснениям она направлена не на торцы палочек и колбочек, а на обратную их сторону! Слой палочек и колбочек (фоторецепторов) упирается торцами (которые считаются светочувствительными элементами глаза) в темный пигментный слой. Поэтому торцы палочек и колбочек не могут ничего "видеть". По аналогии с техническими устройствами можно сказать, что свет на сетчатку глаза падает не на "фотодиоды", а на "технологическую плату", на которой они "распаяны". Об этом учебники, научные и популярные статьи напрочь умалчивают.

Анатомия сетчатки демонстрирует и еще один, казалось бы, парадокс. Палочки и колбочки не имеют возможности передавать свои сигналы адресно дальше в нервную систему и мозг. Ведь следующий за ними слой нервных клеток, которые называют горизонтальными, так сильно перепутан произвольными связями, что о передаче нервных импульсов "напрямую" через этот слой не может быть и речи. Анатомия сетчатки продолжает список парадоксов "видящих" торцов палочек и колбочек. Следующий слой биполярных клеток все-таки реализует однозначную связь "вход - выход". Но поперечные размеры этих клеток намного больше палочек и колбочек. Потеря прямой адресности сигналов этим закрепляется.

В передаче импульсов в нервных системах участвуют электрохимические контакты, которые называют химическими синапсами (для простоты - просто синапсами). В результате электрохимических процессов, проходящих в них с участием специфических веществ - нейромедиаторов, нервный импульс получает возможность "передавать вещества" по нервам-"проводам". Поэтому связи между разными дендритами нервов зависят как от нервных импульсов в сетчатке, так и от процессов во всем организме, которые могут поставлять нейромедиаторы в окрестности синапсов в сетчатке и в мозге как с участием нервных импульсов, так и с током крови или других жидкостей.

В слое амакриновых клеток число ветвлений и синаптических связей максимально. Участвуют в них около тридцати видов нейромедиаторов. В частности, дендриты и синапсы, разные по типам нейромедиа торов, имеют существенно различную "топографию" ветвлений - от прямых связей большой длины (в масштабах сетчатки) до густой мелко ветвящейся сети типа "корней травы".

Завершает обработку нервных импульсов палочек и колбочек слой ганглиозных клеток, каждая из которых связана с аксоном, уходящим в мозг. Их жгут служит глазным нервом. Ганглиозные клетки еще крупнее биполярных, не говоря о том, что путаница импульсов после слоя горизонтальных клеток усиливается в слое амакриновых клеток.

Луч света падает на сетчатку со стороны ганглиозных клеток. Все клетки и дендриты в сетчатке образованы своими веществами, показатель преломления которых неизбежно немного отличается. Возникают малые отклонения луча (кстати, сетчатка-"листок" слегка мутновата именно из-за этого).

Даже такого предельно схематизированного, известного более ста лет описания сетчатки достаточно, чтобы понять - все аналогии сетчатки с "фотопластинкой" неверны. Они свидетельствуют только о том, насколько прочными и долголетними в науке могут быть абсолютно очевидные ошибки. Чтобы их устранить, надо ответить на, казалось бы, простой вопрос.

Что и как слышит ухо и видит глаз?

В современных радиоприемниках часто ставят индикатор, на котором скачут световые столбики - отображается спектр воспроизводимых им звуков. Спектр - это зависимость амплитуды (или энергии) колебаний от их частоты. В приемниках его показывают просто для развлечения. Чтобы удовольствие не было дорогим, в конструкции приемника непрерывный спектр превращают в гистограмму - представляют в виде столбиков. Можете сами посмотреть, как меняется спектр на экранчике в зависимости от рода звуков, которые слышны.

И человек и животное слышит путем анализа звукового спектра в ухе и в мозге. Главная деталь слухового аппарата называется улиткой. Еще Герман Гельмгольц (1821-1894) показал, что она служит своего рода спектроскопом, разлагающим звуковые колебания на частотные составляющие - в спектр. Каждую частоту фиксирует свой сенсор в виде нервных клеток и их связей.

Звучание оркестра состоит из суммы отрезков разных синусоид, но в целом оно оказывается случайным процессом. Соответственно и на экранчике радиоприемника виден спектр случайного процесса. Однако ноты, по которым играют оркестранты, талант музыкантов и дирижера создают в этом случайном процессе вполне определенные средние характеристики, изменяющиеся во времени и зависящие от характера исполняемого произведения.

Для полного описания колебаний необходимо знать не только частоту и амплитуду, но еще и фазу. Поэтому ухо должно определять как спектр случайных звуковых волн, так и фазы их составляющих. Характеризуя существующее одновременно множество разных колебаний, в качестве аналога фазы вводят математическое понятие - функцию корреляции, которая в учебной литературе про органы слуха упоминается редко. Несмотря на это, ухо все-таки воспринимает то, что выражается спектрами и функциями корреляции звуковых колебаний, которые анализирует нервная система в ухе и мозге, и в результате мы все слышима как надо.

В органах зрения происходят аналогичные процессы, но в отличие от спектра самих электромагнитных волн (цветного зрения) в них участвуют более абстрактные спектры, связь с которыми осталась вне должного внимания.

Сейчас в интернетовских статьях о разнообразных мировых проблемах часто пишут, что природа проста, а "эти ученые" своими формулами все усложняют. Но математика - только язык науки. Она упрощает описание природы и техники, вводя новые "слова" и правила обращения с ними. Задумайтесь, смогли бы вы разговаривать, если, например, вместо слова "радиоприемник" приходилось бы каждый раз описывать его "простыми словами" из лексикона "приготовления обеда"?

В математике существует понятие "метаязык". Под ним понимают обычный разговорный язык, слова которого специалист заменяет сложными формулами. Инженер-связист на слово "радиоприемник" реагирует известными ему инженерными и физическими подробностями, зависящими от контекста. Специалисту математические понятия "спектр" и "функция корреляции" упрощают понимание, указывают классы описывающих их формул. По этим кратким обозначениям при необходимости и желании можно восстановить многие страницы формул и, в частности, описать процессы слуха и зрения.

По отношению к свету слова "спектр" и "спектрограф" в первую очередь ассоциируются с радугой и школьными воспоминаниями о Ньютоне, который делал опыты с разложением белого света на цветные составляющие, или о теории цветового зрения того же Гельмгольца.

Для "картинок" понятие "спектр" имеет другой смысл. Поясним его. Всем знакомы полоски на товарах в магазинах. Их сканируют лазерным лучом и узнают все, что нужно кассиру. Полоски - это зависимость амплитуды отраженного света от координаты на плоскости. При сканировании она превращается в зависимость амплитуды от времени, то есть в колебания со своим спектром. Для математического описания безразлично, рассматриваются колебания во времени или относительно расстояний. Поэтому с частотными составляющими спектра во времени можно сопоставить функции координат на прямой или на плоскости. Их называют спектром пространственных частот. Аналогичный спектр, но двухмерный, можно получить и для обычной фотографии. Фазовые соотношения для случайных двухмерных пространственных частот описывают двухмерные функции корреляции пространственных частот в плоскости изображения. Иначе говоря, с "картинками" на языке математики можно сопоставить описание пространственных частот в терминах спектров и функций корреляции.

Что такое дифракционная картина, помнят многие. Она возникает, например, на достаточно удаленном экране при падении на него света, прошедшего через отверстие в непрозрачном экране. Ее наиболее простое определение - двухмерный спектр пространственных частот отверстия в транспаранте. Если сфокусировать линзой изображение яркой точки, экран нужно будет поместить в ее фокальную плоскость. Хрусталик глаза делает именно это. На сетчатку глаза попадают не "математические точки" наблюдаемого объекта, а сумма их дифракционных картин как спектров пространственных частот зрачка. Эта сумма спектров пространственных частот и есть то, что видит глаз.

Глаз вместе с мозгом - это "компьютер", обрабатывающий спектры пространственных частот и их функции корреляции, а не аналог фотоаппарата.

Карта в природе и для географов

Географическая карта с привычной сеткой меридианов и параллелей - один из примеров связи объектов с пространственными координатами. Фотографическое изображение отличается от нее тем, что "координатная сетка" на нем условна. Она существует за счет того, что фотографическая эмульсия прочно скреплена с подложкой. Проявка создает в эмульсии зерна, отвечающие ее засветке изображением. Сами зерна расположены случайно. Однозначно заданное положение каждого зерна как элемента изображения эквивалентно введению системы координат. Без этого фотографии быть не может, независимо от того, реализуется ли она буквально или, например, с помощью телевизионной развертки.

Посмотрите еще раз на схему устройства сетчатки. Допустим, что палочки и колбочки расположены в ней строго упорядоченно и свет падает на их торцы (что заведомо не так). Даже в этом случае мозг "не знает номера" данной палочки, то есть ее координат на сетчатке, того места, где она расположена. Полная аналогия глаза и фотоаппарата невозможна!

Но ведь "карта" у животных и людей изначально имеет другой вид и смысл, чем у географов. Вспомните, как объясняют дорогу без карты. Например, говорят: идите минут десять мимо поля, у большого дуба поверните в лес и т. д. В этом случае не сетка координат, а сами окружающие предметы задают свои положения и расстояния между собой. Для количественного выражения расстояний в обиходе часто используют время движения от одного объекта к другому. Такие объяснения можно назвать "картой пешехода" в отличие от обычной географической карты.

Почему палочки и колбочки направлены против падения света?

Все рассказанное про спектры пространственных частот и "карту пешехода" позволяет устранить самый застарелый и интригующий парадокс зрения - объяснить обратную по отношению к падению света ориентацию палочек и колбочек в сетчатке. Это впервые сделано автором в работе .

Повторю, что нейроны в сетчатке глаза имеют свой внутренний состав и структуру, свои оболочки-биомембраны. Вещества, из которых они состоят, слегка отличаются от межклеточной среды величиной показателя преломления. Слои, изменяющие пропускание или направление световых волн, в оптике называют транспарантом. Таким транспарантом на пути света к фоторецепторам глаза служат слои клеток в сетчатке. Условно путь света с их участием на рис. 1 показан "изломами" стрелки с надписью "свет".

Координаты каждой нервной клетки в слоях сетчатки случайны. Тем не менее их положения в организме точно заданы - это его микроанатомическая составляющая, которая образовалась вместе с глазом. Аналогичным образом микроанатомия фиксирует положение каждого фоторецептора по отношению к этим клеткам. В результате координаты фоторецепторов в сетчатке и координаты нервных клеток в ней (транспарант) оказываются связанными между собой и со спроецированным хрусталиком изображением. Но это не "географическая карта-фотопластинка", так как в глазу "меридианов и широт" нет. Зафиксированные микроанатомией взаимные положения фоторецепторов и нервных клеток связаны с координатами точек изображения "картой пешехода". Это подтверждается еще одним парадоксом зрения, о котором в литературе умалчивают.

Всем известно, что на ярком свету человек лучше видит мелкие детали объектов. Столь же известно, что диаметр зрачка при этом уменьшается в 5-10 раз. Соответственно увеличивается диаметр центрального пятна и всей "картинки" спектров пространственных частот. На такое фотоаппарат или телескоп ответит уменьшением разрешения мелких деталей изображения. Если бы глаз по принципам регистрации изображений был подобен фотоаппарату, то в сумерках благодаря расширению зрачка мелкие детали были бы видны заметно лучше, чем на ярком свету. Это явно не так!

Противоречие устраняется напоминанием, что глаз использует ориентиры "карты пешехода". Уменьшение диаметра зрачка увеличивает количество фоторецепторов, воспринимающих спектр как элемент изображения. Понятно, что, если используется одновременно много ориентиров, точность "карты пешехода" будет выше. Поэтому факт-парадокс лучшего разрешения глазом деталей на ярком свету доказывает правильность оценки ведущей роли спектров пространственных частот точек изображений, введенный в работе . Кстати, это же объясняет общеизвестный факт лучшего разрешения простых объектов - точек, прямых, окружностей. Ведь их спектры не только "засвечивают" множество фоторецепторов, но имеют закономерный вид. Это создает дополнительные признаки для узнавания.

Теперь обратите внимание, что слои горизонтальных и особенно амакриновых нервных клеток в сетчатке переплетены многочисленными нервными связями. Поскольку скорость распространения нервных импульсов всего 20-120 м/с (сравните ее со скоростью распространения электрических импульсов в компьютерах, которая примерно равна скорости света 3·10 8 м/с), а диаметр сетчатки примерно около трех сантиметров, время распространения нервного импульса напрямую поперек глаза составляет порядка 0,1-0,5 миллисекунды. Длительность фронтов нервных импульсов в сотни раз меньше. Пример "карты пешехода" напомнил, что расстояния можно выражать в единицах времени движения. Приведенные порядки численных величин показывают, что результаты взаимодействия нервных импульсов в любой нервной клетке сетчатки могут реально зависеть от их задержек, то есть от расстояний между клетками. Электрические связи между ними разветвленные, они случайны, но одновременно несут в себе закономерности микроанатомии сетчатки. Функции корреляции, теперь уже нервных импульсов, содержат в себе пространственные координаты микроанатомии сетчатки в форме времени прохождения импульсов между ее клетками.

Взаимодействие двух классов функций корреляций пространственных частот (по оптическим путям и по времени распространения) создает привязку изображений к "адресам" палочек и колбочек, выраженным на языке "карты пешехода". Участвует в этом, как упоминалось выше, около тридцати нейромедиаторов и специфических для них синапсов. Ветвления нервов, использующих в своих синаптических связях каждый медиатор, существенно различны. За счет этого с помощью электрических функций корреляции каждый фоторецептор сам, без какой-либо внешней системы координат, сообщает мозгу свое положение в плоскости сетчатки. Многообразие нейромедиаторов и форм ветвления связей гарантирует такую точность определения взаимного положения фоторецепторов, нервных клеток и элементов изображения, которую не способен обеспечить никакой "микрометр" на сетке "меридианов и параллелей". Это же позволяет в самом глазу выделять движения объектов и другие их характеристики. Окончательную привязку изображений зрения к окружающим предметам создают мышечные движения человека за счет выделения при них нейромедиаторов, аналогичных каким-то из их многих видов в сетчатке и мозге. Закрепляется эта связь "прорастанием" нервов в сетчатку и мозг в самые первые месяцы развития ребенка, когда постепенно развивается координация его движений (подробности см. в , ). Потому словом "зрение" можно назвать то, что человек "видит мозгом".

Многим читателям математические термины, использованные выше, непривычны. Однако они в последние десятилетия стали основой методов обработки радиолокационных сигналов, приема и передачи при обычной и космической связи, сжатия объемов информации для телевидения и цифровой фотографии и многих других научных и технических задач. Сложная спектральная и корреляционная математическая обработка изображений и терминология, используемая для их описания, сегодня известны широкому кругу специалистов. Поэтому введенные в работе новые принципы открывают огромную область новых применений известного математического аппарата. А популярное их изложение может оказаться более значимым, чем многие страницы формул научных статей и книг.

Метаязык в своем смысле столь же строг, как и отражаемые им формулы. Поэтому необходимо дать пояснение. Линза преобразует направления падающего на нее света в положение точек в своей фокальной плоскости. Однако транспарант - клетки сетчатки, искажающие направления лучей, находится после линзы-хрусталика. Поэтому его вклад в спектр-"картинку" реализуется сложными путями. Тут становится существенной особенность, которая в литературе игнорируется из-за общепринятого утверждения, что якобы "видят" торцы фоторецепторов.

Рецепторы ночного зрения - палочки в глазу по форме есть именно "палочки". Если их торец не может быть фоторецептором, то играть эту роль должны их боковые поверхности. Это гарантирует высокую чувствительность фоторецепторов глаза к направлениям падающих на них лучей света (боковые поверхности колбочек конические, чем, в частности, объясняется более низкое разрешение цветного зрения по сравнению с черно-белым). Для возникновения спектра важно направление фронта световых волн. В органах зрения живых организмов - от фасеточных у насекомых до глаза человека, - вопреки общепринятому, именно это направление есть важнейшее. Фоторецепторы всех форм зрения, по-видимому, способны регистрировать фронт с высокой точностью (что, к сожалению, еще недостаточно исследовано). Поскольку информация о спектрах содержится в направлениях фронтов световых волн, можно восстановить по ним пространственный спектр и без помощи фокусировки. Чтобы доказать это, в первую очередь необходимы новые эксперименты, опирающиеся на изложенные выше принципы. Надеюсь, что работа , пояснения к ней на сайте http://www.kirsoft.com.ru/intell и эта статья побудят кого-то из читателей их поставить.

Устранение парадокса гиперостроты зрения

Парадоксы зрения, объясненные выше, в литературе, как уже говорилось, даже не упоминаются. В отличие от этого парадокс, называемый гиперостротой зрения, известен многим. Правда, объяснений ему до работы не было. Его сущность связана с теоремой Котельникова, которая утверждает: чтобы система различала интервалы, величина которых Т , ее разрешение должно быть не ниже Т/ 2. Обратные величины этих интервалов есть соответствующие частоты, для зрения - пространственные. Если исходить из достоверно измеренных угловых размеров торцов палочек (по отношению их диаметров к фокусному расстоянию хрусталика), равных 65 минут, и теоремы Котельникова, глаз не способен различать объекты, которые меньше половины этой величины. Однако прямые измерения остроты зрения показывают, что при высокой освещенности разрешающая способность глаза составляет 0,7 угловой минуты, а при низкой - 2 минуты и меньше. Видимый размер Луны порядка 30 угловых минут, а любой из нас различает на ее диске горы, "моря" и другие детали.

Это явный парадокс, что и отмечается во всей литературе о зрении с привлечением множества подробностей о размерах палочек, колбочек и наблюдаемых объектов. Парадокс усугубляет передача сигналов зрения в мозг ганглиозными клетками: каждая занимает в сетчатке площадь, намного превышающую площадь торца палочки или колбочки. Этим они, казалось бы, настолько усредняют их сигналы, что сопоставлять разрешение глаза с размерами палочек и колбочек становится бессмысленно.

Нарушение теоремы Котельникова столь же невозможно, как, например, нарушение закона сохранения энергии. Тот факт, что на Луне невооруженным глазом видны детали, эту теорему и не нарушает потому, что при объяснении механизмов зрения она применяется неправильно.

На рис. 5 условно изображены две линейки фоторецепторов. Черные прямоугольники-фоторецепторы обозначают те, которые "засвечены" точкой изображения, белые - не засвеченные. На эти линейки фоторецепторов спроецировано столь же условное изображение в виде ряда одиночных точек (для наглядности они продолжены в линии) и сдвоенных точек (на рисунке справа), расстояние между которыми меньше половины величины торца фоторецептора. Если следовать авторам, применяющим теорему Котельникова для объяснения разрешения глаза, сдвоенные точки должны сливаться, быть невидными по отдельности. Однако из рисунка ясно, что случаю одиночных и сдвоенных "неразреши мых" точек соответствуют разные комбинации возбужденных фоторецепторов (отмечены толстыми стрелками). Именно ширина боковой границы фоторецептора, а не размер его торца играет решающую роль для разрешения элементов изображений!

Как ясно из предыдущего, "видят" палочки и колбочки своей боковой поверхностью. Понятно, что большая величина отношения их длин к диаметрам гарантирует узость границы их торцов. Но именно это необходимо для разрешения точек, размер которых намного меньше диаметра торцов фоторецепторов.

Чтобы связать схему рис. 5 с теоремой Котельникова, остается напомнить общеизвестное о спектрах импульсов, которые в данном случае пространственные. Такой импульс-прямоугольник показан на рис. 6, где отложен сигнал фоторецептора в функции размера вдоль его торца. Для наглядности принято, что и сам торец фоторецептора светочувствителен.

Импульсы можно описать с помощью суммы колебаний возрастающих частот - гармоник основной частоты. Такая процедура в математике называется разложением Фурье. По мере увеличения числа учитываемых гармоник их сумма все точнее приближается к истинной форме импульса, что показано кривыми, помеченными на рис. 6 номерами гармоник. Самому грубому описанию импульса будет соответствовать только основная частота в виде одного "горба" синусоиды - половины длины ее волны (цифра 1 на рис 6). Если бы фоторецепторы действительно имели закон чувствительности к свету, соответствующий кривой 1, теорема Котельникова запретила бы глазу разрешить отдельные точки изображения, разделенные интервалом, меньшим длины "горба". По мере роста числа учитываемых высших гармоник-частот реальный прямоугольник-импульс описывается все точнее. Соответственно теорему Котельникова надо применять к периоду той частоты, которая наиболее велика в разложении Фурье импульса с точностью, соответствующей ширине r b его границы. Сопоставив рис. 4 и рис. 6, можно увидеть, что эта пространственная частота для реальной палочки в сетчатке как минимум в десять раз выше основной гармоники. Колбочки, как следует из их формы на рис. 4, не могут иметь столь же резкую границу, как палочки. Потому-то цветовое зрения имеет меньшее разрешение, хотя торец-острие колбочки намного меньше плоского торца палочки.

В основе радиотехники лежит понятие "полоса пропускаемых частот". Оно выражает принцип, что, согласно теореме Котельникова, в ней должен участвовать период Т , отвечающий не синусоиде 1 в разложении Фурье импульсов, а именно старшей ее гармонике. Для зрения это же справедливо при описании реального разрешения фоторецепторов глаза с помощью пространственных частот. Потому-то в полном соответствии с законами физики и математики глаз различает точки, размер которых на сетчатке в десятки раз меньше, чем диаметр торцов фоторецепторов! Интересно, что в ряде работ о необъяснимой гиперостроте зрения применяется сложный математический аппарат, с недоумением упоминается теорема Котельникова, приводится множество подробностей о разных типах и размерах фоторецепторов в сетчатке, но безуспешно. Удивительно, но до работы никто не понял и не применил к разрешающей силе зрения сказанное о разложении в ряд Фурье пространственных частот. Надеемся, что теперь феномен гиперостроты зрения навсегда потеряет статус парадокса.

Из-за неизбежных ограничений объема статьи не удалось рассказать о том, как и почему огромные по отношению к палочкам и колбочкам биполярные и ганглиозные клетки в сетчатке не влияют на разрешающую способность зрения. О роли процессов торможения и возбуждения в нервных системах, справедливых и для зрения, можно прочитать в , глава VII, § 9.

В целом создается необходимость и основа для пересмотра многих известных из литературы фактов и подробностей об устройстве глаза и его работе. В частности, новые эксперименты несомненно покажут, что светочувствительность торца палочек мала или вообще отсутствует. Но это не нарушает справедливости рассуждений, приведенных в статье.

В математике метаязык необходим не столько для популярных объяснений, сколько для разъяснений по существу. Иначе математическое описание приводит к тупикам, которые надо устранять именно на метаязыке, как это сделано по отношению к парадоксам зрения в этой статье.

Литература

1. Хазен А. М. Разум природы и разум человека. - М.: НТЦ "Университетский", 2000.

3. Хазен А. М. Первые принципы работы мозга, гарантирующие познаваемость природы. - М., 2001.

4. Хазен А. М. О возможном и невозможном в науке. - М.: Наука, 1988.

5. Хазен А. М. Интерференция, лазеры и сверхбыстродействующие ЭВМ. - М.: Знание, 1972.

Зрение является каналом, посредством которого человек получает примерно 70% всех данных о мире, который его окружает. И возможно это только по той причине, что именно зрение человека представляет собой одну из самых сложных и поражающих воображение зрительных систем на нашей планете. Если бы не было зрения, все мы, скорее всего, просто жили бы в темноте.

Человеческий глаз обладает совершенным строением и обеспечивает зрение не только в цвете, но также в трёх измерениях и с высочайшей резкостью. Он обладает способностью моментально менять фокус на самые разные расстояния, осуществлять регуляцию объёма поступающего света, различать между собой огромное количество цветов и ещё большее количество оттенков, производить коррекцию сферических и хроматических аберраций и т.д. С мозгом глаз связывают шесть уровней сетчатки, в которых ещё перед тем, как информация будет отправлена в мозг, данные проходят через этап компрессии.

Но как же устроено наше с вами зрение? Как посредством усиления цвета, отражённого от предметов, мы трансформируем его в изображение? Если подумать об этом серьёзно, можно сделать вывод, что устройство зрительной системы человека до мельчайших подробностей «продумано» создавшей его Природой. Если же вы предпочитаете верить в то, что за создание человека ответственен Создатель или некая Высшая Сила, то эту заслугу можете приписать им. Но давайте не будем разбираться в , а продолжим разговор об устройстве зрения.

Огромное количество деталей

Строение глаза и его физиологию можно без обиняков назвать действительно идеальными. Подумайте сами: оба глаза находятся в костных впадинах черепа, которые защищают их от всевозможных повреждений, однако выступают из них они именно так, чтобы обеспечивался максимально широкий горизонтальный обзор.

Расстояние, на котором глаза находятся друг от друга, обеспечивает пространственную глубину. А сами глазные яблоки, как доподлинно известно, обладают шарообразной формой, благодаря чему способны вращаться в четырёх направлениях: влево, вправо, вверх и вниз. Но каждый из нас воспринимает всё это, как само собой разумеющееся - мало кому приходит в голову представить, что было бы, если бы наши глаза были квадратными или треугольными или их движение было бы хаотичным - это бы сделало зрение ограниченным, сумбурным и малоэффективным.

Итак, устройство глаза предельно сложно, но как раз это и делает возможным работу примерно четырёх десятков его различных составляющих. И даже если бы не было хоть одного из этих элементов, процесс зрения перестал бы осуществляться так, как ему следует осуществляться.

Чтобы убедиться в том, насколько сложно устроен глаз, предлагаем вам обратить своё внимание на рисунок ниже.

Давайте же поговорим о том, как реализуется на практике процесс зрительного восприятия, какие элементы зрительной системы в этом участвуют, и за что каждый из них отвечает.

Прохождение света

По мере приближения света к глазу световые лучи сталкиваются с роговицей (иначе её называют роговой оболочкой). Прозрачность роговицы позволяет свету проходить сквозь неё во внутреннюю поверхность глаза. Прозрачность, кстати, является важнейшей характеристикой роговицы, и прозрачной она остаётся по причине того, что особый протеин, который в ней содержится, сдерживает развитие кровеносных сосудов - процесс, происходящий практически в каждой из тканей человеческого тела. В том случае если бы роговица прозрачной не была, остальные компоненты зрительной системы не имели бы никакого значения.

Помимо прочего, роговица не даёт попадать во внутренние полости глаза сору, пыли и каким-либо химическим элементам. А кривизна роговой оболочки позволяет ей преломлять свет и помогать хрусталику фокусировать световые лучи на сетчатке.

После того как свет прошёл сквозь роговицу, он проходит через маленькое отверстие, расположенное посередине радужки глаза. Радужка же представляет собой круглую диафрагму, которая находится перед хрусталиком сразу за роговицей. Радужка также является тем элементом, который придаёт глазу цвет, а цвет зависит от преобладающего в радужке пигмента. Центральное отверстие в радужке - это и есть знакомый каждому из нас зрачок. Размер этого отверстия имеет возможность изменяться, чтобы контролировать количество поступающего в глаз света.

Размер зрачка изменятся непосредственно радужкой, а обусловлено это её уникальнейшим строением, ведь состоит она из двух различных видов мышечных тканей (даже здесь есть мышцы!). Первая мышца является круговой сжимающей - она располагается в радужке кругообразно. Когда свет яркий, происходит её сокращение, вследствие чего зрачок сокращается, как бы втягиваясь мышцей внутрь. Вторая мышца является расширяющей - она расположена радиально, т.е. по радиусу радужки, что можно сравнить со спицами в колесе. При тёмном освещении происходит сокращение этой второй мышцы, и радужка раскрывает зрачок.

Многие до сих пор испытывают некоторые затруднения, когда пытаются объяснить, каким же всё-таки образом происходит формирование вышеназванных элементов зрительной системы человека, ведь в любой другой промежуточной форме, т.е. на каком-либо эволюционном этапе работать они просто не смогли бы, но человек видит с самого начала своего существования. Загадка…

Фокусировка

Минуя названные выше этапы, свет начинает проходить через хрусталик, находящийся за радужкой. Хрусталик является оптическим элементом, имеющим форму выпуклого продолговатого шара. Хрусталик абсолютно гладок и прозрачен, в нём нет кровеносных сосудов, а сам он расположен в эластичном мешочке.

Проходя сквозь хрусталик, свет преломляется, после чего происходит его фокусировка на ямке сетчатки - самом чувствительном месте, содержащем максимальное количество фоторецепторов.

Важно заметить, что уникальное строение и состав обеспечивают роговице и хрусталику большую силу преломления, гарантирующую короткое фокусное расстояние. И как же удивительно, что такая сложная система вмещается всего в одном глазном яблоке (подумайте только, как бы мог выглядеть человек, если бы для фокусировки световых лучей, идущих от предметов, требовался бы, например, метр!).

Не менее интересно и то, что совместная преломляющая сила этих двух элементов (роговицы и хрусталика) находится в прекрасном соотношении с глазным яблоком, а это можно смело назвать ещё одним доказательством того, что зрительная система создана просто непревзойдённо, т.к. процесс фокусирования слишком сложен, чтобы говорить о нём, как о чём-то, что произошло лишь благодаря пошаговым мутациям - эволюционным стадиям.

Если же речь идёт о предметах расположенных близко к глазу (как правило, близким считается расстояние менее 6 метров), то здесь всё ещё любопытнее, ведь в этой ситуации преломление световых лучей оказывается ещё более сильным. Обеспечивается же это увеличением кривизны хрусталика. Хрусталик соединён посредством цилиарных поясков с ресничной мышцей, которая, сокращаясь, даёт хрусталику возможность принимать более выпуклую форму, тем самым увеличивая свою преломляющую силу.

И здесь снова нельзя не упомянуть о сложнейшем строении хрусталика: составляют его множество ниточек, которые состоят из соединённых друг с другом клеточек, а тонкие пояски связывают его с цилиарным телом. Фокусировка осуществляется под контролем головного мозга крайне быстро и на полном «автомате» — осуществить такой процесс осознанно для человека невозможно.

Значение «фотоплёнки»

Результатом фокусировки становится сосредоточение изображения на сетчатке, представляющей собой многослойную ткань, чувствительную к свету, покрывающую заднюю часть глазного яблока. В сетчатке содержится примерно 137 000 000 фоторецепторов (для сравнения можно привести современные цифровые фотоаппараты, в которых подобных сенсорных элементов не более 10 000 000). Такое громадное количество фоторецепторов обусловлено тем, что расположены они крайне плотно - примерно 400 000 на 1 мм².

Здесь не будет лишним привести слова специалиста по микробиологии Алана Л. Гиллена, говорящего в своей книге «Тело по замыслу» о сетчатке глаза, как о шедевре инженерного проектирования. Он считает, что сетчатка является самым удивительным элементом глаза, сравнимым с фотоплёнкой. Светочувствительная сетчатка, расположенная на задней стороне глазного яблока, намного тоньше целлофана (её толщина составляет не более 0,2 мм) и гораздо чувствительнее, чем любая, созданная человеком фотоплёнка. Клетки этого уникального слоя способны обрабатывать до 10 миллиардов фотонов, в то время как самый чувствительный фотоаппарат способен обработать лишь несколько их тысяч. Но ещё удивительнее то, что человеческий глаз может улавливать единицы фотонов даже в темноте.

Всего сетчатку составляют 10 слоёв фоторецепторных клеток, 6 слоёв из которых являются слоями светочувствительных клеток. 2 вида фоторецепторов имеют особую форму, по причине чего их называют колбочками и палочками. Палочки крайне восприимчивы к свету и обеспечивают глазу чёрно-белое восприятие и ночное зрение. Колбочки, в свою очередь, не так восприимчивы к свету, но способны различать цвета - оптимальная работа колбочек отмечается в дневное время суток.

Благодаря работе фоторецепторов световые лучи трансформируются в комплексы электрических импульсов и посылаются в мозг на невероятно большой скорости, а сами эти импульсы за доли секунд преодолевают свыше миллиона нервных волокон.

Связь фоторецепторных клеток в сетчатке очень сложна. Колбочки и палочки никак напрямую с мозгом не связаны. Получив сигнал, они переадресовывают его биполярным клеткам, а те перенаправляют уже обработанные собою сигналы ганглиозным клеткам, более миллиона аксонов (нейритов, по которым передаются нервные импульсы) которых составляют единый зрительный нерв, по которому данные и поступают в мозг.

Два слоя промежуточных нейронов, до того как зрительные данные будут отправлены в мозг, способствуют параллельной обработке этой информации шестью уровнями восприятия, находящимися в сетчатке глаза. Необходимо это для того чтобы изображения распознавались как можно быстрее.

Восприятие мозга

После того как обработанная зрительная информация поступает в мозг, он начинает её сортировку, обработку и анализ, а также формирует цельное изображение из отдельных данных. Конечно же, о работе человеческого мозга ещё много чего неизвестно, однако даже того, что научный мир может предоставить сегодня, вполне достаточно, чтобы поразиться.

При помощи двух глаз формируются две «картинки» мира, который окружает человека - по одной на каждую сетчатку. Обе «картинки» передаются в мозг, и в действительности человек видит два изображения в одно и то же время. Но как?

А дело вот в чём: точка сетчатки одного глаза точно соответствует точке сетчатки другого, а это говорит о том, чтоб оба изображения, попадая в мозг, могут накладываться друг на друга и сочетаться вместе для получения единого изображения. Информация, полученная фоторецепторами каждого из глаз, сходится в зрительной коре головного мозга, где и появляется единое изображение.

По причине того, что у двух глаз может быть разная проекция, могут наблюдаться и некоторые несоответствия, однако мозг сопоставляет и соединяет изображения таким образом, что человек никаких несоответствий не ощущает. Мало того - эти несоответствия могут быть использованы с целью получения чувства пространственной глубины.

Как известно, из-за преломления света зрительные образы, поступающие в мозг, изначально являются очень маленькими и перевёрнутыми, однако «на выходе» мы получаем то изображение, которое привыкли видеть.

Помимо этого в сетчатке изображение делится мозгом надвое по вертикали - через линию, которая проходит через ямку сетчатки. Левые части изображений, полученных обоими глазами, перенаправляются в , а правые части - в левое. Так, каждое из полушарий смотрящего человека получает данные только от одной части того, что он видит. И снова - «на выходе» мы получаем цельное изображение без каких бы то ни было следов соединения.

Разделение изображений и крайне сложные оптические пути делают так, что мозг видит отдельно каждым из своих полушарий с использованием каждого из глаз. Это позволяет ускорить обработку потока входящей информации, а также обеспечивает зрение одним глазом, если вдруг человек по какой-либо причине перестаёт видеть другим.

Можно заключить, что мозг в процессе обработки зрительной информации убирает «слепые» пятна, искажения из-за микродвижений глаз, морганий, угла зрения и т.п., предлагая своему хозяину адекватное целостное изображение наблюдаемого.

Ещё одним из важных элементов зрительной системы является . Умалять значение этого вопроса никак нельзя, т.к. чтобы вообще иметь возможность использовать зрение должным образом мы должны уметь поворачивать глаза, поднимать их, опускать, короче говоря - двигать глазами.

Всего можно выделить 6 внешних мышц, которые соединяются с внешней поверхностью глазного яблока. К этим мышцам относятся 4 прямые (нижняя, верхняя, боковая и средняя) и 2 косые (нижняя и верхняя).

В тот момент, когда какая-либо из мышц сокращается, мышца, являющаяся для неё противоположной, расслабляется - это обеспечивает ровное движение глаз (в противном случае все движения глазами осуществлялись бы рывками).

При повороте двух глаз автоматически изменяется движение всех 12 мышц (по 6 мышц на каждый глаз). И примечательно то, что процесс этот является непрерывным и очень хорошо скоординированным.

По словам знаменитого офтальмолога Питера Джени, контроль и координация связи органов и тканей с центральной нервной системой посредством нервов (это называется иннервацией) всех 12 глазных мышц представляет собой один из очень сложных процессов, происходящих в мозге. Если же добавить к этому точность перенаправления взора, плавность и ровность движений, скорость, с которой может вращаться глаз (а она составляет в сумме до 700° в секунду), и соединить всё это, мы получим на самом деле феноменальную по части исполнения подвижную глазную систему. А то, что человек имеет два глаза, делает её ещё более сложной - при синхронном движении глаз необходима одинаковая мускульная иннервация.

Мышцы, которые вращают глаза, отличны от мышц скелета, т.к. их составляет множество всевозможных волокон, а контролируются они ещё большим числом нейронов, иначе точность движений стала бы невозможной. Данные мышцы можно назвать уникальными ещё и потому, что они способны быстро сокращаться и практически не устают.

Учитывая то, что глаз - это один из наиболее важных органов человеческого организма, он нуждается в непрерывном уходе. Именно для этого как раз и предусмотрена, если так можно назвать, «интегрированная система очистки», которая состоит из бровей, век, ресниц и слёзных желёз.

При помощи слёзных желёз регулярно производится липкая жидкость, с медленной скоростью движущаяся вниз по внешней поверхности глазного яблока. Эта жидкость смывает различный сор (пыль и т.п.) с роговицы, после чего входит во внутренний слёзный канал и затем стекает по носовому каналу, выводясь из организма.

В слезах содержится очень сильное антибактериальное вещество, уничтожающее вирусы и бактерии. Веки выполняют функцию стеклоочистителей - они очищают и увлажняют глаза благодаря непроизвольному морганию с интервалом в 10-15 секунд. Вместе с веками работают ещё и ресницы, предотвращая попадание в глаз любого сора, грязи, микробов и т.п.

Если бы веки не выполняли свою функцию, глаза человека постепенно бы засохли и покрылись рубцами. Если бы не было слёзного протока, глаза бы постоянно заливались слёзной жидкостью. Если бы человек не моргал, в его глаза попадал бы мусор, и он мог бы даже ослепнуть. Вся «очистительная система» должна включать в себя работу всех элементов без исключения, в противном случае она просто перестала бы функционировать.

Глаза как показатель состояния

Глаза человека способны передавать немало информации в процессе его взаимодействия с другими людьми и окружающим миром. Глаза могут излучать любовь, гореть от гнева, отражать радость, страх или беспокойство, или усталости. Глаза показывают, куда смотрит человек, заинтересован он в чём-либо или же нет.

Например, когда люди закатывают глаза, беседуя с кем-то, это можно расценивать совершенно иначе, нежели обычный взгляд, направленный вверх. Большие глаза у детей вызывают у окружающих восторг и умиление. А состояние зрачков отражает то состояние сознания, в котором в данный момент времени находится человек. Глаза - это показатель жизни и смерти, если уж говорить в глобальном смысле. Наверное, именно по этой причине их называют «зеркалом» души.

Вместо заключения

В этом уроке мы с вами рассмотрели устройство зрительной системы человека. Естественно, мы упустили немало деталей (сама по себе эта тема очень объёмна и вместить её в рамки одного урока проблематично), но всё же постарались донести материал так, чтобы вы имели чёткое представление о том, КАК видит человек.

Вы не могли не заметить, что как сложность, так и возможности глаза позволяют этому органу многократно превосходить даже самые современные технологии и научные разработки. Глаз является наглядной демонстрацией сложности инженерии в огромном количестве нюансов.

Но знать об устройстве зрения - это, конечно же, хорошо и полезно, однако наиболее важно знать о том, как зрение можно восстанавливать. Дело в том, что и образ жизни человека, и условия, в которых он живёт, и некоторые другие факторы (стрессы, генетика, вредные привычки, заболевания и многое другое) - всё это нередко способствует тому, что с годами зрение может ухудшаться, т.е. зрительная система начинает давать сбои.

Но ухудшение зрения в большинстве случаев не является необратимым процессом - зная определённые методики, данный процесс можно повернуть вспять, и сделать зрение, если уж и не таким, как у младенца (хотя иногда возможно и это), то хорошим настолько, насколько вообще это возможно для каждого отдельно взятого человека. Поэтому следующий урок нашего курса по развитию зрения будет посвящён методам восстановления зрения.

Зрите в корень!

Проверьте свои знания

Если вы хотите проверить свои знания по теме данного урока, можете пройти небольшой тест, состоящий из нескольких вопросов. В каждом вопросе правильным может быть только 1 вариант. После выбора вами одного из вариантов, система автоматически переходит к следующему вопросу. На получаемые вами баллы влияет правильность ваших ответов и затраченное на прохождение время. Обратите внимание, что вопросы каждый раз разные, а варианты перемешиваются.

Невозможные фигуры и двойственные изображения не являются чем-то, что не может быть воспринято буквально: они возникают у нас в мозге. Так как процесс восприятия таких фигур следует странным нестандартным путем, наблюдатель приходит к пониманию, что что-то необычное происходит в его голове. Для лучшего понимая процесса, который мы называем "зрением", полезно иметь представление о том, как наши органы чувств (глаза и мозг) преобразуют световые раздражители в полезную информацию.

Глаз как оптическое устройство

Рисунок 1. Анатомия глазного яблока.

Глаз (см. рис. 1) работает подобно фотокамере. Хрусталик (lens) проецирует перевернутое уменьшенное изображение из внешнего мира на сетчатку (retina) – сеть фоточувствительных клеток, расположенных напротив зрачка (pupil) и занимающих более половины площади внутренней поверхности глазного яблока. Как оптический инструмент, глаз долгое время являлся маленькой загадка. В то время как камера фокусируется движением хрусталика ближе или дальше от светочувствительного слоя, его способность к преломлению света настраивается во время аккомодации (адаптации глаза на определенное расстояние). Форма глазной линзы изменяется при помощи мерцательной мышцы (ciliary muscle). Когда мышца сжимается, хрусталик становится более круглым, при помощи чего сфокусированное изображение более близких предметов поступает на сетчатку. Диафрагма человеческого глаза настраивается также как в фотоаппарате. Зрачок управляет величиной раскрытия хрусталика, расширяясь или сжимаясь при помощи радиальных мышц, окрашивающих радужную оболочку глаза (iris) характерным для него цветом. Когда наш глаз перемещает взгляд в область, на которой он желает сфокусироваться, фокусное расстояние и размер зрачка мгновенно настраиваются под необходимые условия "автоматически".


Рисунок 2. Сетчатка глаза в разрезе
Рисунок 3. Глаз с желтым пятном

Структура сетчатки (рис. 2), фоточувствительного слоя внутри глаза, очень сложна. Оптический нерв (вместе с кровеносными сосудами) отходит от задней стенки глаза. В этом месте нет фоточувствительных клеток, и оно известно под названием «слепое пятно». Нервные волокна разветвляются и оканчиваются клетками трех разных типов, которые улавливают поступающий на них свет. Отростки, идущие из третьего, самого внутреннего слоя клеток, – содержат молекулы, которые временно меняют свою структуру при обработке поступившего света, и тем самым испускают электрический импульс. Фоточувствительные клетки называются палочками (rods) и колбочками (cones) по форме их отростков. Колбочки чувствительны к цвету, в то время как палочки – нет. С другой стороны фоточувствительность палочек гораздо выше, чем у колбочек. Один глаз содержит порядка ста миллионов палочек и шести миллионов колбочек, распределенных по сетчатке неравномерно. Точно напротив зрачка лежит так называемое желтое пятно (рис. 3), которое состоит только из колбочек в относительно плотной концентрации. Когда мы хотим увидеть что-то в фокусе, мы располагаем глаз так, чтобы изображение падало на желтое пятно. Между клетками сетчатки много взаимосвязей, и электрические импульсы от ста миллионов фоточувствительных клеток отправляются мозгу всего по миллиону нервным волокнам. Таким образом, глаз можно поверхностно описать как фото- или теле-камеру с загруженной фоточувствительной пленкой.


Рисунок 4. Фигура Kanizsa

От светового импульса к информации


Рисунок 5. Иллюстрация из книги Декарта "Le traité de l"homme", 1664

Но как мы видим на самом деле? До недавнего времени этот вопрос едва ли был разрешимым. Лучшим ответом на данный вопрос был следующий: в мозге есть область, которая специализируется на зрении, в которой формируется изображение, полученное с сетчатки глаза, в виде клеток мозга. Чем больше света падает на клетку сетчатки, тем с большей интенсивностью работает соответствующая ей клетка мозга, то есть активность клеток мозга в нашем зрительном центре зависит от распределения света, попадающего на сетчатку. Короче говоря, процесс начинается с изображения на сетчатке и заканчивается соответствующим изображением на маленьком «экране» из клеток мозга. Естественно, это не объясняет зрение, а просто смещает проблему на более глубокий уровень. Кому предназначено видеть это внутреннее изображение? Данную ситуацию хорошо иллюстрирует рисунок 5, взятый из работы Декарта "Le traité de l"homme". В данном случае, все нервные волокна заканчиваются в некой железе, которую Декарт представлял как место души, и именно она видит внутреннее изображение. Но вопрос остается: как "зрение" работает на самом деле?


Рисунок 6.

Идея мини-наблюдателя в мозге является не просто недостаточной для объяснения зрения, но она еще и игнорирует три виде деятельности, которые, очевидно, выполняются непосредственно самой зрительной системой. Например, посмотрим на фигуру на рисунке 4 (автор Kanizsa). Мы видим треугольник в трех круговых сегментах по их вырезам. Этот треугольник не был предъявлен на сетчатку, однако он является результатом домысливания нашей зрительной системы! Также, почти невозможно смотреть на рисунок 6 не видя непрерывных последовательностей круговых узоров борющихся за наше внимание, как будто мы непосредственно испытываем внутреннюю зрительную деятельность. Многие обнаруживают, что их зрительная система приходит в полное замешательство от фигуры Далленбаха (Dallenbach) (рисунок 8), так как они ищут способы интерпретировать эти черные и белые пятна в виде какой-то понятной им формы. Чтобы избавить вас от мучений, рисунок 10 предлагает интерпретацию, которую ваша зрительная система примет раз и навсегда. В противоположность предыдущему рисунку, вам не составит никакого труда реконструировать несколько штрихов туши на рисунке 7 в изображение двух беседующих людей.


Рисунок 7. Рисунок из "Mustard Seed Garden Manual of Painting", 1679-1701

Например, совершенно другой метод видения иллюстрируют исследования Вернера Рейхарта (Werner Reichardt) из г. Тюбинген, который в течение 14 лет изучал систему зрения и управления полетом комнатной мухи. За эти исследования он был удостоен премии Heineken Prize в 1985 году. Подобно многим другим насекомым муха имеет составные глаза, состоящие из многих сотен отдельных палочек, каждая их которых является отдельным фоточувствительным элементом. Система управления полетом мухи состоит из пяти независимых подсистем, работающих чрезвычайно быстро (скорость реакции примерно в 10 раз быстрее, чем у человека) и эффективно. Например, подсистема приземления работает следующим образом. Когда область обзора мухи "взрывается" (от того, что поверхность оказывается близко), муха направляется к центру "взрыва". Если центр находится над мухой, она автоматически переворачивается вверх ногами. Как только ноги мухи касаются поверхности, "подсистема" приземления отключается. При полете муха извлекает только два вида информации из своей области видимости: точку, в которой находится движущееся пятно определенного размера (которое должно совпадать с размером мухи на расстоянии 10 сантиметров), а также направление и скорость движения этого пятна по полю видимости. Обработка этих данных помогает автоматически корректировать траекторию полета. Весьма маловероятно, что муха владеет полной картиной окружающего мира. Она не видит ни поверхностей, ни объектов. Обработанные определенным образом входные зрительные данные передаются напрямую в двигательную подсистему. Таким образом, входные зрительные данные преобразуются не во внутреннее изображение, а в форму, которая позволяет мухе адекватно реагировать на ее окружение. То же самое можно сказать и о такой бесконечно более сложной системе, как человек.


Рисунок 8. Фигура Далленбаха

Есть много причин, почему ученые так долго воздерживались от решения фундаментального вопроса, как человек видит. Оказалось, что необходимо было сначала объяснить много других вопросов зрения – сложную структуру сетчатки, цветное видение, контрастность, остаточные изображения и т.д. Однако вопреки ожиданиям открытия в данных областях не способны пролить свет на решение основной проблемы. Еще более значительной проблемой было отсутствие какой либо общей концепции или схемы, в которой были бы перечислены все зрительные явления. Об относительной ограниченности обычных областей исследований можно почерпнуть в отличном руководстве T.N. Comsweet на тему зрительного восприятия, составленного на основе его лекций для студентов первого и второго семестров. В предисловии автор пишет: "Я стремлюсь описать фундаментальные аспекты, лежащие в основе огромного поля, которое мы небрежно называем зрительным восприятием". Однако, изучая содержание данной книги, этими "фундаментальными темами" оказываются поглощение света палочками и колбочками сетчатки, цветное зрение, способы, при помощи которых сенсорные клетки могут увеличивать или уменьшать пределы взаимного влияния друг на друга, частоту электрических сигналов, передаваемых через сенсорные клетки и т.д. Сегодня, исследования в данной области следуют совершенно новыми путями, что приводит к сбивающему с толку разнообразию в профессиональной прессе. И только специалист может сформировать общую картину развивающейся &quo;новой науки Зрения". Была всего одна попытка объединить несколько новых идей и результатов исследований в манере доступной для непрофессионала. И даже здесь вопросы "Что такое Зрение?" и "Как мы видим?" не стали главными вопросами обсуждения.

От изображения к обработке данных

Девид Марр (David Marr) из Лаборатории искусственного интеллекта при Массачусетском Технологическом Институте первым попытался приблизиться к предмету с совершенно другой стороны в своей книге "Зрение" (Vision), изданной уже после его смерти. В ней он стремился рассмотреть основную проблему и предложить возможные пути ее решения. Результаты Марра конечно не окончательны и по сей день открыты для исследований с разных направлений, но тем не менее основным достоинством его книги является ее логичность и последовательность выводов. Во всяком случае, подход Марра дает очень полезную основу, на котором можно строить исследования невозможных объектов и двойственных фигур. На следующих страницах мы попытаемся проследить ход мыслей Марра.

Марр описал недостатки традиционной теории зрительного восприятия так:

"Попытки понять зрительное восприятие, изучая лишь нейроны, подобно попытке понять полет птицы, изучая лишь ее перья. Это просто невозможно. Чтобы понять полет птицы нам необходимо понять аэродинамику, и только потом структура перьев и различные формы птичьих крыльев будут иметь для нас какое-то значение". В данном контексте Марр называет Дж. Дж. Гибсона (J. J. Gobson) первым, кто коснулся важных вопросов в данной области изучения зрения. По мнению Марра, самый важный вклад Гибсона состоял в том, что "самое важное в органах чувств то, что они являются информационными каналами из внешнего мира к нашему восприятию (...) Он поставил критически важный вопрос – Как каждый из нас получает одинаковые результаты при восприятии в повседневной жизни в постоянно изменяющихся условиях? Это очень важный вопрос, показывающий, что Гибсон правильно рассматривал проблему зрительного восприятия как восстановление из информации, полученной от сенсоров, "правильных" свойств объектов внешнего мира". И таким образом мы достигли области обработки информации.

Не должно возникать вопросов о том, что Марр хотел игнорировать другие объяснения феномена зрения. Напротив, он специально подчеркивает, что зрение не может быть удовлетворительно разъяснено только с одной точки зрения. Объяснения должны быть найдены для повседневных событий, согласующиеся с результатами экспериментальной психологии и всеми открытиями в данной области, сделанными психологами и неврологами в области анатомии нервной системы. Что касается обработки информации, то ученым компьютерных наук хотелось бы знать, как зрительная система может быть запрограммирована, какие алгоритмы наилучшим образом подходят для данной задачи. Короче, как зрение можно запрограммировать. Только всесторонняя теория может быть принята как удовлетворительное объяснение процесса видения.

Марр работал над данной проблемой с 1973 года по 1980 год. К сожалению, он не смог закончить свою работу, но он смог заложить прочный фундамент для дальнейших исследований.

От неврологии к зрительному механизму

Убеждение, что многие функции человека контролируются головным мозгом, разделяют неврологи с начала XIX века. Мнения разнились по вопросу, используются ли определенные части коры головного мозга для выполнения отдельных операций или для каждой операции задействуется весь мозг целиком. Сегодня знаменитый эксперимент французского невролога Пьера Поля Брока (Pierre Paul Broca) привел к всеобщему признанию теории специфического расположения. Брока лечил пациента, который не мог говорить 10 лет, хотя с голосовыми связками у него было все в порядке. Когда человек умер в 1861 году, вскрытие показало, что левая часть его мозга была деформирована. Брока сделал предположение, что речь контролируется этой частью коры головного мозга. Его теория была подтверждена последующими обследованиями пациентов с повреждениями головного мозга, что позволило, в конечном итоге, отметить центры жизненно важных функций человеческого мозга.


Рисунок 9. Отклик двух разных клеток мозга на оптические возбудители разных направлений

Столетием позже, в 1950-х годах, ученые Д.Х. Хьюбел (D.H. Hubel) и Т.Н. Визель (T.N. Wiesel) провели эксперименты в мозгом живых обезьян и кошек. В зрительном центре коры головного мозга они обнаружили нервные клетки, которые особенно чувствительны к горизонтальным, вертикальным и диагональным линиям в поле зрения (рис. 9). Их сложная техника микрохирургии была впоследствии принята к применению другими учеными.

Таким образом, кора головного мозга не просто содержит в себе центры для выполнения различных функции, но и внутри каждого центра, как, например, в зрительном центре, отдельные нервные клетки активируются только при поступлении очень специфических сигналов. Эти сигналы поступающие с сетчатки глаза, коррелируют с четко определенными ситуациями внешнего мира. Сегодня предполагается, что информация о различных формах и пространственном расположении объектов содержится в зрительной памяти, и информация от активированных нервных клеток сравнивается с этой хранимой информацией.

Эта теория детекторов повлияла на направление в исследованиях зрительного восприятия в середине 1960-х годов. Тем же самым путем последовали и ученые, связанные с "искусственным интеллектом". Компьютерная симуляция процесса человеческого зрения, также называемое "машинное зрение", рассматривалась как одна из наиболее легко достижимых целей в данных исследованиях. Но все сложилось несколько иначе. Скоро стало ясно, что фактически невозможно написать программы, которые были бы способны распознавать изменения интенсивности света, тени, структуру поверхности и беспорядочные наборы сложных объектов в значащие образы. Более того, такое распознавание образов потребовало неограниченных объемов памяти, так как изображения несчетного числа объектов необходимо хранить в памяти в бессчетном количестве вариаций расположения и ситуаций освещения.

Какие-либо дальнейшие продвижения в области распознавания образов в условиях реального мира не представлялись возможными. Вызывает сомнение надежда, что когда-либо компьютер сможет симулировать человеческий мозг. В сравнении с человеческим мозгом, в котором каждая нервная клетка имеет порядка 10 000 связей с другими нервными клетками, эквивалентное компьютерное соотношение 1:1 едва ли выглядит адекватным!


Рисунок 10. Разгадка фигуры Делленбаха

Лекция Элизабет Уоррингтон (Elizabeth Warrington)

В 1973 году Марр посетил лекцию британского невролога Элизабет Уоррингтон. Она отметила, что большое количество пациентов с париетальными повреждениями правой части мозга, которых она осмотрела, могли отлично распознавать и описывать множество объектов при условии, что эти объекты наблюдались ими в их обычном виде. Например, такие пациенты без особого труда идентифицировали ведро при виде сбоку, но не были способны распознать то же самое ведро при виде сверху. На самом деле, даже когда им говорили, что они смотрят на ведро сверху, они наотрез отказывались в это поверить! Еще более удивительным было поведение пациентов с повреждениями левой части мозга. Такие пациенты, как правило, не могут разговаривать, и, следовательно, вербально не могут назвать предмет, на который они смотрят, или описать его назначение. Тем не менее, они могут показать, что они правильно воспринимают геометрию предмета независимо от угла обзора. Это побудило Марра написать следующее: "Лекция Уоррингтон подтолкнула меня к следующим выводам. Во-первых, представление о форме объекта хранится в каком-то другом месте мозга, поэтому так сильно отличаются представления о форме предмета и его назначении. Во-вторых, зрение само может предоставить внутреннее описание формы наблюдаемого объекта, даже если этот объект не распознается обычным образом… Элизабет Уоррингтон указала на наиболее существенный факт человеческого зрения – оно говорит о форме, пространстве и взаимном расположении объектов." Если это действительно так, то ученые, работающие в области зрительного восприятия и искусственного интеллекта (в том числе и те, кто работают в области машинного зрения) должны будут поменять теорию детекторов из экспериментов Хьюбела на совершенно новый набор тактик.

Теория модулей


Рисунок 11. Стереограммы со случайными точками Белы Жулеса, парящий квадрат

Второй стартовой точкой в исследованиях Марра (после работы знакомства с работами Уоррингтон) является предположение, что наша зрительная система имеет модульную структуру. Выражаясь компьютерным языком, наша главная программа "Зрение" охватывает широкий круг подпрограмм, каждая из которых полностью независима от других, и может работать независимо от других подпрограмм. Ярким примером такой подпрограммы (или модуля) является стереоскопическое зрение, при помощи которого глубина воспринимается как результат обработки изображений, поступающих с обоих глаз, которые представляют собой немного отличающиеся друг от друга изображения. Прежде считалось, что чтобы видеть в трех измерениях, мы сначала распознаем изображения целиком, а потом решаем какие объекты находятся ближе, а какие дальше. В 1960 году Бела Жулес (Bela Julesz), который был удостоен премией Heineken в 1985 году, смог продемонстрировать, что пространственное восприятие двумя глазами происходит исключительно сравнением небольших различий между двумя изображениями, полученными с сетчаток обоих глаз. Таким образом, можно почувствовать глубину даже там, где нет и не предполагается никаких объектов. Для своих экспериментов Жулес придумал стереограммы, состоящие из случайно расположенных точек (см. рис. 11). Изображение, видимое правым глазом, идентично изображению видимому левым глазом во всем, кроме квадратной центральной области, которая обрезана и немного смещена к одному краю и снова совмещена с задним планом. Оставшийся белый промежуток затем был заполнен случайными точками. Если на два изображения (на которых не распознается никакого объекта) посмотреть сквозь стереоскоп, квадрат, который ранее был вырезан, будет выглядеть парящим над задним планом. Такие стереограммы содержат пространственные данные, которые автоматически обрабатываются нашей зрительной системой. Таким образом, стереоскопия является автономным модулем зрительной системы. Теория модулей показала себя достаточно эффективной.

От двухмерного изображения с сетчатки к трехмерной модели



Рисунок 12. В течение зрительного процесса изображение с сетчатки (слева) преобразуется в первичный эскиз, в котором изменения интенсивности становятся явными (справа)

Зрение – многошаговый процесс, который трансформирует двухмерные представления о внешнем мире (изображения с сетчатки) в полезную информацию для наблюдателя. Он начинается с двухмерного изображения, полученного с сетчатки глаза, которое, игнорируя пока цветное зрение, сохраняет только уровни интенсивности света. На первом шаге, при помощи только одиного модуля эти уровни интенсивности преобразуются в изменения интенсивности или, другими словами, в контуры, которые показывают резкие изменения интенсивности света. Марр точно установил, какой алгоритм задействуется в данном случае (описываемый математически, и, кстати, очень сложный), и как наше восприятие и нервные клетки исполняют этот алгоритм. Результат первого шага Марр назвал "первичным эскизом", который предлагает краткую информацию об изменениях интенсивности света, их взаимосвязях и распределении по зрительному полю (рис. 12). Это важный шаг, так как в видимом нами мире изменение интенсивности часто связано с естественными контурами объектов. Второй шаг подводит нас к тому, что Марр назвал "2,5-мерный эскиз". 2,5-мерный эскиз отражает ориентацию и глубину видимых поверхностей перед наблюдателем. Это изображение строится на основе данных не одного, а нескольких модулей. Марр придумал весьма широкое понятие "2,5-мерности", для того чтобы подчеркнуть, что мы работаем с пространственной информацией, которая видима с точки зрения наблюдателя. Для 2,5-мерный эскиза характерны искажения перспективы, и на данном этапе еще не может быть однозначно определено действительное пространственное расположение объектов. Изображение 2,5-мерного эскиза, представленного здесь (рис. 13), иллюстрирует несколько информационных участков при обработке такого наброска. Однако в нашем мозге изображения подобного вида не формируется.


Рисунок 13. Рисунок 2,5-мерного эскиза – "отцентрированное представление глубины и ориентации видимых поверхностей"

До сих пор зрительная система работала с использованием нескольких модулей автономно, автоматически и независимо от данных о внешнем мире, сохраненных в мозге. Однако в ходе заключительной стадии процесса есть возможность сослаться на уже имеющуюся информацию. Этот последний этап обработки предоставляет трехмерную модель – четкое описание, независимое от угла зрения наблюдателя и подходящее для непосредственного сравнения со зрительной информацией, хранимой в мозге.

Согласно Марру, главную роль в построении трехмерной модели играют компоненты направляющих осей форм объектов. Те, кто не знаком с этой идей, могут счесть ее неправдоподобной, но в действительности есть доказательства, подтверждающие данную гипотезу. Во-первых, множество объектов окружающего мира (в частности, животные и растения) могут быть вполне наглядно изображены в виде трубочных (или проволочных) моделей. Действительно, мы без труда можем распознать, что изображено на репродукции в виде компонентов направляющих осей (рис. 14).


Рисунок 14. Простые модели животных могут быть идентифицированы по их компонентам направляющих осей

Во-вторых, данная теория предлагает вероятное объяснение факта того, что мы способны визуально разобрать объект на составные части. Это отражено и в нашем языке, который дает различные имена каждой части объекта. Так, описывая тело человека, такие обозначения как "тело", "рука" и "палец" указывают на различные части тела согласно их компонентам осей (рис. 15).



Рисунок 16. Модель одной оси (слева) разбивается на отдельные компоненты осей (справа)

В-третьих, данная теория согласуется с нашей способностью обобщать и в то же время дифференцировать формы. Мы обобщаем, группируя вместе объекты с одними и теми же главными осями, и дифференцируем, анализируя дочерние оси подобно ветвям дерева. Марр предложил алгоритмы, при помощи которых 2,5-мерная модель преобразуется в трехмерную. Этот процесс также в основном является автономным. Марр отметил, что разработанные им алгоритмы работают только в случае использования чистых осей. Например, в случае применения его к мятому листу бумаги возможные оси будет очень сложно идентифицировать, и алгоритм будет неприменим.

Связь между трехмерной моделью и зрительными образами, хранимыми в мозге, активируется в процессе распознавания объекта.

Здесь есть большой пробел в наших знаниях. Как эти зрительные образы хранятся в мозге? Как протекает процесс распознавания? Как производится сравнение между известными изображениями и только что составленным трехмерным изображением? Это последний пункт, которого успел коснуться Марр (рис. 16), но необходимо получить огромное количество научных данных, чтобы внести определенность в данном вопросе.


Рисунок 16. Новые описания форм соотносятся с сохраненными формами сравнением, которое движется от обобщенной форме (сверху) к частной (внизу)

Хотя мы сами не осознаем различные фазы обработки зрительной информации, существует множество наглядных параллелей между фазами и различными способами, которыми мы в течение времени передавали впечатление о пространстве на двухмерной поверхности.

Так пуантилисты подчеркивают бесконтурное изображение сетчатки глаза, в то время как линейчатые изображения соответствуют стадии первичного наброска. Картины кубистов можно сопоставить с обработкой зрительных данных при подготовке к построению финальной трехмерной модели, хотя это, несомненно, и не было намерением художника.

Человек и компьютер

В своем комплексном подходе к предмету Марр стремился показать, что мы можем понять процесс зрения без необходимости привлечения знаний, которые уже доступны мозгу.

Таким образом, он открыл новую дорогу исследователям в области зрительного восприятия. Его идеи могут быть использованы для прокладки более эффективного пути к реализации зрительной машины. Когда Марр писал свою книгу, он, должно быть, знал о тех усилиях, которые его читателям предстоит приложить, чтобы следовать за его идеями и выводами. Это прослеживается по всей его работе и наиболее явно видно в заключительной главе "В защиту подхода". Это полемическое «обоснование» в размере 25 печатных страниц, на которых он использует благоприятный момент для обоснования своих целей. В данной главе он ведет беседу с воображаемым оппонентом, который нападает на Марра с аргументами, подобными следующим:

"Я все еще неудовлетворен описанием этого взаимосвязанного процесса и идеей того, что все оставшееся богатство деталей является лишь описанием. Это звучит как-то слишком примитивно... Поскольку мы продвигаемся все ближе к высказыванию, что мозг – это компьютер, должен сказать я все больше и больше опасаюсь за сохранение значения человеческих ценностей".

Марр предлагает интригующий ответ: "Утверждение, что мозг – это компьютер, корректно, но вводит в заблуждение. Мозг действительно узкоспециализированное устройство обработки информации, или скорее самое крупное из них. Рассмотрение нашего мозга как устройство обработки данных не принижает и не отрицает человеческие ценности. В любом случае, оно только поддерживает их и может, в конце концов, помочь нам понять, чем из такой информационной точки зрениями являются человеческие ценности, почему они имеют выборочное значение, и как они увязываются с социальными и общественными нормами, которыми обеспечили нас наши гены".

Отдельные части глаза (роговица, хрусталик, стекловидное тело) обладают способностью преломлять проходящие через них лучи. С точки зрения физики глаз представляет собой оптическую систему, способную собирать и преломлять лучи.

Преломляющую силу отдельных частей (линз в прибо ре) и всей оптической системы глаза измеряют в диоптриях.

Под одной диоптрией понимают преломляющую силу линзы, фокусное расстояние которой составляет 1 м. Если преломляющая сила увеличивается, фокусное расстояние уко рачивается. Отсюда следует, что линза, у которой фокусное расстояние равно 50 см, будет обладать преломляющей силой, равной 2 диоптриям (2 D).

Оптическая система глаза является весьма сложной. Достаточно указать, что только преломляющих сред имеется несколько, причем каждая среда имеет свою преломляющую силу и особенности строения. Все это крайне усложняет изучение оптической системы глаза.

Рис. Построение изображения в глазу (объяснение в тексте)

Глаз часто сравнивают с фотоаппаратом. Роль камеры играет полость глаза, затемненная сосудистой оболочкой; светочувствительным элементом является сетчатка. В камере имеется отверстие, в которое вставлена линза. Лучи света, попадая в отверстие, проходят через линзу, преломляются и падают на противоположную стенку.

Оптическая система глаза представляет собой преломляющую собирательную систему. Она преломляет проходящие через нее лучи и опять собирает их в одну точку. Таким образом возникает действительное изображение реального предмета. Однако изображение предмета на сетчатке получается обратное и уменьшенное.

Чтобы понять это явление, обратимся к схематическому глазу. Рис. дает представление о ходе лучей в глазу и получении обратного изображения предмета на сетчатке. Луч, отходящий от верхней точки предмета, обозначенной буквой а, проходя через линзу, преломляется, меняет направление и занимает на сетчатке положение нижней точки, обозначенной на рисунке а 1 Луч от нижней точки предмета в, преломляясь, падает на сетчатку как верхняя точка в 1 . Соответствующим же образом падают лучи от всех точек. Следовательно, на сетчатке получается действительное изображение предмета, но оно обратное и уменьшенное.

Так, расчеты показывают, что размер букв данной книги, если при чтении она находится на расстоянии 20 см от глаза, на сетчатке будет равен 0,2 мм. обстоятельство, что мы видим предметы не в их перевернутом изображении (вверх ногами), а в их естественном виде, вероятно, объясняется накопленным жизненным опытом.

Ребенок в первые месяцы после рождения путает верхнюю и нижнюю сторону предмета. Если такому ребенку показать горящую свечку, ребенок, стараясь схватить пламя, протянет руку не к верхнему, а к нижнему концу свечи. Контролируя в течение дальнейшей жизни показания глаза руками и другими органами чувств, человек начинает видеть предметы так, как они есть, несмотря на их обратное изображение на сетчатке.

Аккомодация глаза. Человек не может одновременно одинаково четко видеть предметы, находящиеся на разных расстояниях от глаза.

Для того чтобы хорошо видеть предмет, надо, чтобы лучи, отходящие от этого предмета, собирались на сетчатке. Только в том случае, когда лучи падают на сетчатку, мы видим ясное изображение предмета.

Приспособление глаза к получению отчетливых изображений предметов, находящихся на разных расстояниях, называется аккомодацией.

Для того чтобы в каждом случае получить четкое изобра жение, необходимо изменять расстояние между светопреломляющей линзой и задней стенкой камеры. Так устроен фотоаппарат. Чтобы получить четкое изображение на задней стенке камеры, отодвигают или приближают объектив. По такому принципу происходит аккомодация у рыб. У них хрусталик при помощи специального приспособления отодвигается или приближается к задней стенке глаза.

Рис. 2 ИЗМЕНЕНИЕ КРИВИЗНЫ ХРУСТАЛИКА ПРИ АККОМОДАЦИИ 1 - хрусталик; 2 - сумка хрусталика; 3 - ресничные отростки. Верхний рисунок - увеличение кривизны хрусталика. Ресничная связка расслаблена. Нижний рисунок - кривизна хрусталика уменьшена, ресничные связки натянуты.

Однако четкое изображение можно получить и в том случае, если изменяется преломляющая сила линзы, а это возможно при изменении ее кривизны.

По этому принципу происходит аккомодация у человека. При видении предметов, находящихся на разных расстояниях, кривизна хрусталика изменяется и благодаря этому точка, где сходятся лучи, приближается или удаляется, попадая каждый раз на сетчатку. Когда человек рассматривает близкие предметы, хрусталик делается более выпуклым, а при рассмотрении дальних предметов - более плоским.

Как же происходит изменение кривизны хрусталика? Хрусталик находится в специальной прозрачной сумке. От степени натяжения сумки зависит кривизна хрусталика. Хрусталик обладает эластичностью, поэтому, когда сумка натягивается, он становится плоским. При расслаблении же сумки хрусталик в силу своей -эластичности приобретает более выпуклую форму (рис.2). Изменение натяжения сумки происходит при помощи специальной круговой аккомодационной мышцы, к которой прикреплены связки капсулы.

При сокращении аккомодационных мышц связки сумки хрусталика ослабевают и хрусталик приобретает более выпуклую форму.

От степени сокращения этой мышцы зависит и степень изменения кривизны хрусталика.

Если находящийся на далеком расстоянии предмет постепенно приближать к глазу, то на расстоянии 65 м начинается аккомодация. По мере дальнейшего приближения предмета к глазу аккомодационные усилия возрастают и на расстоянии 10 см оказываются исчерпанными. Таким образом, точка ближнего видения будет находиться на расстоянии 10 см. С возрастом эластичность хрусталика постепенно уменьшается, а следовательно, меняется и способность к аккомодации. Ближайшая точка ясного видения у 10-летнего находится на расстоянии 7 см, у 20-летнего - на расстоянии 10 см, у 25-летнего - 12,5 см, у 35-летнего - 17 см, у 45-летнего - 33 см, у 60-летнего - 1 м, у 70-летнего - 5 м, у 75-летнего способность к аккомодации почти теряется и ближайшая точка ясного видения отодвигается в бесконечность.

Читайте также: